Advertisement

Oats

  • Sumei Zhou
  • Litao Tong
  • Liya Liu
Chapter

Abstract

Oat (Avena sativa) is a species of cereal grain grown for its seed, which is classified into common oat and naked oat (Avena nuda), according to whether it has a hull. Oat, a worldwide cultivated crop, is distributed in 42 countries on five continents but is concentrated in temperate zones in the northern hemisphere. The north latitude from 41 to 43 degrees is recognized as the optimal latitudinal zone of oat gold growth. The best natural environment for growth is 1000 m above sea level, with an average annual temperature of 2.5, and 16 h of 16 h. Oat contains13~20% protein, 2~12% crude fat, 2.0~7.5% β-glucan, and about 60% starch [1–3].

References

  1. 1.
    Hoover R, Smith C, Zhou Y, Ratnayake RMWS (2003) Physicochemical properties of Canadian oat starches. Carbohydr Polym 52(3):253–261CrossRefGoogle Scholar
  2. 2.
    Aro H, Järvenpää E, Könkö K, Huopalahti R, Hietaniemi V (2007) The characterisation of oat lipids produced by supercritical fluid technologies. J Cereal Sci 45(1):116–119CrossRefGoogle Scholar
  3. 3.
    Leila M, Mahdi K, Mohammad S (2009) Effects of succinylation and deamidation on functional properties of oat protein isolate. Food Chem 114(1):127–131CrossRefGoogle Scholar
  4. 4.
    Tong LT, Zhong K, Liu L, Guo L, Cao L, Zhou S (2014) Oat oil lowers the plasma and liver cholesterol concentrations by promoting the excretion of faecal lipids in hypercholesterolemic rats. Food Chem 142(3):129–134PubMedCrossRefGoogle Scholar
  5. 5.
    Tong LT, Guo L, Zhou X, Qiu J, Liu L, Zhong K et al (2016) Effects of dietary oat proteins on cholesterol metabolism of hypercholesterolemic hamsters. J Sci Food Agric 96(4):1396–1401PubMedCrossRefGoogle Scholar
  6. 6.
    Pridal AA, Böttger W, Ross AB (2018) Analysis of avenanthramides in oat products and estimation of avenanthramide intake in humans. Food Chem 253:93–100PubMedCrossRefGoogle Scholar
  7. 7.
    Tapola N, Karvonen H, Niskanen L, Mikola M, Sarkkinen E (2005) Glycemic responses of oat bran products in type 2 diabetic patients. Nutr Metab Cardiovasc Dis 15(4):255–261PubMedCrossRefGoogle Scholar
  8. 8.
    Zduńczyk Z, Flis M, Zieliński H, Wróblewska M, Zofia Antoszkiewicz A, Juśkiewicz J (2006) In vitro antioxidant activities of barley, husked oat, naked oat, triticale, and buckwheat wastes and their influence on the growth and biomarkers of antioxidant status in rats. J Agric Food Chem 54(12):4168–4175PubMedCrossRefGoogle Scholar
  9. 9.
    Chen CW, Cheng HH (2006) A rice bran oil diet increases LDL-receptor and HMG-CoA reductase mRNA expressions and insulin sensitivity in rats with streptozotocin/nicotinamide-induced type 2 diabetes. J Nutr 136(6):1472PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Berg A, König D, Deibert P, Grathwohl D, Berg A, Baumstark MW et al (2003) Effect of an oat bran enriched diet on the atherogenic lipid profile in patients with an increased coronary heart disease risk. A controlled randomized lifestyle intervention study. Ann Nutr Metab 47(6):306–311PubMedCrossRefGoogle Scholar
  11. 11.
    Panfili G, Fratianni A, Di CT, Marconi E (2008) Tocol and β-glucan levels in barley varieties and in pearling by-products. Food Chem 107(1):84–91CrossRefGoogle Scholar
  12. 12.
    Rimsten L, Haraldsson AK, Andersson R, Alminger M, Sandberg AS, Åman P (2002) Effects of malting on β-glucanase and phytase activity in barley grain. J Sci Food Agric 82(8):904–912CrossRefGoogle Scholar
  13. 13.
    Ban Y, Qiu J, Ren C, Li Z (2015) Effects of different cooking methods of oatmeal on preventing the diet-induced increase of cholesterol level in hypercholesterolemic rats. Lipid Health Dis 14(1):1–8CrossRefGoogle Scholar
  14. 14.
    Gold KV, Davidson DM (1988) Oat bran as a cholesterol-reducing dietary adjunct in a young, healthy population. West J Med 148(3):299–302PubMedPubMedCentralGoogle Scholar
  15. 15.
    Wood PJ, Braaten JT, Scott FW, Riedel KD, Wolynetz MS, Collins MW (1994) Effect of dose and modification of viscous properties of oat gum on plasma glucose and insulin following an oral glucose load. Br J Nutr 72(5):731–743PubMedCrossRefGoogle Scholar
  16. 16.
    Othman RA, Moghadasian MH, Jones PJ (2011) Cholesterol-lowering effects of oat β-glucan. Nutr Rev 69(6):299–309PubMedCrossRefGoogle Scholar
  17. 17.
    Wood PJ (2007) Cereal β-glucans in diet and health. J Cereal Sci 46(3):230–238CrossRefGoogle Scholar
  18. 18.
    Wood P, Beer M (2000) G. Evaluation of role of concentration and molecular weight of oat beta-glucan in determining effect of viscosity on plasma glucose and insulin following an oral glucose load. Br J Nutr 84(1):19–23PubMedGoogle Scholar
  19. 19.
    Behall KM, Scholfield DJ, Hallfrisch JG (2006) Barley β-glucan reduces plasma glucose and insulin responses compared with resistant starch in men – nutrition research. Nutr Res 26(12):644–650CrossRefGoogle Scholar
  20. 20.
    Hong F, Hansen RD, Yan J, Allendorf DJ, Baran JT, Ostroff GR et al (2003) Beta-glucan functions as an adjuvant for monoclonal antibody immunotherapy by recruiting tumoricidal granulocytes as killer cells. Cancer Res 63(24):9023–9031PubMedPubMedCentralGoogle Scholar
  21. 21.
    Demir G, Klein HO, Mandel-Molinas N, Tuzuner N (2007) Beta glucan induces proliferation and activation of monocytes in peripheral blood of patients with advanced breast cancer. Int Immunopharmacol 7(1):113–116PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Murphy EA, Davis JM, Carmichael MD, Mayer EP, Ghaffar A (2009) Benefits of oat beta-glucan and sucrose feedings on infection and macrophage antiviral resistance following exercise stress. Am J Physiol Regul Integr Comp Physiol 297(4):R1188PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Tsopmo A, Jodayree ACS (2010) Enzymatic hydrolysis of oat flour protein isolates to enhance antioxidative properties. Adv J Food Sci Technol 2(4):206–212Google Scholar
  24. 24.
    Keenan JM, Pins JJ, Frazel C, Moran A, Turnquist L (2002) Oat ingestion reduces systolic and diastolic blood pressure in patients with mild or borderline hypertension: a pilot trial. J Fam Pract 51(4):369PubMedPubMedCentralGoogle Scholar
  25. 25.
    Maki KC, Galant R, Samuel P, Tesser J, Witchger MS, Ribayamercado JD et al (2007) Effects of consuming foods containing oat |[beta]|-glucan on blood pressure, carbohydrate metabolism and biomarkers of oxidative stress in men and women with elevated blood pressure. Eur J Clin Nutr 61(6):786PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Cheung IWY, Nakayama S, Hsu MNK, Samaranayaka AGP, Lichan ECY (2009) Angiotensin-I converting enzyme inhibitory activity of hydrolysates from oat (Avena sativa) proteins by in silico and in vitro analyses. J Agric Food Chem 57(19):9234–9242PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Saastamoinen M, Plaami S, Kumpulainen J (1992) Genetic and environmental variation in β-glucan content of oats cultivated or tested in Finland. J Cereal Sci 16(3):279–290CrossRefGoogle Scholar
  28. 28.
    Molteberg EL, Vogt G, Nilsson A, Frolich W (1995) Effects of storage and heat processing on the content and composition of free fatty acids in oats. Cereal Chem 72(1):88–93Google Scholar
  29. 29.
    Zhou M, Robards K, Glennie-Holmes M, Helliwell S (1999) Oat lipids. J Am Oil Chem Soc 76(2):159–169CrossRefGoogle Scholar
  30. 30.
    Lichtenstein AH, Ausman LM, Carrasco W, Gualtieri LJ, Jenner JL, Ordovas JM et al (1994) Rice bran oil consumption and plasma lipid levels in moderately hypercholesterolemic humans. Arterioscler Thrombosis J Vasc Biol 14(4):549CrossRefGoogle Scholar
  31. 31.
    Sugano M, Tsuji E (1997) Rice bran oil and cholesterol metabolism. J Nutr 127(3):521SPubMedCrossRefGoogle Scholar
  32. 32.
    Most MM, Tulley RS, Lefevre M (2005) Rice bran oil, not fiber, lowers cholesterol in humans. Am J Clin Nutr 81(1):64–68PubMedCrossRefGoogle Scholar
  33. 33.
    Gerhardt AL, Gallo NB (1998) Full-fat rice bran and oat bran similarly reduce hypercholesterolemia in humans. J Nutr 128(5):865–869PubMedCrossRefGoogle Scholar
  34. 34.
    Yang J, Ou B, Wise ML, Chu YF (2014) In vitro total antioxidant capacity and anti-inflammatory activity of three common oat-derived avenanthramides. Food Chem 160(11):338–345PubMedCrossRefGoogle Scholar
  35. 35.
    Ryan D, Kendall M, Robards K (2007) Bioactivity of oats as it relates to cardiovascular disease. Nutr Res Rev 20(2):147–162PubMedCrossRefGoogle Scholar
  36. 36.
    Meydani M (2009) Potential health benefits of avenanthramides of oats. Nutr Rev 67(12):731–735PubMedCrossRefGoogle Scholar
  37. 37.
    Ren Y, Yang X, Niu X, Liu S, Ren G (2011) Chemical characterization of the avenanthramide-rich extract from oat and its effect on d-galactose-induced oxidative stress in mice. J Agric Food Chem 59(1):206PubMedCrossRefGoogle Scholar
  38. 38.
    Daou C, Zhang H (2012) Oat beta-glucan: its role in health promotion and prevention of diseases. Compr Rev Food Sci Food Saf 11(4):355–365CrossRefGoogle Scholar
  39. 39.
    Sato K, Ohuchi A, Sook SH, Toyomizu M, Akiba Y (2003) Changes in mRNA expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase and cholesterol 7 alpha-hydroxylase in chickens. Biochim Biophys Acta 1630(2):96–102PubMedCrossRefGoogle Scholar
  40. 40.
    Bell S, Goldman VM, Bistrian BR, Arnold AH, Ostroff G, Forse RA (1999) Effect of b-glucan from oats and yeast on serum lipids. Crit Rev Food Sci Nutr Crit Rev Food Sci Nutr 39(2):189–202PubMedCrossRefGoogle Scholar
  41. 41.
    Drzikova B, Dongowski G, Gebhardt E, Habel A (2005) The composition of dietary fibre-rich extrudates from oat affects bile acid binding and fermentation in vitro. Food Chem 90(1–2):181–192CrossRefGoogle Scholar
  42. 42.
    Liu L, Zubik L, Collins FW, Marko M, Meydani M (2004) The antiatherogenic potential of oat phenolic compounds. Atherosclerosis 175(1):39PubMedCrossRefGoogle Scholar
  43. 43.
    Guo W, Wise ML, Collins FW, Meydani M (2008) Avenanthramides, polyphenols from oats, inhibit IL-1beta-induced NF-kappaB activation in endothelial cells. Free Radic Biol Med 44(3):415–429PubMedCrossRefGoogle Scholar
  44. 44.
    Sur R, Nigam A, Grote D, Liebel F, Southall MD (2008) Avenanthramides, polyphenols from oats, exhibit anti-inflammatory and anti-itch activity. Arch Dermatol Res 300(10):569–574PubMedCrossRefGoogle Scholar
  45. 45.
    Peterson DM, Hahn MJ, Emmons CL (2002) Oat avenanthramides exhibit antioxidant activities in vitro. Food Chem 79(4):473–478CrossRefGoogle Scholar
  46. 46.
    Nie L, Wise M, Peterson D, Meydani M (2006) Mechanism by which avenanthramide-c, a polyphenol of oats, blocks cell cycle progression in vascular smooth muscle cells. Free Radic Biol Med 41(5):702–708PubMedCrossRefGoogle Scholar
  47. 47.
    Panfili G, Fratianni A, Criscio TD, Marconi E (2008) Tocol and β-glucan levels in barley varieties and in pearling by. Food Chem 107(1):84–91CrossRefGoogle Scholar
  48. 48.
    Girardet N, Webster FH, Webster FH, Wood PJ (2011) Oat milling: specifications, storage, and processing. Oats 1:301–319CrossRefGoogle Scholar
  49. 49.
    Ha TY, Ko SN, Lee SM, Kim HR, Chung SH, Kim SR et al (2006) Changes in nutraceutical lipid components of rice at different degrees of milling. Eur J Lipid Sci Technol 108(3):175–181CrossRefGoogle Scholar
  50. 50.
    Finocchiaro F, Ferrari B, Gianinetti A, Dall’Asta C, Galaverna G, Scazzina F et al (2007) Characterization of antioxidant compounds of red and white rice and changes in total antioxidant capacity during processing. Mol Nutr Food Res 51(8):1006–1019PubMedCrossRefGoogle Scholar
  51. 51.
    Meretemoller N, Ase H (2008) Stability of vitamin E in wheat flour and whole wheat flour during storage. Cereal Chem 85(6):716–720CrossRefGoogle Scholar
  52. 52.
    Min Z, Yi L, Ying P, Gao WW, Zhang ZS (2009) Effect of process on physicochemical properties of oat bran soluble dietary fiber. J Food Sci 74(8):C628CrossRefGoogle Scholar
  53. 53.
    Lampi AM, Damerau A, Li J, Moisio T, Partanen R, Forssell P et al (2015) Changes in lipids and volatile compounds of oat flours and extrudates during processing and storage. J Cereal Sci 62:102–109CrossRefGoogle Scholar
  54. 54.
    Doehlert DC, Angelikousis S, Vick B (2010) Accumulation of oxygenated fatty acids in oat lipids during storage. Cereal Chem 87(6):532–537CrossRefGoogle Scholar
  55. 55.
    Hu X, Xing X, Ren C (2010) The effects of steaming and roasting treatments on β-glucan, lipid and starch in the kernels of naked oat (Avena nuda). Akademiai KiadoGoogle Scholar
  56. 56.
    Bryngelsson S, Dimberg LH, Kamal-Eldin A (2002) Effects of commercial processing on levels of antioxidants in oats (Avena sativa L.). J Agric Food Chem 50(7):1890–1896PubMedCrossRefGoogle Scholar
  57. 57.
    Gujral HS, Sharma P, Rachna S (2011) Effect of sand roasting on beta glucan extractability, physicochemical and antioxidant properties of oats. LWT Food Sci Technol 44(10):2223–2230CrossRefGoogle Scholar
  58. 58.
    Head DS, Cenkowski S, Arntfield S, Henderson K (2010) Superheated steam processing of oat groats. LWT Food Sci Technol 43(4):690–694CrossRefGoogle Scholar
  59. 59.
    Beer MU, Arrigoni E, Amado R (1996) Extraction of oat gum from oat bran: effects of process on yield, molecular weight distribution, viscosity and (1 leads to 3) (1 leads to 4)-beta-D-glucan content of the gum. Cereal Chem 73(1):58Google Scholar
  60. 60.
    Grundy M, Quint J, Rieder A, Ballance S, Dreiss CA, Butterworth PJ et al (2017) Impact of hydrothermal and mechanical processing on dissolution kinetics and rheology of oat β-glucan. Carbohydr Polym 166:387–397PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Peterson DM (1995) Oat tocols: concentration and stability in oat products and distribution within the kernel. Cereal Chem 72(1):21–24Google Scholar
  62. 62.
    Dimberg LH, Molteberg EL, Solheim R, Frølich W (1996) Variation in oat groats due to variety, storage and heat treatment. I: Phenolic compounds. J Cereal Sci 24(24):263–272CrossRefGoogle Scholar
  63. 63.
    Ovando-Martínez M, Whitney K, Reuhs BL, Doehlert DC, Simsek S (2013) Effect of hydrothermal treatment on physicochemical and digestibility properties of oat starch. Food Res Int 52(1):17–25CrossRefGoogle Scholar
  64. 64.
    Katina K, Arendt E, Liukkonen KH, Autio K, Flander L, Poutanen K (2005) Potential of sourdough for healthier cereal products. Trends Food Sci Technol 16(1):104–112CrossRefGoogle Scholar
  65. 65.
    Degutyte-Fomins L, Sontagstrohm T, Salovaara H (2002) Oat bran fermentation by rye sourdough. Cereal Chem 79(3):345–348Google Scholar
  66. 66.
    Aman P, Rimsten L, Andersson R (2004) Molecular weight distribution of beta-glucan in oat-based foods. Cereal Chem 81:356–360CrossRefGoogle Scholar
  67. 67.
    Prates LL, Yu P (2017) Recent research on inherent molecular structure, physiochemical properties, and bio-functions of food and feed-type Avena sativa oats and processing-induced changes revealed with molecular microspectroscopic techniques. Appl Spectrosc Rev 52:850CrossRefGoogle Scholar
  68. 68.
    Dewettinck K, Fvan B, Kühne B, Dvande W, Courtens TM, Gellynck X (2008) Nutritional value of bread: influence of processing, food interaction and consumer perception. J Cereal Sci 48(2):243–257CrossRefGoogle Scholar
  69. 69.
    Oenning G, Juillerat MA, Fay L, Asp NG (1994) Degradation of oat saponins during heat processing – effect of pH, stainless steel, and iron at different temperatures. J Agric Food Chem 42(11):2578–2582CrossRefGoogle Scholar
  70. 70.
    Wennermark B, Jagerstad M (2010) Breadmaking and storage of various wheat fractions affect vitamin E. J Food Sci 57(5):1205–1209CrossRefGoogle Scholar
  71. 71.
    Leenhardt F, Lyan B, Rock E, Boussard A, Potus J, Chanliaud E et al (2006) Wheat lipoxygenase activity induces greater loss of carotenoids than vitamin E during breadmaking. J Agric Food Chem 54(5):1710–1715PubMedCrossRefGoogle Scholar
  72. 72.
    Flander L, Salmenkallio-Marttila M, Suortti T, Autio K (2007) Optimization of ingredients and baking process for improved wholemeal oat bread quality. LWT Food Sci Technol 40(5):860–870CrossRefGoogle Scholar
  73. 73.
    Hidalgo Vidal AM, Brandolini A, Gazza L, Vaccino P, Corbellini M (2008) Chemical compounds distribution in wheat seeds and the effect of parboiling on chemical and technological properties of einkorn (Triticum monococum L.). ICC Cereal & Bread Congress, MadridGoogle Scholar
  74. 74.
    Johansson L, Tuomainen P, Anttila H, Rita H, Virkki L (2007) Effect of processing on the extractability of oat β-glucan. Food Chem 105(4):1439–1445CrossRefGoogle Scholar
  75. 75.
    Håkansson B, Jägerstad M (1990) The effect of thermal inactivation of lipoxygenase on the stability of vitamin E in wheat. J Cereal Sci 12(2):177–185CrossRefGoogle Scholar
  76. 76.
    Wyatt CJ, Perez CS, Mendez RO (1998) Alpha- and gamma-tocopherol content of selected foods in the Mexican diet: effect of cooking losses. J Agric Food Chem 46:4657CrossRefGoogle Scholar
  77. 77.
    Zielinski H, Kozlowska H, Lewczuk B (2001) Bioactive compounds in the cereal grains before and after hydrothermal processing. Innovative Food Sci Emerg Technol 2(3):159–169CrossRefGoogle Scholar
  78. 78.
    Shin TS, Godber JS, Martin DE, Wells JH (1997) Hydrolytic stability and changes in E vitamers and oryzanol of extruded rice bran during storage. J Food Sci 62(4):704–728CrossRefGoogle Scholar
  79. 79.
    Borrelli GM, Leonardis AMD, Platani C, Troccoli A (2008) Distribution along durum wheat kernel of the components involved in semolina colour. J Cereal Sci 48(2):494–502CrossRefGoogle Scholar
  80. 80.
    Zhang H, Önning G, Triantafyllou AÖ, Öste R (2007) Nutritional properties of oat-based beverages as affected by processing and storage. J Sci Food Agric 87(12):2294–2301CrossRefGoogle Scholar
  81. 81.
    Londono DM, Smulders MJM, Visser RGF, Gilissen LJWJ, Hamer RJ (2015) Effect of kilning and milling on the dough-making properties of oat flour. LWT Food Sci Technol 63(2):960–965CrossRefGoogle Scholar
  82. 82.
    Decker EA, Rose DJ, Stewart D (2013) Processing of oats and the impact of processing operations on nutrition and health benefits. Br J Nutr 112(Suppl 2):S2–S58Google Scholar
  83. 83.
    Clydesdale FM (1994) Optimizing the diet with whole grains. Crit Rev Food Sci Nutr 34(5–6):453PubMedCrossRefGoogle Scholar
  84. 84.
    Slavin JL, Jacobs D, Marquart L (2000) Grain processing and nutrition. Crit Rev Food Sci Nutr 21(1):49–66Google Scholar
  85. 85.
    Blandino A, Alaseeri ME, Pandiella SS, Cantero D, Webb C (2003) Cereal-based fermented foods and beverages. Food Res Int 36(6):527–543CrossRefGoogle Scholar
  86. 86.
    Marklinder I, Lönner C (1992) Fermentation properties of intestinal strains of Lactobacillus, of a sour dough and of a yoghurt starter culture in an oat-based nutritive solution. Food Microbiol 9(3):197–205CrossRefGoogle Scholar
  87. 87.
    Johansson ML, Nobaek S, Berggren A, Nyman M, Björck I, Ahrné S et al (1998) Survival of Lactobacillus plantarum DSM 9843 (299v), and effect on the short-chain fatty acid content of faeces after ingestion of a rose-hip drink with fermented oats. Int J Food Microbiol 42(1–2):29–38PubMedCrossRefGoogle Scholar
  88. 88.
    Yu X, Yang M, Dong J, Shen R (2018) Comparative analysis of the antioxidant capacities and phenolic compounds of oat and buckwheat vinegars during production processes. J Food Sci 83(3):844PubMedCrossRefGoogle Scholar
  89. 89.
    Jadhav SJ, Lutz SE, Ghorpade VM, Salunkhe DK (1998) Barley: chemistry and value-added processing. Crit Rev Food Sci Nutr 38(2):123PubMedCrossRefGoogle Scholar
  90. 90.
    Izydorczyk MS, Chornick TL, Paulley FG, Edwards NM, Dexter JE (2008) Physicochemical properties of hull-less barley fibre-rich fractions varying in particle size and their potential as functional ingredients in two-layer flat bread. Food Chem 108(2):561–570PubMedCrossRefGoogle Scholar
  91. 91.
    Zheng GH, Rossnagel BG, Tyler RT, Bhatty RS (2000) Distribution of beta-glucan in the grain of hull-less barley. Cereal Chem 77(2):140–144CrossRefGoogle Scholar
  92. 92.
    Wang L, Xue Q, Newman RK, Newman CW (1993) Enrichment of tocopherols, tocoterienols, and oil in barley fractions by milling and pearling. ACM Sigact News 41(1):75–98Google Scholar
  93. 93.
    Singh S, Gamlath S, Wakeling L (2010) Nutritional aspects of food extrusion: a review. Int J Food Sci Technol 42(8):916–929CrossRefGoogle Scholar
  94. 94.
    Gopirajah R, Muthukumarappan K (2017) Effect of extrusion process conditions on the physical properties of tef-oat healthy snack extrudates. J Food Process Preserv 42(3):e13559CrossRefGoogle Scholar
  95. 95.
    Beck EJ (2009) Evidence for effects of oat [beta]-glucan on satiety and weight controlGoogle Scholar
  96. 96.
    Camire ME, Flint SI (1992) Thermal processing effects on dietary fiber composition and hydration capacity in corn meal, oat meal, and potato peels. Cereal Chem 68(6):645–647Google Scholar
  97. 97.
    Agu RC (2003) Some relationships between malted barleys of different nitrogen levels and the wort properties. J Inst Brew 109(2):106–109CrossRefGoogle Scholar
  98. 98.
    Hübner F, O’Neil T, Cashman KD, Arendt EK (2010) The influence of germination conditions on beta-glucan, dietary fibre and phytate during the germination of oats and barley. Eur Food Res Technol 231(1):27–35CrossRefGoogle Scholar
  99. 99.
    Rimsten L, Haraldsson AK, Andersson R, Alminger M, Sandberg AS, Aman P (2002) Effects of malting on β-glucanase and phytase activity in barley grain. J Sci Food Agric 82(8):904–912CrossRefGoogle Scholar
  100. 100.
    Reddy NR, Sathe SK, Salunkhe DK (1982) Phytates in legumes and cereals. Adv Food Res 28(4):1PubMedPubMedCentralGoogle Scholar
  101. 101.
    Centeno C, Viveros A, Brenes A, Canales R, Lozano A, lCC D (2001) Effect of several germination conditions on total P, phytate P, phytase, and acid phosphatase activities and inositol phosphate esters in rye and barley. J Agric Food Chem 49(7):3208–3215PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Larsson M, Sandberg AS (1995) Malting of oats in a pilot-plant process. Effects of heat treatment, storage and soaking conditions on phytate reduction. J Cereal Sci 21(1):87–95CrossRefGoogle Scholar
  103. 103.
    Sandström B, Cederblad Å, Stenquist B, Andersson H (1990) Effect of inositol hexaphosphate on retention of zinc and calcium from the human colon. Eur J Clin Nutr 44(10):705PubMedPubMedCentralGoogle Scholar
  104. 104.
    Tiwari N, Awasthi P (2014) Effect of different processing techniques on nutritional characteristics of oat (Avena sativa) grains and formulated weaning mixes. J Food Sci Technol 51(9):2256–2259PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Wilhelmson A, Oksman-Caldentey KM, Laitila A, Suortti T, Kaukovirta-Norja A, Poutanen K (2007) Development of a germination process for producing high β-glucan, whole grain food ingredients from oat. Cereal Chem 78:715–720CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Sumei Zhou
    • 1
  • Litao Tong
    • 1
  • Liya Liu
    • 1
  1. 1.Institute of Food Science and TechnologyChinese Academy of Agricultural ScienceBeijingChina

Personalised recommendations