Wheat and Wheat Hybrids

  • Xueling Zheng
  • Jiaying Shang
  • Qinghua Yue
  • Mingfei Li


Wheat is the most widely grown cereal crop in the world. It is the main material of major staple food in many diets, providing a large proportion of daily energy intake [1]. The demand for wheat for human consumption is also increasing globally, including in countries which are climatically unsuited for wheat production, due to the adoption of Western-style diets. After grinding, wheat flour can be used for the preparation of bread, steamed bread, biscuits, noodles, and other foods; wheat flour also can be fermented into beer, alcohol, liquor (such as vodka), or biomass fuel.


  1. 1.
    Dinu M, Whittaker A, Pagliai G, Benedettelli S, Sofi F (2017) Ancient wheat species and human health: biochemical and clinical implications. J Nutr Biochem 52:1PubMedCrossRefGoogle Scholar
  2. 2.
    Shewry PR, Hey SJ (2015) The contribution of wheat to human diet and health. Food Energy Secur 4(3):178–202PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Kelly S, Brynes A, Frost G, Lang R, Whittaker V, Summerbell CD (2007) Wholegrain cereals for coronary heart disease. Cochrane Database Syst Rev 2:CD005051Google Scholar
  4. 4.
    Aune D, Keum NN, Giovannucci E, Fadnes LT, Boffetta P, Greenwood DC et al (2016) Nut consumption and risk of cardiovascular disease, total cancer, all-cause and cause-specific mortality: a systematic review and dose-response meta-analysis of prospective studies. BMC Med 14(1):207PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Gil A, Ortega RM, Maldonado J (2011) Wholegrain cereals and bread: a duet of the Mediterranean diet for the prevention of chronic diseases. Public Health Nutr 14(12A):2316–2322PubMedCrossRefGoogle Scholar
  6. 6.
    Cooper R (2015) Re-discovering ancient wheat varieties as functional foods. J Trad Complement Med 5(3):138–143CrossRefGoogle Scholar
  7. 7.
    Anon (1999) AACC International Defines Whole GrainGoogle Scholar
  8. 8.
    Prückler M, Siebenhandlehn S, Apprich S, Höltinger S, Haas C, Schmid E et al (2014) Wheat bran-based biorefinery 1: composition of wheat bran and strategies of functionalization. LWT Food Sci Technol 56(2):211–221CrossRefGoogle Scholar
  9. 9.
    Shewry PR, Pdronen V, Lampi AM (2010) The healthgrain wheat diversity screen: effects of genotype and environment on phytochemicals and dietary fiber components. J Agric Food Chem 58(17):9291–9298PubMedCrossRefGoogle Scholar
  10. 10.
    Elliott DC, Orth RJ, Werpy TA, Gao J, Eakin DE, Schmidt AJ et al (2002) Biorefinery concept development based on wheat flour milling. Abstr Pap Am Chem Soc 223:U581Google Scholar
  11. 11.
    Brouns F, Hemery Y, Price R, Anson NM (2012) Wheat aleurone: separation, composition, health aspects, and potential food use. Crit Rev Food Sci Nutr 52(6):553–568PubMedCrossRefGoogle Scholar
  12. 12.
    Apprich S, Tirpanalan Ö, Hell J, Reisinger M, Böhmdorfer S, Siebenhandlehn S et al (2014) Wheat bran-based biorefinery 2: valorization of products. LWT Food Sci Technol 56(2):222–231CrossRefGoogle Scholar
  13. 13.
    Yan X, Ye R, Chen Y (2015) Blasting extrusion processing: the increase of soluble dietary fiber content and extraction of soluble-fiber polysaccharides from wheat bran. Food Chem 180:106–115PubMedCrossRefGoogle Scholar
  14. 14.
    Mateo AN, Hemery YM, Bast A, Haenen GR (2012) Optimizing the bioactive potential of wheat bran by processing. Food Funct 3(4):362–375CrossRefGoogle Scholar
  15. 15.
    Barros F, Alviola JN, Rooney LW (2010) Comparison of quality of refined and whole wheat tortillas. J Cereal Sci 51(1):50–56CrossRefGoogle Scholar
  16. 16.
    Landberg R, Marklund M, Kamal-Eldin A, Åman P (2014) An update on alkylresorcinols – occurrence, bioavailability, bioactivity and utility as biomarkers. J Funct Foods 7(2):77–89CrossRefGoogle Scholar
  17. 17.
    Seo CR, Yi BR, Oh S, Kwon SM, Kim S, Song NJ et al (2015) Aqueous extracts of hulled barley containing coumaric acid and ferulic acid inhibit adipogenesis in vitro and obesity in vivo. J Funct Foods 12:208–218CrossRefGoogle Scholar
  18. 18.
    Tucker AJ, Vandermey JS, Robinson LE, Graham TE, Bakovic M, Duncan AM (2014) Effects of breads of varying carbohydrate quality on postprandial glycaemic, incretin and lipidaemic response after first and second meals in adults with diet-controlled type 2 diabetes. J Funct Foods 6(1):116–125CrossRefGoogle Scholar
  19. 19.
    Piironen V, Lampi AM, Ekholm P, Salmenkallio-Marttila M, Liukkonen KH (2009) Chapter 7 – Micronutrients and phytochemicals in wheat grain. Wheat:179–222Google Scholar
  20. 20.
    Gaskins AJ, Mumford SL, Rovner AJ, Zhang CL, Chen LW, Wactawskiwende J et al (2010) Whole grains are associated with serum concentrations of high sensitivity C-reactive protein among premenopausal women. J Nutr 140(9):1669–1676PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Jenkins DJ, Kendall CW, Faulkner DA, Kemp T, Marchie A, Nguyen TH et al (2008) Long-term effects of a plant-based dietary portfolio of cholesterol-lowering foods on blood pressure. Eur J Clin Nutr 62(62):781–788PubMedCrossRefGoogle Scholar
  22. 22.
    Masters RC, Liese AD, Haffner SM, Wagenknecht LE, Hanley AJ (2010) Whole and refined grain intakes are related to inflammatory protein concentrations in human plasma. J Nutr 140(3):587PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Qi L, van Dam RM, Liu S, Franz M, Mantzoros C, Hu FB (2006) Whole-grain, bran, and cereal fiber intakes and markers of systemic inflammation in diabetic women. Diabetes Care 29(2):207PubMedCrossRefGoogle Scholar
  24. 24.
    Raninen K, Lappi J, Mykkänen H, Poutanen K (2011) Dietary fiber type reflects physiological functionality: comparison of grain fiber, inulin, and polydextrose. Nutr Rev 69(1):9–21PubMedCrossRefGoogle Scholar
  25. 25.
    Fardet A (2010) New hypotheses for the health-protective mechanisms of whole-grain cereals: what is beyond fibre? Nutr Res Rev 23(1):65–134PubMedCrossRefGoogle Scholar
  26. 26.
    Björck I, Östman E, Kristensen M, Anson NM, Price RK, Haenen GRMM et al (2012) Cereal grains for nutrition and health benefits: overview of results from in vitro, animal and human studies in the HEALTHGRAIN project. Trends Food Sci Technol 25(2):87–100CrossRefGoogle Scholar
  27. 27.
    Wolfram G, Bechthold A, Boeing H, Ellinger S, Hauner H, Kroke A et al (2015) Evidence-based guideline of the German Nutrition Society: fat intake and prevention of selected nutrition-related diseases. Ann Nutr Metab 67(3):141PubMedCrossRefGoogle Scholar
  28. 28.
    Jonnalagadda SS, Harnack L, Liu RH, Mckeown N, Seal C, Liu S, et al. Putting the whole grain puzzle together: health benefits associated with whole grains—Summary of American Society for Nutrition 2010 satellite symposium. J Nutr 2011; 141 (5): 1011S–22S.Google Scholar
  29. 29.
    Luthria DL, Lu Y, John KMM (2015) Bioactive phytochemicals in wheat: extraction, analysis, processing, and functional properties. J Funct Foods 18:910–925CrossRefGoogle Scholar
  30. 30.
    Blandino M, Sovrani V, Marinaccio F, Reyneri A, Rolle L, Giacosa S et al (2013) Nutritional and technological quality of bread enriched with an intermediated pearled wheat fraction. Food Chem 141(3):2549–2557PubMedCrossRefGoogle Scholar
  31. 31.
    Liyana-Pathirana CM, Shahidi F (2006) Importance of insoluble-bound phenolics to antioxidant properties of wheat. J Agric Food Chem 54(4):1256PubMedCrossRefGoogle Scholar
  32. 32.
    Liyana-Pathirana CM, Shahidi F (2007) Antioxidant and free radical scavenging activities of whole wheat and milling fractions. Food Chem 101(3):1151–1157CrossRefGoogle Scholar
  33. 33.
    Lu Y, Luthria D, Fuerst EP, Kiszonas AM, Yu L, Morris CF (2014) Effect of processing on phenolic composition of dough and bread fractions made from refined and whole wheat flour of three wheat varieties. J Agric Food Chem 62(43):10431–10436PubMedCrossRefGoogle Scholar
  34. 34.
    Tanwir F, Fredholm M, Gregersen PL, Fomsgaard IS (2013) Comparison of the levels of bioactive benzoxazinoids in different wheat and rye fractions and the transformation of these compounds in homemade foods. Food Chem 141(1):444–450PubMedCrossRefGoogle Scholar
  35. 35.
    Nurmi T, Lampi AM, Nyström L, Piironen V (2010) Effects of environment and genotype on phytosterols in wheat in the HEALTHGRAIN diversity screen. J Agric Food Chem 58(17):9314–9323PubMedCrossRefGoogle Scholar
  36. 36.
    Andersson AA, Andersson R, Piironen V, Lampi AM, Nyström L, Boros D et al (2013) Contents of dietary fibre components and their relation to associated bioactive components in whole grain wheat samples from the HEALTHGRAIN diversity screen. Food Chem 136(3–4):1243–1248PubMedCrossRefGoogle Scholar
  37. 37.
    Jones JR, Lineback DM, Levine MJ (2010) Dietary reference intakes: implications for fiber labeling and consumption: a summary of the International Life Sciences Institute North America fiber workshop, June 1–2, 2004, Washington, DC. Nutr Rev 64(1):31–38CrossRefGoogle Scholar
  38. 38.
    Khan AR, Alam S, Ali S, Bibi S, Khalil IA (2007) Dietary fiber profile of food legumes. Sarhad J AgricGoogle Scholar
  39. 39.
    Yangilar F (2013) The application of dietary fibre in food industry: structural features, effects on health and definition, obtaining and analysis of dietary fibre: a review. J Food Nutr Res 1(3):13–23Google Scholar
  40. 40.
    Prakongpan T, Nitithamyong A, Luangpituksa P (2010) Extraction and application of dietary fiber and cellulose from pineapple cores. J Food Sci 67(4):1308–1313CrossRefGoogle Scholar
  41. 41.
    Barron C, Surget A, Rouau X (2007) Relative amounts of tissues in mature wheat (Triticum aestivum L.) grain and their carbohydrate and phenolic acid composition. J Cereal Sci 45(1):88–96CrossRefGoogle Scholar
  42. 42.
    Dupont MS, Selvendran RR (1987) Hemicellulosic polymers from the cell walls of beeswing wheat bran: Part I, Polymers solubilised by alkali at 2°. Carbohydr Res 163(1):99–113CrossRefGoogle Scholar
  43. 43.
    Bacic A, Stone B (1981) Chemistry and organization of aleurone cell wall components from wheat and barley. Funct Plant Biol 8(5):475CrossRefGoogle Scholar
  44. 44.
    Mares DJ, Stone BA (1973) Studies on wheat endosperm. I. Chemical composition and ultrastructure of the cell walls. Biol Sci 26:793–812Google Scholar
  45. 45.
    Haska L, Nyman M, Andersson R (2008) Distribution and characterisation of fructan in wheat milling fractions. J Cereal Sci 48(3):768–774CrossRefGoogle Scholar
  46. 46.
    Devries JW, Kamp JWVD, Jones JM, Mccleary BV, Topping DL (2010) Validating official methodology commensurate with dietary fibre research and definitionsGoogle Scholar
  47. 47.
    Westenbrink S, Brunt K, Jw VDK (2013) Dietary fibre: challenges in production and use of food composition data. Food Chem 140(3):562–567PubMedCrossRefGoogle Scholar
  48. 48.
    Macagnan FT, Da LS, Hecktheuer LH (2016) Dietary fibre: the scientific search for an ideal definition and methodology of analysis, and its physiological importance as a carrier of bioactive compounds. Food Res Int 85:144–154PubMedCrossRefGoogle Scholar
  49. 49.
    Kaczmarczyk MM, Miller MJ, Freund GG (2012) The health benefits of dietary fiber: beyond the usual suspects of type 2 diabetes mellitus, cardiovascular disease and colon cancer. Metab Clin Exp 61(8):1058–1066PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Giuntini EB, Menezes EW (2011) Fibraalimentar. Série de Publicações ILSI Brasil-FunçõesPlenamenteReconhecidas de Nutrientes. São Paulo, ILSI, p 18. (23 pp)Google Scholar
  51. 51.
    Cyrilwc K, Amin E, Davidja J (2010) The link between dietary fibre and human health. Food Hydrocoll 24(1):42–48CrossRefGoogle Scholar
  52. 52.
    Pool-Zobel BL (2005) Inulin-type fructans and reduction in colon cancer risk: review of experimental and human data. Br J Nutr 93(Suppl 1):S1–S73Google Scholar
  53. 53.
    Chawla R, Patil GR (2010) Soluble dietary fiber. Compr Rev Food Sci Food Saf 9(2):178–196CrossRefGoogle Scholar
  54. 54.
    Tungland BC, Meyer D (2010) Nondigestible oligo- and polysaccharides (dietary fiber): their physiology and role in human health and food. Compr Rev Food Sci Food Saf 1(3):90–109CrossRefGoogle Scholar
  55. 55.
    Weng LC, Lee NJ, Yeh WT, Ho LT, Pan WH (2012) Lower intake of magnesium and dietary fiber increases the incidence of type 2 diabetes in Taiwanese. J Formos Med Assoc 111(11):651–659PubMedCrossRefGoogle Scholar
  56. 56.
    Casiglia E, Tikhonoff V, Caffi S, Boschetti G, Grasselli C, Saugo M et al (2013) High dietary fiber intake prevents stroke at a population level. Clin Nutr 32(5):811–818PubMedCrossRefGoogle Scholar
  57. 57.
    Whelton SP, Hyre AD, Pedersen B, Yi Y, Whelton PK, He J (2005) Effect of dietary fiber intake on blood pressure: a meta-analysis of randomized, controlled clinical trials. J Hypertens 23(3):475–481PubMedCrossRefGoogle Scholar
  58. 58.
    Chau CF, Huang YL, Lin CY (2004) Investigation of the cholesterol-lowering action of insoluble fibre derived from the peel of Citrus sinensis L. cv. Liucheng. Food Chem 87(3):361–366CrossRefGoogle Scholar
  59. 59.
    Lunn J, Buttriss JL (2010) Carbohydrates and dietary fibre. Nutr Bull 32(1):21–64CrossRefGoogle Scholar
  60. 60.
    Brown L, Rosner B, Willett WW, Sacks FM (1999) Cholesterol-lowering effects of dietary fiber: a meta-analysis. Am J Clin Nutr 69(1):30–42PubMedCrossRefGoogle Scholar
  61. 61.
    Cook CM, Rains TM, Maki KC, Chu YF (2014) Effects of oats on obesity, weight management, and satiety. Wiley, ChichesterGoogle Scholar
  62. 62.
    Karl JP, Saltzman E (2012) The role of whole grains in body weight regulation. Adv Nutr 3(5):697–707PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Tousen Y, Uehara M, Abe F, Kimira Y, Ishimi Y (2013) Effects of short-term fructooligosaccharide intake on equol production in Japanese postmenopausal women consuming soy isoflavone supplements: a pilot study. Nutr J 12(1):127–127PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Flint HJ, Duncan SH, Louis P (2017) The impact of nutrition on intestinal bacterial communities. Curr Opin Microbiol 38:59PubMedCrossRefGoogle Scholar
  65. 65.
    Holscher HD (2017) Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 8(2):172–184PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Wong JM, De SR, Kendall CW, Emam A, Jenkins DJ (2006) Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol 40(3):235–243PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Rodriguez R, Jimenez A, Fernandezbolanos J, Guillen R, Heredia A (2006) Dietary fibre from vegetable products as source of functional ingredients. Trends Food Sci Technol 17(1):3–15CrossRefGoogle Scholar
  68. 68.
    Silva FM, Kramer CK, De Almeida JC, Steemburgo T, Gross JL, Azevedo MJ (2013) Fiber intake and glycemic control in patients with type 2 diabetes mellitus: a systematic review with meta-analysis of randomized controlled trials. Nutr Rev 71(12):790–801PubMedCrossRefGoogle Scholar
  69. 69.
    Steffen LM, Jacobs JD, Stevens J, Shahar E, Carithers T, Folsom AR (2003) Associations of whole-grain, refined-grain, and fruit and vegetable consumption with risks of all-cause mortality and incident coronary artery disease and ischemic stroke: the Atherosclerosis Risk in Communities (ARIC) Study. Am J Clin Nutr 78(3):383–390PubMedCrossRefGoogle Scholar
  70. 70.
    Aleixandre A, Miguel M (2016) Dietary fiber and blood pressure control. Food Funct 7(4):1864–1871PubMedCrossRefGoogle Scholar
  71. 71.
    Liu J, Willför S, Xu C (2015) A review of bioactive plant polysaccharides: biological activities, functionalization, and biomedical applications. Bioact Carbohydr Diet Fibre 5(1):31–61CrossRefGoogle Scholar
  72. 72.
    Englyst HN, Cummings JH (1985) Digestion of the polysaccharides of some cereal foods in the human small intestine. Am J Clin Nutr 42(5):778PubMedCrossRefGoogle Scholar
  73. 73.
    Englyst HN, Cummings JH (1987) Resistant starch, a ‘new’ food component: a classification of starch for nutritional purposesGoogle Scholar
  74. 74.
    Englyst HN, Kingman SM, Cummings JH (1992) Classification and measurement of nutritionally important starch fractions. Eur J Clin Nutr 46(Suppl 2):S33PubMedGoogle Scholar
  75. 75.
    Annison G, Topping DL (1994) Nutritional role of resistant starch: chemical structure vs physiological function. Annu Rev Nutr 14(14):297PubMedCrossRefGoogle Scholar
  76. 76.
    Tester RF, Qi X, Karkalas J (2006) Hydrolysis of native starches with amylases. Anim Feed Sci Technol 130(1):39–54CrossRefGoogle Scholar
  77. 77.
    Sharma A, Yadav BS, Ritika (2008) Resistant starch: physiological roles and food applications. Food Rev Int 24(2):193–234CrossRefGoogle Scholar
  78. 78.
    Brown IL (2004) Applications and uses of resistant starch. J AOAC Int 87(3):727–732PubMedGoogle Scholar
  79. 79.
    Topping DL, Bajka BH, Bird AR, Clarke JM, Cobiac L, Conlon MA et al (2008) Resistant starches as a vehicle for delivering health benefits to the human large bowel. Microb Ecol Health Dis 20(2):103–108CrossRefGoogle Scholar
  80. 80.
    Tharanathan RN (2005) Starch – value addition by modification. Crit Rev Food Sci Nutr 45(5):371–384PubMedCrossRefGoogle Scholar
  81. 81.
    Akerberg AK, Liljeberg HG, Granfeldt YE, Drews AW, Bjorck IM (1998) An in vitro method, based on chewing, to predict resistant starch content in foods allows parallel determination of potentially available starch and dietary fiber. J Nutr 128(3):651–660PubMedCrossRefGoogle Scholar
  82. 82.
    Megazyme. Resistant starch assay kit. 7 September 2016 ed. 2015Google Scholar
  83. 83.
    Resistant starch in starch samples and plant materials. ed: American Association of Cereal Chemists (2000) 2000: 32–40Google Scholar
  84. 84.
    Mccleary BV, Monaghan DA (2002) Measurement of resistant starch. J AOAC Int 85(3):665–675PubMedGoogle Scholar
  85. 85.
    Mccleary BV, Mcnally M, Rossiter P (2002) Measurement of resistant starch by enzymatic digestion in starch and selected plant materials: collaborative study. J AOAC Int 85(5):665–675PubMedGoogle Scholar
  86. 86.
    Muir JG, O’Dea K (1992) Measurement of resistant starch: factors affecting the amount of starch escaping digestion in vitro. Am J Clin Nutr 56(1):123–127PubMedCrossRefGoogle Scholar
  87. 87.
    Shi YC, Maningat CC, McCleary BV (2013) Measurement of resistant starch and incorporation of resistant starch into dietary fibre measurements. In: Shi Y-C, Maningat CC (eds) Resistant starch sources, applications and health benefits. Wiley, Chichester, pp 131–144CrossRefGoogle Scholar
  88. 88.
    Fausto FDKA, Mehta D (1995) Starch products in confectionery. Bev FoodWorldGoogle Scholar
  89. 89.
    Mahadevamma S, Tharanathan RN (2003) Grain legumes¿a boon to human nutrition. Trends Food Sci Technol Off J Eur Fed Food Sci Technol (EFFoST) Int Union Food Sci Technol (IUFoST) 14:507–518Google Scholar
  90. 90.
    Nugent AP (2010) Health properties of resistant starch. Nutr Bull 30(1):27–54CrossRefGoogle Scholar
  91. 91.
    Sajilata MG, Singhal RS, Kulkarni PR (2006) Resistant starch: a review. Compr Rev Food Sci Food Saf 5(1):1–17CrossRefGoogle Scholar
  92. 92.
    Topping DL, Michihiro F, Bird AR (2007) Resistant starch as a prebiotic and synbiotic: state of the art. Proc Nutr Soc 62(1):171–176CrossRefGoogle Scholar
  93. 93.
    Buttriss JL, Stokes CS (2010) Dietary fibre and health: an overview. Nutr Bull 33(3):186–200CrossRefGoogle Scholar
  94. 94.
    Hepburn FN (1976) Status report on FNB proposals for cereal fortification. Cereal Foods World 28:360–362Google Scholar
  95. 95.
    Kutsky RJ (1981) Handbook of vitamins, minerals and hormones. Van Nostrand Reinhold, New YorkGoogle Scholar
  96. 96.
    Toepfer EW, Polansky MM, Eheart JF, Slover HT, Morris ER, Hepburn FN et al (1972) Nutrient composition of selected wheats and wheat products. XI. Summary. Cereal Chem 49:173–186Google Scholar
  97. 97.
    Harris RS. General Discussion on the Stability of Nutrients 1988.CrossRefGoogle Scholar
  98. 98.
    Burton BT (1976) Human nutrition. A textbook of nutrition in health and diseaseGoogle Scholar
  99. 99.
    Kirschmann GJ, Kirschmann JD (1979) Nutrition search, I. Nutrition almanac. McGraw-Hill, New YorkGoogle Scholar
  100. 100.
    Ranhotra GS, Bock MA (1988) Effects of baking on nutrients. Nutritional evaluation of food processing. Springer, DordrechtGoogle Scholar
  101. 101.
    National Research Council, Washington, DC (1960) Recommended dietary allowances. Nutr Rev 18(7):203–205Google Scholar
  102. 102.
    Ranhotra GS, Gelroth JA, Langemeier J, Rogers DE (1995) Stability and contribution of beta carotene added to whole wheat bread and crackers. Cereal Chem 72(2):139–141Google Scholar
  103. 103.
    Chemists AAOC (1967) Cereal Chem 1967 | The effect of acid and salt on the farinogram and extensigram of dough. PublicationsGoogle Scholar
  104. 104.
    Lebiedzinska A, Szefer P (2006) Vitamins B in grain and cereal-grain food, soy-products and seeds. Food Chem 95(1):116–122CrossRefGoogle Scholar
  105. 105.
    Shils ME (1955) Modern nutrition in health and disease. DietotherapyGoogle Scholar
  106. 106.
    Hazell T (1985) Minerals in foods: dietary sources, chemical forms, interactions, bioavailability. World Rev Nutr Diet 46(46):1–123PubMedGoogle Scholar
  107. 107.
    Anderson JW, Baird P, Davis RH Jr, Ferreri S, Knudtson M, Koraym A et al (2010) Health benefits of dietary fiber. Nutr Rev 67(4):188–205CrossRefGoogle Scholar
  108. 108.
    Morris ER, Ellis R (1976) Isolation of monoferric phytate from wheat bran and its biological value as an iron source to the rat. J Nutr 106(6):753PubMedCrossRefGoogle Scholar
  109. 109.
    Koivistoinen P, Nissinen H, Varo P, Ahlström A (1974) Mineral element composition of cereal grains from different growing areas in Finland. Acta Agric Scand 24(4):327–334CrossRefGoogle Scholar
  110. 110.
    Lorenz K, Loewe R (1977) Mineral composition of U.S. and Canadian wheats and wheat blends. J Agric Food Chem 25(4):806PubMedCrossRefGoogle Scholar
  111. 111.
    Reinhold JG, Parsa A, Karimian N, Hammick JW, Ismail-Beigi F (1974) Availability of zinc in leavened and unleavened wholemeal wheaten breads as measured by solubility and uptake by rat intestine in vitro. J Nutr 104(8):976–982PubMedCrossRefGoogle Scholar
  112. 112.
    Juliano BO (1972) The rice caryopsis and its compositionGoogle Scholar
  113. 113.
    Syvalahti J, Korkman J (1978) The effect of applied mineral elements on the mineral content and yield of cereals and potatoes in Finland. PublisherGoogle Scholar
  114. 114.
    Låg J, Steinnes E (1978) Content of some trace elements in barley and wheat grown in Norway. PublisherGoogle Scholar
  115. 115.
    Kim KH, Tsao R, Yang R, Cui SW (2006) Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chem 95(3):466–473CrossRefGoogle Scholar
  116. 116.
    Adom KK, Sorrells ME, Liu RH (2003) Phytochemical profiles and antioxidant activity of wheat varieties. J Agric Food Chem 51(26):7825–7834PubMedCrossRefGoogle Scholar
  117. 117.
    Bondiapons I, Aura AM, Vuorela S, Kolehmainen M, Mykkänen H, Poutanen K (2009) Rye phenolics in nutrition and health. J Cereal Sci 49(3):323–336CrossRefGoogle Scholar
  118. 118.
    Lappi J, Aura AM, Katina K, Nordlund E, Kolehmainen M, Mykkänen H et al (2013) Comparison of postprandial phenolic acid excretions and glucose responses after ingestion of breads with bioprocessed or native rye bran. Food Funct 4(6):972–981PubMedCrossRefGoogle Scholar
  119. 119.
    Middleton E Jr (1998) Effect of plant flavonoids on immune and inflammatory cell function. Adv Exp Med Biol 439:175–182PubMedCrossRefGoogle Scholar
  120. 120.
    Grace PA (2010) Ischaemia-reperfusion injury. Br J Surg 81(5):637–647CrossRefGoogle Scholar
  121. 121.
    Wang T, He F, Chen G (2014) Improving bioaccessibility and bioavailability of phenolic compounds in cereal grains through processing technologies: a concise review. J Funct Foods 7(1):101–111CrossRefGoogle Scholar
  122. 122.
    Erickson W (2005) The Baker’s toolbox for developing health-promoting products. Cereal Foods World 50(1):6–8Google Scholar
  123. 123.
    Champ M, Langkilde AM, Brouns F, Kettlitz B, Le BCY (2003) Advances in dietary fibre characterisation. 2. Consumption, chemistry, physiology and measurement of resistant starch, implications for health and food labelling. Nutr Res Rev 16(2):143–161PubMedCrossRefGoogle Scholar
  124. 124.
    Rosa NN, Barron C, Gaiani C, Dufour C, Micard V (2013) Ultra-fine grinding increases the antioxidant capacity of wheat bran. J Cereal Sci 57(1):84–90CrossRefGoogle Scholar
  125. 125.
    Hemery YM, Anson NM, Havenaar R, Haenen GRMM, Noort MWJ, Rouau X (2010) Dry-fractionation of wheat bran increases the bioaccessibility of phenolic acids in breads made from processed bran fractions. Food Res Int 43(5):1429–1438CrossRefGoogle Scholar
  126. 126.
    Brewer LR, Kubola J, Siriamornpun S, Herald TJ, Shi YC (2014) Wheat bran particle size influence on phytochemical extractability and antioxidant properties. Food Chem 152(152C):483–490PubMedCrossRefGoogle Scholar
  127. 127.
    Bhanja T, Kumari A, Banerjee R (2009) Enrichment of phenolics and free radical scavenging property of wheat koji prepared with two filamentous fungi. Bioresour Technol 99(11):2861–2866CrossRefGoogle Scholar
  128. 128.
    Abdel-Aal ESM, Rabalski I (2013) Effect of baking on free and bound phenolic acids in wholegrain bakery products. J Cereal Sci 57(3):312–318CrossRefGoogle Scholar
  129. 129.
    Lu Y, Fuerst EP, Lv J, Morris CF, Yu L, Fletcher A et al (2015) Phytochemical profile and antiproliferative activity of dough and bread fractions made from refined and whole wheat flours. Cereal Chem 92(3):271–277CrossRefGoogle Scholar
  130. 130.
    Mercadante AZ (2007) Carotenoids in foods: sources and stability during processing and storage. In: Socaciu C (ed) Food colorants: chemical and functional properties. Taylor & Francis, Boca RatonGoogle Scholar
  131. 131.
    Ranhotra GS, Gelroth JA, Glaser BK, Lorenz KJ (1995) Baking and nutritional qualities of a spelt wheat sample. LWT Food Sci Technol 28(1):118–122CrossRefGoogle Scholar
  132. 132.
    Leenhardt F, Lyan B, Rock E, Boussard A, Potus J, Chanliaud E et al (2006) Wheat lipoxygenase activity induces greater loss of carotenoids than vitamin E during breadmaking. J Agric Food Chem 54(5):1710–1715CrossRefGoogle Scholar
  133. 133.
    Hidalgo A, Brandolini A (2010) Tocols stability during bread, water biscuit and pasta processing from wheat flours. J Cereal Sci 52(2):254–259CrossRefGoogle Scholar
  134. 134.
    Kumar GS, Swathi R, Krishna AGG (2014) Fat-soluble nutraceuticals and their composition in heat-processed wheat germ and wheat bran. Int J Food Sci Nutr 65(3):327–334PubMedCrossRefGoogle Scholar
  135. 135.
    Alvarezjubete L, Wijngaard H, Arendt EK, Gallagher E (2010) Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking. Food Chem 119(2):770–778CrossRefGoogle Scholar
  136. 136.
    Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN and Facciotti D (2005) A reverse genetic, nontransgenic approach to wheat crop improvement by tilling. Nat Biotechnol 23:75–81Google Scholar
  137. 137.
    Grabitske HA, Slavin JL (2009) Gastrointestinal effects of low digestible carbohydrates. Crit Rev Food Sci Nutr 49:327–360Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Xueling Zheng
    • 1
  • Jiaying Shang
    • 1
  • Qinghua Yue
    • 1
  • Mingfei Li
    • 1
  1. 1.College of Grain and Food science, Henan University of TechnologyZhengzhouChina

Personalised recommendations