Advertisement

Barley

  • Lingxiao GongEmail author
Chapter

Abstract

Barley (Hordeum vulgare L.) is the fourth most valuable cereal crop in the world exceeded only by rice, wheat, and corn [1]. Specifically, barley is the most widely adapted cereal grain species with production in a variety of extreme eco-agricultural areas, including regions with high latitudes, dry temperature, or severe temperature fluctuations such as Himalayan nations, Ethiopia, Tibet, and Morocco [2]. Yet 98% of barley crops is primarily used as animal feed and malting, while only 2% is used for direct food consumption.

References

  1. 1.
    Shewry PR, Ullrich SE, Shewry PR, Ullrich SE (2014) Barley: chemistry and technologyGoogle Scholar
  2. 2.
    Newman CW, Newman RK (2006) A brief history of barley foods. Cereal Foods World 51:4–7Google Scholar
  3. 3.
    Food Drug Administration (2008) H. Food labeling: health claims; soluble fiber from certain foods and risk of coronary heart disease. Interim final rule. Fed Regist 73:9938–9947Google Scholar
  4. 4.
    Idehen E, Tang Y, Sang S (2017) Bioactive phytochemicals in barley. J Food Drug Anal 25:148–161CrossRefGoogle Scholar
  5. 5.
    Sato R (2013) Relationship between starch pasting properties, free fatty acids and amylose content in barley. Food Res Int 51:444–449CrossRefGoogle Scholar
  6. 6.
    Cho SS, Dreher ML, Cho SS, Dreher ML (2001) Handbook of dietary fiber. M. Dekker, New YorkCrossRefGoogle Scholar
  7. 7.
    Izydorczyk MS, Dexter JE (2008) Barley β-glucans and arabinoxylans: molecular structure, physicochemical properties, and uses in food products–a review. Food Res Int 41:850–868CrossRefGoogle Scholar
  8. 8.
    Henry RJ (1987) Pentosan and (1 → 3),(1 → 4)-β-glucan concentrations in endosperm and wholegrain of wheat, barley, oats and rye. J Cereal Sci 6:253–258CrossRefGoogle Scholar
  9. 9.
    Nyström L, Lampi AM, Andersson AAM, Kamaleldin A, Gebruers K, Courtin CM et al (2008) Phytochemicals and dietary fiber components in rye varieties in the HEALTHGRAIN diversity screen. J Agric Food Chem 56:9767CrossRefGoogle Scholar
  10. 10.
    Holtekjølen AK, Kinitz C, Knutsen SH (2006) Flavanol and bound phenolic acid contents in different barley varieties. J Agric Food Chem 54:2253CrossRefGoogle Scholar
  11. 11.
    Abdel-Al EAM, Choo TI, Dhillon S, Rabalski I (2012) Free and bound phenolic acids and total phenolics in black, blue, and yellow barley and their contribution to free radical scavenging capacity. Cereal Chem 89:198–204CrossRefGoogle Scholar
  12. 12.
    Kim MJ, Hyun JN, Kim JA, Park JC, Kim MY, Kim JG et al (2007) Relationship between phenolic compounds, anthocyanins content and antioxidant activity in colored barley germplasm. J Agric Food Chem 55:4802–4809CrossRefGoogle Scholar
  13. 13.
    Temelli F, Stobbe K, Rezaei K, Vasanthan T (2013) Tocol composition and supercritical carbon dioxide extraction of lipids from barley pearling flour. J Food Sci 78:1643–1650CrossRefGoogle Scholar
  14. 14.
    Andersson A, Andersson R, Autio K, Aman P (1999) Chemical composition and microstructure of two naked waxy barleys. J Cereal Sci 30:183–191CrossRefGoogle Scholar
  15. 15.
    Liu Z, Liu Y, Pu Z, Wang J, Zheng Y, Li Y et al (2013) Regulation, evolution, and functionality of flavonoids in cereal crops. Biotechnol Lett 35:1765–1780CrossRefGoogle Scholar
  16. 16.
    Tan B, Watson R, Preedy V (2012) Tocotrienols: vitamin E beyond tocopherols, 2nd edn. CRC Press, Boca RatonCrossRefGoogle Scholar
  17. 17.
    Lampi A, Moreau R, Piironen V (2004) Kb. Pearling barley and rye to produce phytosterol-rich fractions. Lipids 39:783–787CrossRefGoogle Scholar
  18. 18.
    Smeds AI, Eklund PC, Sjöholm RE, Willför SM, Nishibe S, Deyama T et al (2007) Quantification of a broad spectrum of lignans in cereals, oilseeds, and nuts. J Agric Food Chem 55:1337–1346CrossRefGoogle Scholar
  19. 19.
    Zieliński H, Kozłowska H (2000) Antioxidant activity and total phenolics in selected cereal grains and their different morphological fractions. J Agric Food Chem 48:2008CrossRefGoogle Scholar
  20. 20.
    Shen Y, Zhang H, Cheng L, Wang L, Qian H, Qi X (2016) In vitro and in vivo antioxidant activity of polyphenols extracted from black highland barley. Food Chem 194:1003–1012CrossRefGoogle Scholar
  21. 21.
    Ramakrishna R, Sarkar D, Schwarz P, Shetty K (2017) Phenolic linked anti-hyperglycemic bioactives of barley (Hordeum vulgare L.) cultivars as nutraceuticals targeting type 2 diabetes. Ind Crops Prod 107:509–517CrossRefGoogle Scholar
  22. 22.
    Qian JY, Bai YY, Tang J, Chen W (2015) Antioxidation and α-glucosidase inhibitory activities of barley polysaccharides modified with sulfation. LWT Food Sci Technol 64:104–111CrossRefGoogle Scholar
  23. 23.
    Xia X, Li G, Xing Y, Ding Y, Ren T, Kan J (2017) Antioxidant activity of whole grain highland hull-less barley and its effect on liver protein expression profiles in rats fed with high-fat diets. Eur J Nutr 57:1–8Google Scholar
  24. 24.
    Hardie DG (2008) AMPK: a key regulator of energy balance in the single cell and the whole organism. Int J Obes 32:S7CrossRefGoogle Scholar
  25. 25.
    Lee JH, Lee SY, Kim B, Seo WD, Jia Y, Wu C et al (2015) Barley sprout extract containing policosanols and polyphenols regulate AMPK, SREBP2 and ACAT2 activity and cholesterol and glucose metabolism in vitro and in vivo. Food Res Int 72:174–183CrossRefGoogle Scholar
  26. 26.
    Kim YJ, Hwang SH, Jia Y, Seo WD, Lee SJ (2017) Barley sprout extracts reduce hepatic lipid accumulation in ethanol-fed mice by activating hepatic AMP-activated protein kinase. Food Res Int 101:209–217CrossRefGoogle Scholar
  27. 27.
    Ghaffarzadegan T, Zhong Y, Fåk FH, Nyman M (2018) Effects of barley variety, dietary fiber and β-glucan content on bile acid composition in cecum of rats fed low- and high-fat diets. J Nutr Biochem 53C:104–110CrossRefGoogle Scholar
  28. 28.
    Schroeder N, Gallaher DD, Arndt EA, Marquart L (2009) Influence of whole grain barley, whole grain wheat, and refined rice-based foods on short-term satiety and energy intake. Appetite 53:363–369CrossRefGoogle Scholar
  29. 29.
    Burton-Freeman B (2000) Dietary fiber and energy regulation. J Nutr 130:272SCrossRefGoogle Scholar
  30. 30.
    El KD, Cuda C, Luhovyy BL, Anderson GH (2012) Beta glucan: health benefits in obesity and metabolic syndrome. J Nutr Metab 2012:851362Google Scholar
  31. 31.
    Marciani L, Gowland PA, Spiller RC, Manoj P, Moore RJ, Young P et al (2001) Effect of meal viscosity and nutrients on satiety, intragastric dilution, and emptying assessed by MRI. Am J Physiol Gastrointest Liver Physiol 280:G1227CrossRefGoogle Scholar
  32. 32.
    Gong L, Cao W, Chi H, Wang J, Zhang H, Liu J et al (2018) Whole cereal grains and potential health effects: involvement of the gut microbiota. Food Res Int 103:84CrossRefGoogle Scholar
  33. 33.
    Gao C, King ML, Fitzpatrick ZL, Wei W, King JF, Wang M et al (2015) Prowashonupana barley dietary fibre reduces body fat and increases insulin sensitivity in Caenorhabditis elegans model. J Funct Foods 18:564–574CrossRefGoogle Scholar
  34. 34.
    Seo CR, Yi BR, Oh S, Kwon SM, Kim S, Song NJ et al (2015) Aqueous extracts of hulled barley containing coumaric acid and ferulic acid inhibit adipogenesis in vitro and obesity in vivo. J Funct Foods 12:208–218CrossRefGoogle Scholar
  35. 35.
    Wang Y, Ames NP, Tun HM, Tosh SM, Jones PJ, Khafipour E (2016) High molecular weight barley β-glucan alters gut microbiota toward reduced cardiovascular disease risk. Front Microbiol 7:129PubMedPubMedCentralGoogle Scholar
  36. 36.
    Evdokiak M, Niki P, Katja T, Vasilis S, Adamantini K (2010) Prebiotic potential of barley derived β-glucan at low intake levels: a randomised, double-blinded, placebo-controlled clinical study. Food Res Int 43:1086–1092CrossRefGoogle Scholar
  37. 37.
    Gong L, Cao W, Gao J, Wang J, Zhang H, Sun B et al (2018) Whole Tibetan Hull-Less barley exhibit stronger effect on promoting growth of genus bifidobacterium than refined barley in vitro. J Food Sci 13:e0193313Google Scholar
  38. 38.
    Gallegos-Infante JA, Rocha-Guzman NE, Gonzalez-Laredo RF, Pulido-Alonso J (2010) Effect of processing on the antioxidant properties of extracts from Mexican barley (Hordeum vulgare) cultivar. Food Chem 119:903–906Google Scholar
  39. 39.
    Omwamba M, Hu Q (2010) Antioxidant activity in barley (Hordeum Vulgare L.) grains roasted in a microwave oven under conditions optimized using response surface methodology. J Food Sci 75:C66CrossRefGoogle Scholar
  40. 40.
    Sharma P, Gujral HS, Singh B (2012) Antioxidant activity of barley as affected by extrusion cooking. Food Chem 131:1406–1413CrossRefGoogle Scholar
  41. 41.
    Zielinski H, Kozlowska H, Lewczuk B (2001) Bioactive compounds in the cereal grains before and after hydrothermal processing. Innovative Food Sci Emerg Technol 2:159–169CrossRefGoogle Scholar
  42. 42.
    Hole AS, Kjos NP, Grimmer S, Kohler A, Lea P, Rasmussen B et al (2013) Extrusion of barley and oat improves the bioaccessibility of dietary phenolic acids in growing pigs. J Agric Food Chem 61:2739–2747CrossRefGoogle Scholar
  43. 43.
    Djurle S, Andersson AAM, Andersson R (2016) Milling and extrusion of six barley varieties, effects on dietary fibre and starch content and composition. J Cereal Sci 72:146–152CrossRefGoogle Scholar
  44. 44.
    Chang C, Yang C, Samanros A, Lin J (2015) Collet and cooking extrusion change the soluble and insoluble β-glucan contents of barley. J Cereal Sci 66:18–23CrossRefGoogle Scholar
  45. 45.
    Gong L, Huang L, Zhang Y (2012) Effect of steam explosion treatment on barley bran phenolic compounds and antioxidant capacity. J Agric Food Chem 60:7177–7184CrossRefGoogle Scholar
  46. 46.
    Gong LX, Zhang Y, Wang J, Sun BG (2016) Change in health ingredients of whole Tibetan hull-less barley after steam explosion and simulated digestion in vitro. J Food Process Pres 40:239–248CrossRefGoogle Scholar
  47. 47.
    Hole AS, Rud I, Grimmer S, Sigl S, Narvhus J, Sahlstrã MS (2012) Improved bioavailability of dietary phenolic acids in whole grain barley and oat groat following fermentation with probiotic Lactobacillus acidophilus, Lactobacillus johnsonii, and Lactobacillus reuteri. J Agric Food Chem 60:6369–6375CrossRefGoogle Scholar
  48. 48.
    Pallin A, Agback P, Jonsson H, Roos S (2016) Evaluation of growth, metabolism and production of potentially bioactive components during fermentation of barley with Lactobacillus reuteri. Food Microbiol 57:159–171CrossRefGoogle Scholar
  49. 49.
    Gómez-Caravaca AM, Verardo V, Candigliota T, Marconi E, Segura-Carretero A, Fernandez-Gutierrez A et al (2015) Use of air classification technology as green process to produce functional barley flours naturally enriched of alkylresorcinols, β-glucans and phenolic compounds. Food Res Int 73:88–96CrossRefGoogle Scholar
  50. 50.
    Wolever TM, Tosh SM, Gibbs AL, Brand-Miller J, Duncan AM, Hart V et al (2010) Physicochemical properties of oat β-glucan influence its ability to reduce serum LDL cholesterol in humans: a randomized clinical trial. Am J Clin Nutr 92:723–732CrossRefGoogle Scholar
  51. 51.
    Ahmad M, Gani A, Shah A, Gani A, Masoodi FA (2016) Germination and microwave processing of barley (Hordeum vulgare L) changes the structural and physicochemical properties of β-d-glucan & enhances its antioxidant potential. Carbohydr Polym 153:696–702CrossRefGoogle Scholar
  52. 52.
    Rufián-Henares JA, Delgado-Andrade C (2009) Effect of digestive process on Maillard reaction indexes and antioxidant properties of breakfast cereals. Food Res Int 42:394–400CrossRefGoogle Scholar
  53. 53.
    Zhou B, Wang FF, Jang HD (2013) Enhanced antioxidant and antidiabetic activities of barley and wheat after soaking with tea catechin. Food Sci Biotechnol 22:1753–1761CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Food and HealthBeijing Technology and Business UniversityBeijingChina

Personalised recommendations