• Guangli FengEmail author


Rye is the most winter-hardy crop of all the small grains. Unlike wheat and other cereal grains, rye grows well in poorer soils, tolerating low pH and poor fertility. Thus, rye is a valuable crop in sandy or peaty soils. In addition, rye grains are also rich in bioactive compounds and dietary fibres, which are mainly concentrated in the bran layers of the grain. This chapter discusses dietary fibres and bioactives of sterols, folates, tocopherols and tocotrienols, alkylresorcinols, lignans and phenolic acids in rye. Their molecular mechanisms, stabilities during food processing, and possible approaches to enhance health benefit are also discussed.


  1. 1.
    Slavin J (2004) Whole grains and human health. Nutr Res Rev 17(1):99–110CrossRefGoogle Scholar
  2. 2.
    Kamal-Eldin A, Laerke HN, Knudsen KE, Lampi AM, Piironen V, Adlercreutz H et al (2009) Physical, microscopic and chemical characterisation of industrial rye and wheat brans from the Nordic countries. Food Nutr Res 53:1912CrossRefGoogle Scholar
  3. 3.
    Liukkonen K-H, Katina K, Wilhelmsson A, Myllymaki O, Lampi A-M, Kariluoto S et al (2003) Process-induced changes on bioactive compounds in whole grain rye. Proc Nutr Soc 62(1):117–122CrossRefGoogle Scholar
  4. 4.
    Howlett JF, Betteridge VA, Champ M, Craig SA, Meheust A, Jones JM (2010) The definition of dietary fiber–discussions at the ninth vahouny fiber symposium: building scientific agreement. Food Nutr Res 54:5750CrossRefGoogle Scholar
  5. 5.
    Lagaert S, Pollet A, Courtin CM, Volckaert G (2014) β-Xylosidases and α-l-arabinofuranosidases: accessory enzymes for arabinoxylan degradation. Biotechnol Adv 32(2):316–332CrossRefGoogle Scholar
  6. 6.
    Glitsø LV, Knudsen KB (1999) Milling of whole grain rye to obtain fractions with different dietary fibre characteristics. J Cereal Sci 29(1):89–97CrossRefGoogle Scholar
  7. 7.
    Knudsen KEB, Lærke HN (2010) Review: rye arabinoxylans: molecular structure, physicochemical properties and physiological effects in the gastrointestinal tract. Cereal Chem 87(4):353–362CrossRefGoogle Scholar
  8. 8.
    Saini H, Henry R (1989) Fractionation and evaluation of triticale pentosans: comparison with wheat and rye. Cereal Chem 66(1):11–14Google Scholar
  9. 9.
    Vinkx C, Stevens I, Gruppen H, Grobet P, Delcour J (1995) Physicochemical and functional properties of rye nonstarch polysaccharides. VI: Variability in the structure of water-unextractable arabinoxylans. Cereal Chem 72(4):411–418Google Scholar
  10. 10.
    Knudsen KEB (1997) Carbohydrate and lignin contents of plant materials used in animal feeding. Anim Feed Sci Technol 67(4):319–338CrossRefGoogle Scholar
  11. 11.
    Hansen HB, Rasmussen CV, Bach Knudsen KE, Hansen Å (2003) Effects of genotype and harvest year on content and composition of dietary fibre in rye (Secale cereale L) grain. J Sci Food Agric 83(1):76–85CrossRefGoogle Scholar
  12. 12.
    Andersson R, Fransson G, Tietjen M, Åman P (2009) Content and molecular-weight distribution of dietary fiber components in whole-grain rye flour and bread. J Agric Food Chem 57(5):2004–2008CrossRefGoogle Scholar
  13. 13.
    Henry R (1987) Pentosan and (1→ 3), (1→ 4)-β-Glucan concentrations in endosperm and wholegrain of wheat, barley, oats and rye. J Cereal Sci 6(3):253–258CrossRefGoogle Scholar
  14. 14.
    Valsta L, Lemström A, Ovaskainen M-L, Lampi A-M, Toivo J, Korhonen T et al (2004) Estimation of plant sterol and cholesterol intake in Finland: quality of new values and their effect on intake. Br J Nutr 92(4):671–678CrossRefGoogle Scholar
  15. 15.
    Nyström L, Paasonen A, Lampi A-M, Piironen V (2007) Total plant sterols, steryl ferulates and steryl glycosides in milling fractions of wheat and rye. J Cereal Sci 45(1):106–115CrossRefGoogle Scholar
  16. 16.
    Piironen V, Lindsay DG, Miettinen TA, Toivo J, Lampi AM (2000) Plant sterols: biosynthesis, biological function and their importance to human nutrition. J Sci Food Agric 80(7):939–966CrossRefGoogle Scholar
  17. 17.
    Kariluoto S (2008) Folates in rye: determination and enhancement by food processingGoogle Scholar
  18. 18.
    Zielinski H, Ciska E, Kozlowska H (2001) The cereal grains: focus on vitamin E. Czech J Food Sci 19:182–188CrossRefGoogle Scholar
  19. 19.
    Ross AB, Kamal-Eldin A, Åman P (2004) Dietary alkylresorcinols: absorption, bioactivities, and possible use as biomarkers of whole-grain wheat–and rye–rich foods. Nutr Rev 62(3):81–95CrossRefGoogle Scholar
  20. 20.
    Landberg R, Kamal-Eldin A, Salmenkallio-Marttila M, Rouau X, Åman P (2008) Localization of alkylresorcinols in wheat, rye and barley kernels. J Cereal Sci 48(2):401–406CrossRefGoogle Scholar
  21. 21.
    Smeds AI, Jauhiainen L, Tuomola E, Peltonen-Sainio P (2009) Characterization of variation in the lignan content and composition of winter rye, spring wheat, and spring oat. J Agric Food Chem 57(13):5837–5842CrossRefGoogle Scholar
  22. 22.
    Andreasen MF, Christensen LP, Meyer AS, Hansen Å (2000) Content of phenolic acids and ferulic acid dehydrodimers in 17 Rye (Secale cereale L.) varieties. J Agric Food Chem 48(7):2837–2842CrossRefGoogle Scholar
  23. 23.
    Gidley MJ (2013) Hydrocolloids in the digestive tract and related health implications. Curr Opin Colloid Interface Sci 18(4):371–378CrossRefGoogle Scholar
  24. 24.
    Kumar V, Sinha AK, Makkar HP, de Boeck G, Becker K (2012) Dietary roles of non-starch polysaccharides in human nutrition: a review. Crit Rev Food Sci Nutr 52(10):899–935CrossRefGoogle Scholar
  25. 25.
    Wong JM, De Souza R, Kendall CW, Emam A, Jenkins DJ (2006) Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol 40(3):235–243CrossRefGoogle Scholar
  26. 26.
    Bailey LB, Gregory JF (1999) Folate metabolism and requirements. J Nutr 129(4):779–782CrossRefGoogle Scholar
  27. 27.
    Lobo V, Patil A, Phatak A, Chandra N (2010) Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev 4(8):118CrossRefGoogle Scholar
  28. 28.
    Yoshida Y, Niki E, Noguchi N (2003) Comparative study on the action of tocopherols and tocotrienols as antioxidant: chemical and physical effects. Chem Phys Lipids 123(1):63–75CrossRefGoogle Scholar
  29. 29.
    Atkinson J, Epand RF, Epand RM (2008) Tocopherols and tocotrienols in membranes: a critical review. Free Radic Biol Med 44(5):739–764CrossRefGoogle Scholar
  30. 30.
    Gliwa J, Gunenc A, Ames N, Willmore WG, Hosseinian FS (2011) Antioxidant activity of alkylresorcinols from rye bran and their protective effects on cell viability of PC-12 AC cells. J Agric Food Chem 59(21):11473–11482CrossRefGoogle Scholar
  31. 31.
    Adolphe JL, Whiting SJ, Juurlink BH, Thorpe LU, Alcorn J (2010) Health effects with consumption of the flax lignan secoisolariciresinol diglucoside. Br J Nutr 103(7):929–938CrossRefGoogle Scholar
  32. 32.
    Heleno SA, Martins A, Queiroz MJR, Ferreira IC (2015) Bioactivity of phenolic acids: metabolites versus parent compounds: a review. Food Chem 173:501–513CrossRefGoogle Scholar
  33. 33.
    Galano A, Francisco-Márquez M, Alvarez-Idaboy JR (2011) Mechanism and kinetics studies on the antioxidant activity of sinapinic acid. Phys Chem Chem Phys 13(23):11199–11205CrossRefGoogle Scholar
  34. 34.
    Ross AB, Shepherd MJ, Schüpphaus M, Sinclair V, Alfaro B, Kamal-Eldin A et al (2003) Alkylresorcinols in cereals and cereal products. J Agric Food Chem 51(14):4111–4118CrossRefGoogle Scholar
  35. 35.
    Hallmans G, Zhang J-X, Lundin E, Stattin P, Johansson A, Johansson I et al (2003) Rye, lignans and human health. Proc Nutr Soc 62(1):193–199CrossRefGoogle Scholar
  36. 36.
    Katina K, Liukkonen K-H, Kaukovirta-Norja A, Adlercreutz H, Heinonen S-M, Lampi A-M et al (2007) Fermentation-induced changes in the nutritional value of native or germinated rye. J Cereal Sci 46(3):348–355CrossRefGoogle Scholar
  37. 37.
    Koehler P, Hartmann G, Wieser H, Rychlik M (2007) Changes of folates, dietary fiber, and proteins in wheat as affected by germination. J Agric Food Chem 55(12):4678–4683CrossRefGoogle Scholar
  38. 38.
    Kariluoto S, Aittamaa M, Korhola M, Salovaara H, Vahteristo L, Piironen V (2006) Effects of yeasts and bacteria on the levels of folates in rye sourdoughs. Int J Food Microbiol 106(2):137–143CrossRefGoogle Scholar
  39. 39.
    Poutanen K, Flander L, Katina K (2009) Sourdough and cereal fermentation in a nutritional perspective. Food Microbiol 26(7):693–699CrossRefGoogle Scholar
  40. 40.
    Hansen HB, Andreasen M, Nielsen M, Larsen L, Knudsen BK, Meyer A et al (2002) Changes in dietary fibre, phenolic acids and activity of endogenous enzymes during rye bread-making. Eur Food Res Technol 214(1):33–42CrossRefGoogle Scholar
  41. 41.
    Michalska A, Ceglinska A, Amarowicz R, Piskula MK, Szawara-Nowak D, Zielinski H (2007) Antioxidant contents and antioxidative properties of traditional rye breads. J Agric Food Chem 55(3):734–740CrossRefGoogle Scholar
  42. 42.
    Piironen V, Varo P, Koivistoinen P (1987) Stability of tocopherols and tocotrienols in food preparation procedures. J Food Compos Anal 1(1):53–58CrossRefGoogle Scholar
  43. 43.
    Nyström L, Lampi A-M, Andersson AA, Kamal-Eldin A, Gebruers K, Courtin CM et al (2008) Phytochemicals and dietary fiber components in rye varieties in the HEALTHGRAIN diversity screen. J Agric Food Chem 56(21):9758–9766CrossRefGoogle Scholar
  44. 44.
    Feng G, Flanagan BM, Mikkelsen D, Williams BA, Yu W, Gilbert RG et al (2018) Mechanisms of utilisation of arabinoxylans by a porcine faecal inoculum: competition and co-operation. Sci Rep 8(1):4546CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Queensland Alliance for Agriculture and Food InnovationThe University of QueenslandBrisbaneAustralia

Personalised recommendations