• Tongcheng Xu


Sorghum is among the top cereal crops worldwide and is a key species ensuring global food security. The grain sorghum belongs to the grass family Poaceae (Gramineae). Within the family Poaceae, sorghum is classified in the genus Sorghum and is native to Ethiopia in the Horn of Africa [1]. The stalk of sorghum is thick, erect, 3–5 m high, and 2–5 cm in diameter, with supporting roots on the base section. The leaf sheath is glabrous or slightly whitely powdered; the ligule is hard and membranous, with a rounded apex and cilia at the margins; the leaf blade is linear to linear-lanceolate, 40–70 cm long, 3–8 cm wide, acuminate at the apex, dark green on the surface, and light green or white powder on the back, with a small sting and wider midribs.


  1. 1.
    Dillon SL, Shapter FM, Henry RJ, Cordeiro G, Izquierdo L, Lee LS (2007) Domestication to crop improvement: genetic resources for sorghum and saccharum (Andropogoneae). Ann Bot 100(5):975–989PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Singh, Shree P (1985) Sources of cold tolerance in grain sorghum. Can J Plant Sci 65(2):251–257Google Scholar
  3. 3.
    Assefa Y, Staggenborg SA, Prasad VPV (2010) Grain sorghum water requirement and responses to drought stress: a review. Crop Manag 9(1)Google Scholar
  4. 4.
    Ratnavathi CV, Komala VV (2016) Chapter 1 – sorghum grain quality. In: Sorghum biochemistry. Elsevier, Amsterdam, pp 1–61Google Scholar
  5. 5.
    Hwang KT, Kim JE, Weller CL (2005) Policosanol contents and compositions in wax-like materials extracted from selected cereals of Korean origin. Cereal Chem 82(3):242–245CrossRefGoogle Scholar
  6. 6.
    Englyst HN, Kingman SM, Cummings JH (1992) Classification and measurement of nutritionally important starch fractions. Eur J Clin Nutr 46(Suppl 2):S33Google Scholar
  7. 7.
    Escarpa A, González MC, Morales MD, Saura-Calixto F (1997) An approach to the influence of nutrients and other food constituents on resistant starch formation. Food Chem 60(4):527–532CrossRefGoogle Scholar
  8. 8.
    Tharanathan RN (2002) Food-derived carbohydrates – structural complexity and functional diversity. Crit Rev Biotechnol 22(1):65–84PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Eerlingen RJC, Crombez M, Delcour JUJ (1993) Enzyme-resistant starch. 1. Quantitative and qualitative influence of incubation-time and temperature of autoclaved starch on resistant starch formation. Cereal Chem 70(3):339–344Google Scholar
  10. 10.
    Guraya HS, James C, Champagne ET (2015) Effect of enzyme concentration and storage temperature on the formation of slowly digestible starch from cooked debranched rice starch. Starch – Stärke 53(3–4):131–139Google Scholar
  11. 11.
    Sang SI, Kim HJ, Ha HJ, Lee SH, Moon TW (2005) Effect of hydrothermal treatment on formation and structural characteristics of slowly digestible non-pasted granular sweet potato starch. Starch – Stärke 57(9):421–430Google Scholar
  12. 12.
    Dutta H, Mahanta CL (2012) Effect of hydrothermal treatment varying in time and pressure on the properties of parboiled rices with different amylose content[J]. Food Res Int, 49(2):655–663Google Scholar
  13. 13.
    Horwitz WE (1995) Official methods of analysis of AOAC international. Off Methods Anal Aoac Int Ed 6(11):382–382Google Scholar
  14. 14.
    Moraes ÉA, Marineli RDS, Lenquiste SA, Steel CJ, Menezes CBD, Queiroz VAV et al (2015) Sorghum flour fractions: correlations among polysaccharides, phenolic compounds, antioxidant activity and glycemic index. Food Chem 180:116–123PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Olayinka OO, Oluowolabi BI, Adebowale KO (2011) Effect of succinylation on the physicochemical, rheological, thermal and retrogradation properties of red and white sorghum starches. Food Hydrocoll 25(3):515–520CrossRefGoogle Scholar
  16. 16.
    Awika JM, Rooney LW (2004) Sorghum phytochemicals and their potential impact on human health. ChemInform 35(38):1199–1221CrossRefGoogle Scholar
  17. 17.
    Bors W, Michel C, Stettmaier K (2000) Electron paramagnetic resonance studies of radical species of proanthocyanidins and gallate esters. Arch Biochem Biophys 374(2):347–355Google Scholar
  18. 18.
    Hahn DH, Rooney LW, Earp CF (1985) Tannins and phenols of sorghum. Cereal Foods World 29(12):776–779Google Scholar
  19. 19.
    Awika JM, Rooney LW, Wu X, Prior RL, Cisneros-Zevallos L (2003) Screening methods to measure antioxidant activity of sorghum (Sorghum bicolor) and sorghum products. J Agric Food Chem 51(23):6657–6662PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Gu L, House SE, Rooney L, Prior RL (2007) Sorghum bran in the diet dose dependently increased the excretion of catechins and microbial-derived phenolic acids in female rats. J Agric Food Chem 55(13):5326–5334PubMedCrossRefGoogle Scholar
  21. 21.
    Chiremba C, Jrn T, Rooney LW, Beta T (2012) Phenolic acid content of sorghum and maize cultivars varying in hardness. Food Chem 134(1):81–88CrossRefGoogle Scholar
  22. 22.
    Aelm A, Elbeltagi HS, Elsalam SM, Omran AA (2012) Biochemical changes in phenols, flavonoids, tannins, vitamin E, β-carotene and antioxidant activity during soaking of three white sorghum varieties. Asian Pac J Trop Biomed 2(3):203–209CrossRefGoogle Scholar
  23. 23.
    Svensson L, Sekwatimonang B, Lutz DL, Schieber A, Gänzle MG (2010) Phenolic acids and flavonoids in nonfermented and fermented red sorghum (Sorghum bicolor (L.) Moench). J Agric Food Chem 58(16):9214–9220PubMedCrossRefGoogle Scholar
  24. 24.
    Dykes L, Rooney LW (2006) Sorghum and millet phenols and antioxidants. J Cereal Sci 44(3):236–251CrossRefGoogle Scholar
  25. 25.
    Wu Y, Li X, Xiang W, Zhu C, Lin Z, Wu Y et al (2012) Presence of tannins in sorghum grains is conditioned by different natural alleles of Tannin1. Proc Natl Acad Sci U S A 109(26):10281–10286PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Mkandawire NL, Kaufman RC, Bean SR, Weller CL, Jackson DS, Rose DJ (2013) Effects of sorghum (Sorghum bicolor (L.) Moench) tannins on α-amylase activity and in vitro digestibility of starch in raw and processed flours. J Agric Food Chem 61(18):4448–4454PubMedCrossRefGoogle Scholar
  27. 27.
    Gu L, Kelm M, Hammerstone JF, Beecher G, Cunningham D, Vannozzi S et al (2002) Fractionation of polymeric procyanidins from lowbush blueberry and quantification of procyanidins in selected foods with an optimized normal-phase HPLC-MS fluorescent detection method. J Agric Food Chem 50(17):4852–4860PubMedCrossRefGoogle Scholar
  28. 28.
    Linda D, Larrym S, Williaml R, Lloydw R (2009) Flavonoid composition of red sorghum genotypes. Food Chem 116(1):313–317CrossRefGoogle Scholar
  29. 29.
    Taleon V, Dykes L, Rooney WL, Rooney LW (2012) Effect of genotype and environment on flavonoid concentration and profile of black sorghum grains. J Cereal Sci 56(2):470–475CrossRefGoogle Scholar
  30. 30.
    Awika JM, And LWR, Waniska RD (2004) Properties of 3-deoxyanthocyanins from sorghum. J Agric Food Chem 52(14):4388–4394PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Shih PH, Yeh CT, Yen GC (2007) Anthocyanins induce the activation of phase II enzymes through the antioxidant response element pathway against oxidative stress-induced apoptosis. J Agric Food Chem 55(23):9427–9435PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Dykes L, Peterson GC, Rooney WL, Rooney LW (2011) Flavonoid composition of lemon-yellow sorghum genotypes. Food Chem 128(1):173–179Google Scholar
  33. 33.
    Jia DY, Li Y, Yao K, He Q (2005) Extraction of polyphenols from banana peel. J Sichuan Univ 37:52–55Google Scholar
  34. 34.
    D’Alessandro LG, Kriaa K, Nikov I, Dimitrov K (2012) Ultrasound assisted extraction of polyphenols from black chokeberry. Sep Purif Technol 93:42–47CrossRefGoogle Scholar
  35. 35.
    Xiao-Yan FU, Sui Y, Xie BJ, Sun ZD (2014) Comparison of content, composition and antioxidant activity of germinated oat phenols by different extraction methods. Science & Technology of Food Industry 35(15): 54–57Google Scholar
  36. 36.
    Renyong GU, Yang W, Ji YU (2015) Optimization of supercritical CO_2 extraction conditions of polyphenols from young fruits of holboellia latifolia by response surface methodology. Food Sci 36(10): 76–80Google Scholar
  37. 37.
    Ouyang YZ, Xue-Feng LI, Yao YH (2014) Separation of total polyphenols from Akebia trifoliate peel by calcium precipitation method. Food Sci 35(16): 76–79Google Scholar
  38. 38.
    Luo C, Li J (2015) Optimization of separation and purification for epigallocatechin gallate in tea polyphenol by glucosan gelatin. China J Pharm Econ 1: 15–19Google Scholar
  39. 39.
    Yanagida A, Shoji T, Shibusawa Y (2003) Separation of proanthocyanidins by degree of polymerization by means of size-exclusion chromatography and related techniques. J Biochem Biophys Methods 56(1–3):311–322PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Price ML, Butler LG (1977) Rapid visual estimation and spectrophotometric determination of tannin content of sorghum grain. Jagricfood Chem 25(6):1268–1273Google Scholar
  41. 41.
    Kaluza WZ, Mcgrath RM, Roberts TC, Schroder HH (1980) Separation of phenolics of Sorghum bicolor (L.) Moench grain. J Agric Food Chem 28(6):1191–1196CrossRefGoogle Scholar
  42. 42.
    Maxson ED, Rooney LW (1972) Evaluation of methods for tannin analysis in sorghum grain. Cereal Chem 49(6):719–729Google Scholar
  43. 43.
    Price ML, Scoyoc SV, Butler LG (1978) A critical evaluation of the vanillin reaction as an assay for tannin in sorghum grain. J Agric Food Chem 26(5):1214–1218CrossRefGoogle Scholar
  44. 44.
    Watterson JJ, Butler LG (1983) Occurrence of an unusual leucoanthocyanidin and absence of proanthocyanidins in sorghum leaves. J Agric Food Chem 31(1):41–45CrossRefGoogle Scholar
  45. 45.
    Khattab R, Eskin M, Aliani M, Thiyam U (2010) Determination of sinapic acid derivatives in canola extracts using high-performance liquid chromatography. J Am Oil Chem Soc 87(2):147–155PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Waniska RD (2000) Structure, phenolic compounds, and antifungal proteins of sorghum caryopses technical and institutional options for sorghum grain mold management. Patancheru Icrisat 72–106Google Scholar
  47. 47.
    Malejko J, Nalewajko-Sieliwoniuk E, Nazaruk J, Siniło J, Kojło A (2014) Determination of the total polyphenolic content in Cirsium palustre (L.) leaves extracts with manganese(IV) chemiluminescence detection. Food Chem 152(2):155–161PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Liu MX, Wang YW, Han JG (2009) Determination of polyphenols in sorghum grains by Near Infrared reflectance spectroscopy. Chin J Anal Chem 37(9):1275–1280Google Scholar
  49. 49.
    Sparti A, Milon H, Di VV, Schneiter P, Tappy L, Jéquier E et al (2000) Effect of diets high or low in unavailable and slowly digestible carbohydrates on the pattern of 24-h substrate oxidation and feelings of hunger in humans. Am J Clin Nutr 72(6):1461–1468PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Ells LJ, Seal CB, Kettlitz B, Bal W, Mathers JC (2005) Postprandial glycaemic, lipaemic and haemostatic responses to ingestion of rapidly and slowly digested starches in healthy young women. Br J Nutr 94(6):948Google Scholar
  51. 51.
    Yin C (2015) Physical characteristics of dietary fiber combining single grain and soybean and its effects on insulin resistance Yangzhou UniversityGoogle Scholar
  52. 52.
    Lopes RDCSO, Lima SLSD, Silva BPD, Toledo RCL, Moreira MEDC, Anunciação PC et al (2018) Evaluation of the health benefits of consumption of extruded tannin sorghum with unfermented probiotic milk in individuals with chronic kidney disease. Food Res Int 107:629–638PubMedCrossRefGoogle Scholar
  53. 53.
    Awika JM, Rooney LW, Waniska RD (2005) Anthocyanins from black sorghum and their antioxidant properties. Food Chem 90(1–2):293–301CrossRefGoogle Scholar
  54. 54.
    Rooney LW, Awika JM (2005) Overview of products and health benefits of specialty sorghums. Cereal Foods World 50(3):114–115Google Scholar
  55. 55.
    Dykes L, Rooney LW, Waniska RD, Rooney WL (2005) Phenolic compounds and antioxidant activity of sorghum grains of varying genotypes. J Agric Food Chem 53(17):6813–6818PubMedCrossRefGoogle Scholar
  56. 56.
    Josephm A, Yang L, Jimmyd B, Abdul F (2009) Comparative antioxidant, antiproliferative and phase II enzyme inducing potential of sorghum (Sorghum bicolor) varieties. LWT Food Sci Technol 42(6):1041–1046CrossRefGoogle Scholar
  57. 57.
    González-Montilla FM, Chávez-Santoscoy RA, Gutiérrez-Uribe JA et al (2012) Isolation and identification of phase II enzyme inductors obtained from black Shawaya sorghum (Sorghum bicolor (L.) Moench) bran. J Cereal Sci 55(2):126–131CrossRefGoogle Scholar
  58. 58.
    Yang L, Browning JD, Awika JM (2009) Sorghum 3-deoxyanthocyanins possess strong phase II enzyme inducer activity and cancer cell growth inhibition properties. J Agric Food Chem 57(5):1797PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Lewis JB (2008) Effects of bran from sorghum grains containing different classes and levels of bioactive compounds in colon carcinogenesis. Texas A & M University, College StationGoogle Scholar
  60. 60.
    Saravanakumar M, Das SM (2011) Identification of 3-deoxyanthocyanins from red sorghum (Sorghum bicolor) bran and its biological properties. Afr J Pure Appl Chem 5(7):181–193Google Scholar
  61. 61.
    Moraes ÉA, Natal DIG, Queiroz VAV, Schaffert RE, Cecon PR, Paula SOD et al (2012) Sorghum genotype may reduce low-grade inflammatory response and oxidative stress and maintains jejunum morphology of rats fed a hyperlipidic diet. Food Res Int 49(1):553–559CrossRefGoogle Scholar
  62. 62.
    Sharma S, Kelly TK, Jones PA (2009) Epigenetics in cancer. Carcinogenesis 31(1):27–36PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Takabe W, Matsukawa N, Kodama T, Tanaka K, Noguchi N (2006) Chemical structure-dependent gene expression of proteasome subunits via regulation of the antioxidant response element. Free Radic Res 40(1):21–30PubMedCrossRefGoogle Scholar
  64. 64.
    Isaacson C (2005) The change of the staple diet of black South Africans from sorghum to maize (corn) is the cause of the epidemic of squamous carcinoma of the oesophagus. Med Hypotheses 64(3):658PubMedCrossRefGoogle Scholar
  65. 65.
    Woo HJ, Oh IT, Lee JY, Jun DY, Seu MC, Woo KS et al (2012) Apigeninidin induces apoptosis through activation of Bak and Bax and subsequent mediation of mitochondrial damage in human promyelocytic leukemia HL-60 cells. Process Biochem 47(12):1861–1871CrossRefGoogle Scholar
  66. 66.
    Suganyadevi P, Saravanakumar KM, Mohandas S (2013) The antiproliferative activity of 3-deoxyanthocyanins extracted from red sorghum (Sorghum bicolor) bran through P(53)-dependent and Bcl-2 gene expression in breast cancer cell line. Life Sci 92(6–7):379–382PubMedCrossRefGoogle Scholar
  67. 67.
    Shih CH, Siu SO, Ng R, Wong E, Chiu LC, Chu IK et al (2007) Quantitative analysis of anticancer 3-deoxyanthocyanidins in infected sorghum seedlings. J Agric Food Chem 55(2):254PubMedCrossRefGoogle Scholar
  68. 68.
    Yang L, Allred KF, Geera B, Allred CD, Awika JM (2012) Sorghum phenolics demonstrate estrogenic action and induce apoptosis in nonmalignant colonocytes. Nutr Cancer Int J 64(3):419–427CrossRefGoogle Scholar
  69. 69.
    Hargrove JL, Greenspan P, Hartle DK, Dowd C (2011) Inhibition of aromatase and α−amylase by flavonoids and proanthocyanidins from Sorghum bicolor bran extracts. J Med Food 14(7–8):799–807PubMedCrossRefGoogle Scholar
  70. 70.
    Dowsett M, Cuzick J, Ingle J, Coates A, Forbes J, Bliss J et al (2010) Meta-analysis of breast cancer outcomes in adjuvant trials of aromatase inhibitors versus tamoxifen. J Clin Oncol Off J Am Soc Clin Oncol 28(3):509CrossRefGoogle Scholar
  71. 71.
    Emmambux NM, Taylor JR (2003) Sorghum kafirin interaction with various phenolic compounds. J Sci Food Agric 83(5):402–407CrossRefGoogle Scholar
  72. 72.
    Haslam E, Williamson M, Charlton A (2000) Protein-polyphenol interactions. Int Congress Symp Ser – R Soc Med 226:25–33Google Scholar
  73. 73.
    Barros F, Awika JM, Rooney LW (2012) Interaction of tannins and other sorghum phenolic compounds with starch and effects on in vitro starch digestibility. J Agric Food Chem 60(46):11609–11617PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Medugu CI, Kwari ID, Igwebuike J, Nkama I, Mohammed ID, Hamaker B (2010) Performance and economics of production of broiler chickens fed sorghum or millet as replacement for maize in the semi-arid zone of Nigeria. Agric Biol J N Am 1(3):321–325CrossRefGoogle Scholar
  75. 75.
    Ali NMM, Eltinay AH, Elkhalifa AEO, Salih OA, Yousif NE (2009) Effect of alkaline pretreatment and cooking on protein fractions of a high-tannin sorghum cultivar. Food Chem 114(2):646–648CrossRefGoogle Scholar
  76. 76.
    Rahman IEA, Osman MAW (2011) Effect of sorghum type (Sorghum bicolor) and traditional fermentation on tannins and phytic acid contents and trypsin inhibitor activity. J Food Agric Env 9(3):163–166Google Scholar
  77. 77.
    Taylor J, Bean SR, Ioerger BP, Jrn T (2007) Preferential binding of sorghum tannins with γ-kafirin and the influence of tannin binding on kafirin digestibility and biodegradation. J Cereal Sci 46(1):22–31CrossRefGoogle Scholar
  78. 78.
    King D, Fan MZ, Ejeta G, Asem EK, Adeola O (2000) The effects of tannins on nutrient utilisation in the White Pekin duck. Br Poult Sci 41(5):630–639PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Sarnimanchado P, Cheynier V, Moutounet M (1999) Interactions of grape seed tannins with salivary proteins. J Agric Food Chem 47(1):42–47CrossRefGoogle Scholar
  80. 80.
    Burdette A, Garner PL, Mayer EP, Hargrove JL, Hartle DK, Greenspan P (2010) Anti-inflammatory activity of select sorghum (Sorghum bicolor) brans. J Med Food 13(4):879–887PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Bralley E, Greenspan P, Hargrove JL, Hartle DK (2008) Inhibition of hyaluronidase activity by select sorghum brans. J Med Food 11(2):307PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Shim TJ, Kim TM, Jang KC, Ko JY, Kim DJ (2013) Toxicological evaluation and anti-inflammatory activity of a golden gelatinous sorghum bran extract. Biosci Biotechnol Biochem 77(4):697–705PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Chung IM, Kim EH, Yeo MA, Kim SJ, Seo MC, Moon HI (2011) Antidiabetic effects of three Korean sorghum phenolic extracts in normal and streptozotocin-induced diabetic rats. Food Res Int 44(1):127–132CrossRefGoogle Scholar
  84. 84.
    Jungmin K, Yongsoon P (2012) Anti-diabetic effect of sorghum extract on hepatic gluconeogenesis of streptozotocin-induced diabetic rats. Nutr Metab 9(1):106–106CrossRefGoogle Scholar
  85. 85.
    Heon PJ, Hee LS, Ill-Min C, Yongsoon P (2012) Sorghum extract exerts an anti-diabetic effect by improving insulin sensitivity via PPAR-γ in mice fed a high-fat diet. Nutr Res Pract 6(4):322–327CrossRefGoogle Scholar
  86. 86.
    Chung IM, Yeo MA, Kim SJ, Kim MJ, Park DS, Moon HI (2011) Antilipidemic activity of organic solvent extract from Sorghum bicolor on rats with diet-induced obesity. Hum Exp Toxicol 30(11):1865–1868PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Cho S, Choi Y, Ha T In vitro and in vivo effects of prosomillet, buckwheat and sorghum on cholesterol metabolism. FASEB J 14:A249Google Scholar
  88. 88.
    Hicks K, Walzem R, Carroll R, Turner N (2013) A polyphenol rich sumac sorghum cereal alters lipoprotein subfractions resulting in a more cardioprotective lipoprotein profile. Procedia Eng 58:533–542CrossRefGoogle Scholar
  89. 89.
    Cardona F, Andrés-Lacueva C, Tulipani S, Tinahones FJ, Queipo-Ortuño MI (2013) Benefits of polyphenols on gut microbiota and implications in human health. J Nutr Biochem 24(8):1415–1422PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Clemente JC, Ursell LK, Parfrey LW, Knight R (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148(6):1258–1270PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Requena T, Monagas M, Pozobayón MA, Martínálvarez PJ, Bartolomé B, Rdel C et al (2010) Perspectives of the potential implications of wine polyphenols on human oral and gut microbiota. Trends Food Sci Technol 21(7):332–344CrossRefGoogle Scholar
  92. 92.
    Dolara P, Luceri C, De FC, Femia AP, Giovannelli L, Caderni G et al (2005) Red wine polyphenols influence carcinogenesis, intestinal microflora, oxidative damage and gene expression profiles of colonic mucosa in F344 rats. Mutat Res 591(1):237–246PubMedCrossRefGoogle Scholar
  93. 93.
    Duarte S, Gregoire S, Singh A, Vorsa N, Schaich K, Bowen W et al (2006) Inhibitory effects of cranberry polyphenols on formation and acidogenicity of streptococcus mutans biofilms. FEMS Microbiol Lett 257(1):50–56PubMedCrossRefGoogle Scholar
  94. 94.
    Hidalgo M, Orunaconcha MJ, Kolida S, Walton GE, Kallithraka S, Spencer JP et al (2012) Metabolism of anthocyanins by human gut microflora and their influence on gut bacterial growth. J Agric Food Chem 60(15):3882–3890PubMedCrossRefGoogle Scholar
  95. 95.
    Tzounis X, Rodriguez-Mateos A, Vulevic J, Gibson GR, Kwik-Uribe C, Spencer JP (2011) Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study. Am J Clin Nutr 93(1):62–72PubMedCrossRefGoogle Scholar
  96. 96.
    Seidel DV, Martínez I, Taddeo SS, Zoh R, Haub MD, Walter J et al (2013) Sorghum-based dietary intervention enriches faecalibacterium prausnitzii in fecal samples of overweight individuals. The FASEB Journal 27:1056.12Google Scholar
  97. 97.
    Zhao X, Qian Y (2017) Preventive effects of Kuding tea crude polyphenols in DSS-induced C57BL/6J mice ulcerative colitis. Science & Technology of Food Industry(9):357–362Google Scholar
  98. 98.
    Narayan C, Kumar A (2014) Antineoplastic and immunomodulatory effect of polyphenolic components of Achyranthes aspera (PCA) extract on urethane induced lung cancer in vivo. Mol Biol Rep 41(1):179PubMedCrossRefGoogle Scholar
  99. 99.
    Wolf BW, Bauer LL, Jr FG (1999) Effects of chemical modification on in vitro rate and extent of food starch digestion: an attempt to discover a slowly digested starch. J Agric Food Chem 47(10):4178–4183PubMedCrossRefGoogle Scholar
  100. 100.
    B Müller-Röber, J Koßmann (1994) Approaches to influence starch quantity and starch quality in transgenic plants. Plant Cell Environ 17(5):601–613Google Scholar
  101. 101.
    Han JA, Bemiller JN (2007) Preparation and physical characteristics of slowly digesting modified food starches. Carbohydr Polym 67(3):366–374CrossRefGoogle Scholar
  102. 102.
    Kim DI, Lee HA, Cheong JJ, Chung KM (2007) Formation, characterization, and glucose response in mice to rice starch with low digestibility produced by citric acid treatment. J Cereal Sci 45(1):24–33CrossRefGoogle Scholar
  103. 103.
    Han XZ, Hamaker BR (2004) Slowly digestible starchGoogle Scholar
  104. 104.
    Cuiping YI, Yan LI, Chen Y, Xiali W, Canmei S, Muying WU, et al (2015) Quality changes of germinated red sorghum and its application in cake. Food SciGoogle Scholar
  105. 105.
    Afify AEMR, Elbeltagi HS, Elsalam SMA, Omran AA (2012) Effect of soaking, cooking, germination and fermentation processing on proximate analysis and mineral content of three white sorghum varieties (Sorghum bicolor L. Moench). Notulae Botanicae Horti Agrobotanici Cluj-Napoca 40(2):92–98CrossRefGoogle Scholar
  106. 106.
    Elmaki HB, Babiker EE, Tinay AHE (1999) Changes in chemical composition, grain malting, starch and tannin contents and protein digestibility during germination of sorghum cultivars. Food Chem 64(3):331–336CrossRefGoogle Scholar
  107. 107.
    D’Archivio M, Filesi C, Varì R, Scazzocchio B, Masella R (2010) Bioavailability of the polyphenols: status and controversies. Int J Mol Sci 11(4):1321–1342PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Fernandes I, Faria A, Calhau C, Freitas VD, Mateus N (2014) Bioavailability of anthocyanins and derivatives. J Funct Foods 7(1):54–66CrossRefGoogle Scholar
  109. 109.
    Abdel-Aal E-SM, Dhillon S, Rabalski I, Choo T-M (2012) Free and bound phenolic acids and total phenolics in black, blue, and yellow barley and their contribution to free radical scavenging capacity. Cereal Chem 89(4):198–204CrossRefGoogle Scholar
  110. 110.
    Hole AS, Rud I, Grimmer S, Sigl S, Narvhus J, Sahlstrã MS (2012) Improved bioavailability of dietary phenolic acids in whole grain barley and oat groat following fermentation with probiotic lactobacillus acidophilus, lactobacillus johnsonii, and lactobacillus reuteri. J Agric Food Chem 60(25):6369–6375Google Scholar
  111. 111.
    Sauracalixto F (2011) Dietary fiber as a carrier of dietary antioxidants: an essential physiological function. J Agric Food Chem 59(1):43–49CrossRefGoogle Scholar
  112. 112.
    Crozier A, Del RD, Clifford MN (2010) Bioavailability of dietary flavonoids and phenolic compounds. Mol Asp Med 31(6):446–467CrossRefGoogle Scholar
  113. 113.
    Serrano J, Puupponen-Pimiä R, Dauer A, Aura AM, Saura-Calixto F (2009) Tannins: current knowledge of food sources, intake, bioavailability and biological effects. Mol Nutr Food Res 53(S2):S310–S329Google Scholar
  114. 114.
    Yang M, Koo SI, Song WO, Chun OK (2011) Food matrix affecting anthocyanin bioavailability: review. Curr Med Chem 18(2):291–300PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Williamson G, Clifford MN (2010) Colonic metabolites of berry polyphenols: the missing link to biological activity?. [Review]. Br J Nutr 104(3):S48PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Adarkwah-Yiadom M, Duodu KG (2017) Effect of extrusion cooking and simulated in vitro gastrointestinal digestion on condensed tannins and radical scavenging activity of type II and type III whole grain sorghum. Int J Food Sci Technol 52(10):2282–2294CrossRefGoogle Scholar
  117. 117.
    Gaytán-Martínez M, Cabrera-Ramírez ÁH, Morales-Sánchez E, Ramírez-Jiménez AK, Cruz-Ramírez J, Campos-Vega R et al (2017) Effect of nixtamalization process on the content and composition of phenolic compounds and antioxidant activity of two sorghums varieties. J Cereal Sci 77:1CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Tongcheng Xu
    • 1
  1. 1.Institute of Agro-Food Science and TechnologyShandong Academy of Agricultural Sciences (SAAS)JinanChina

Personalised recommendations