Advertisement

Highly Sensitive Octagonal Photonic Crystal Fiber for Ethanol Detection

  • Ashish Kumar GhunawatEmail author
  • Sharad Sharma
  • Sourabh Sahu
  • Ghanshyam Singh
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 546)

Abstract

In this article, an octagonal photonic crystal fiber for ethanol detection is suggested. Birefringence, confinement loss, and relative sensitivity have been explored theoretically. The numerical investigation is done utilizing the finite element method (FEM). It is discovered that the existence of elliptical holes in the center region leads to high values of birefringence along with low confinement loss and high sensitivity. Our study shows that at a wavelength of 1.33 μm, the birefringence, relative sensitivity, and confinement loss of the suggested PCF are 0.0016, 57.91%, and \( 1.6 \times 10^{ - 3} \) dB per m, respectively.

Keywords

Photonic crystal fiber Birefringence Relative sensitivity Confinement loss Finite element method 

References

  1. 1.
    Luan N, Wang R, Lv W, Lu Y, Yao J (2014) Surface plasmon resonance temperature sensor based on photonic crystal fibers randomly filled with silver nanowires. Sensors 14(9):16035–16045CrossRefGoogle Scholar
  2. 2.
    Birks TA, Knight JC, Russell PSJ (1997) Endlessly single-mode photonic crystal fiber. Opt Lett 22(13):961–963CrossRefGoogle Scholar
  3. 3.
    Singh G, Sahu S, Chaurasia P (2012) Modeling of photonic crystal fibers with fibonacci-patterned circular and elliptical air holes. Opt Eng 51(11):115001–115006.  https://doi.org/10.1117/1.OE.51.11.115001CrossRefGoogle Scholar
  4. 4.
    Ebendorff-Heidepriem H, Petropoulos P, Asimakis S, Finazzi V, Moore R, Frampton K, Koizumi F, Richardson D, Monro T (2004) Bismuth glass holey fibers with high nonlinearity. Opt Express 12(21):5082–5087CrossRefGoogle Scholar
  5. 5.
    Arif MFH, Ahmed K, Asaduzzaman S, Azad MAK (2016) Design and optimization of photonic crystal fiber for liquid sensing applications. Photonic Sens 6(3):279–288CrossRefGoogle Scholar
  6. 6.
    Sahu S, Ali J, Singh G (2017) Refractive index biosensor using sidewall gratings in dual-slot waveguide. Opt Commun 402:408–412.  https://doi.org/10.1016/j.optcom.2017.06.051CrossRefGoogle Scholar
  7. 7.
    Sahu S, Kozadaev KV, Singh G (2016) Michelson interferometer based refractive index biosensor. In: 13th international conference on fiber optics and photonics, Photonic-16, IIT Kanpur, 04–08 December 2016, OSA Technical Digest, paper Th3A.60.  https://doi.org/10.1364/photonics.2016.th3a.60. ISBN: 978-1-943580-22-4
  8. 8.
    Sahu S, Singh G (2016) Modeling of phase shift Bragg grating biosensor for non invasive detection of blood components. In: IEEE international conference, ICRAIE-2016, Jaipur, India, 23–25 December 2016, IEEE Xplore Digital Library.  https://doi.org/10.1109/icraie.2016.7939565. Print ISBN: 5090-2806
  9. 9.
    Sahu S, Singh G (2017) Modeling of grating slot waveguide for high-Q based refractive index sensor. In: IEEE international conference COMPTELIX-2017, 1–2 July 2017, Jaipur, IEEE Xplore Digital Library, pp 394–396.  https://doi.org/10.1109/comptelix.2017.8004001
  10. 10.
    Reeves W, Knight J, Russell P, Roberts P (2002) Demonstration of ultra-flattened dispersion in photonic crystal fibers. Opt Express 10(14):609–613CrossRefGoogle Scholar
  11. 11.
    Tyagi HK, Schmidt MA, Sempere LP, Russell PSJ (2008) Optical properties of photonic crystal fiber with integral micron-sized Ge wire. Opt Express 16(22):17227–17236CrossRefGoogle Scholar
  12. 12.
    Lee HW, Schmidt MA, Tyagi HK, Sempere LP, Russell PSJ (2008) Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber. Appl Phys Lett 93(11):111102CrossRefGoogle Scholar
  13. 13.
    Nagasaki A, Saitoh K, Koshiba M (2011) Polarization characteristics of photonic crystal fibers selectively filled with metal wires into cladding air holes. Opt Express 19(4):3799–3808CrossRefGoogle Scholar
  14. 14.
    Akowuah EK, Gorman T, Ademgil H, Haxha S, Robinson GK, Oliver JV (2012) Numerical analysis of a photonic crystal fiber for biosensing applications. IEEE J Quantum Electron 48(11):1403–1410CrossRefGoogle Scholar
  15. 15.
    Zheng S, Zhu Y, Krishnaswamy S (2012) Nanofilm-coated photonic crystal fiber long-period gratings with modal transition for high chemical sensitivity and selectivity. In: SPIE smart structures and materials + nondestructive evaluation and health monitoring, pp 83460D–83460DGoogle Scholar
  16. 16.
    Monro TM, Belardi W, Furusawa K, Baggett JC, Broderick NGR, Richardson DJ (2001) Sensing with microstructured optical fibres. Meas Sci Technol 12(7):854CrossRefGoogle Scholar
  17. 17.
    Cordeiro CM, Franco MA, Chesini G, Barretto EC, Lwin R, Cruz CB, Large MC (2006) Microstructured-core optical fibre for evanescent sensing applications. Opt Express 14(26):13056–13066CrossRefGoogle Scholar
  18. 18.
    Ahmed K, Morshed M (2016) Design and numerical analysis of microstructured-core octagonal photonic crystal fiber for sensing applications. Sens Bio-Sens Res 7:1–6CrossRefGoogle Scholar
  19. 19.
    Asaduzzaman S, Arif MFH, Ahmed K, Dhar P (2015) Highly sensitive simple structure circular photonic crystal fiber based chemical sensor. In: 2015 IEEE international WIE conference on electrical and computer engineering (WIECON-ECE), pp 151–154Google Scholar
  20. 20.
    Asaduzzaman S, Ahmed K, Arif MFH, Morshed M (2015) Proposal of a simple structure photonic crystal fiber for lower indexed chemical sensing. In: 2015 18th international conference on computer and information technology (ICCIT), pp 127–131Google Scholar
  21. 21.
    Arif MFH, Ahmed K, Asaduzzaman S (2015) A comparative analysis of two different PCF structures for gas sensing application. In: 2015 international conference on advances in electrical engineering (ICAEE), pp 247–250Google Scholar
  22. 22.
    Morshed M, Hassan MI, Roy TK, Uddin MS, Razzak SA (2015) Microstructure core photonic crystal fiber for gas sensing applications. Appl Opt 54(29):8637–8643CrossRefGoogle Scholar
  23. 23.
    Wang W, Yang B, Song H, Fan Y (2013) Investigation of high birefringence and negative dispersion photonic crystal fiber with hybrid crystal lattice. Optik Int J Light Electron Opt 124(17):2901–2903CrossRefGoogle Scholar
  24. 24.
    Asaduzzaman S, Ahmed K, Bhuiyan T, Farah T (2016) Hybrid photonic crystal fiber in chemical sensing. SpringerPlus 5(1):748CrossRefGoogle Scholar
  25. 25.
    Pang M, Xiao LM, Jin W et al (2012) Birefringence of hybrid PCF and its sensitivity to strain and temperature. J Lightwave Technol 30(10):1422–1432CrossRefGoogle Scholar
  26. 26.
    Ma P, Song N, Jin J, Song J, Xu X (2012) Birefringence sensitivity to temperature of polarization maintaining photonic crystal fibers. Opt Laser Technol 44(6):1829–1833CrossRefGoogle Scholar
  27. 27.
    Ademgil H, Haxha S (2015) PCF based sensor with high sensitivity, “high birefringence and low confinement losses for liquid analyte sensing applications”. Sensors 15(12):31833–31842CrossRefGoogle Scholar
  28. 28.
    Ademgil H, Haxha S (2016) Highly birefringent nonlinear PCF for optical sensing of analytes in aqueous solutions. Optik Int J Light Electron Opt 127(16):6653–6660CrossRefGoogle Scholar
  29. 29.
    Ademgil H (2014) Highly sensitive octagonal photonic crystal fiber based sensor. Optik Int J Light Electron Opt 125(20):6274–6278CrossRefGoogle Scholar
  30. 30.
    Arif MFH, Biddut MJH (2017) Enhancement of relative sensitivity of photonic crystal fiber with high birefringence and low confinement loss. Optik Int J Light Electron Opt 131:697–704CrossRefGoogle Scholar
  31. 31.
    Huang Y, Xu Y, Yariv A (2004) Fabrication of functional microstructured optical fibers through a selective-filling technique. Appl Phys Lett 85(22):5182–5184CrossRefGoogle Scholar
  32. 32.
    Gerosa RM, Spadoti DH, de Matos CJ, de L, Menezes S, Franco MA (2011) Efficient and short-range light coupling to index-matched liquid-filled hole in a solid-core photonic crystal fiber. Opt Express 19(24):24687–24698CrossRefGoogle Scholar
  33. 33.
    Bise RT, Trevor DJ (2005) Sol-gel derived microstructured fiber: fabrication and characterization. In: Optical fiber communications conference (OFC), vol 3Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Ashish Kumar Ghunawat
    • 1
    Email author
  • Sharad Sharma
    • 1
  • Sourabh Sahu
    • 1
  • Ghanshyam Singh
    • 1
  1. 1.Department of Electronics and Communication EngineeringMalaviya National Institute of Technology JaipurJaipurIndia

Personalised recommendations