Advertisement

Review of Related Work

  • Shifeng WangEmail author
Chapter
Part of the Unmanned System Technologies book series (UST)

Abstract

The knowledge of road terrain-type vehicles drive through plays a crucial role in vehicle driving safety. It also provides important information for the driving manoeuvre.

References

  1. 1.
    Ishigami G, Kewlani G, Iagnemma K (2010) Statistical mobility prediction for planetary surface exploration rovers in uncertain terrain. In: IEEE international conference on robotics and automation (ICRA), Anchorage, US, 3–7 May 2010, pp 588–593Google Scholar
  2. 2.
    Setterfield TP, Ellery A (2012) Terrain response estimation using an instrumented rocker-bogie mobility system. IEEE Trans Rob 29(1):172–188CrossRefGoogle Scholar
  3. 3.
    Gingras D, Lamarche T, Bedwani J, Dupuis E (2010) Rough terrain reconstruction for rover motion planning. In: Canadian conference on computer and robot vision (CRV), Ottawa, Canada, 31 May–2 June 2010, pp 191–198Google Scholar
  4. 4.
    Xu H, Zhang Z, Wu Y (2010) Contact angle estimation based on kinematics modeling analyses for rover with caster and camber. In: IEEE international conference on robotics and biomimetics (ROBIO), Tianjin, China, 14–18 Dec 2010, pp 137–142Google Scholar
  5. 5.
    Iagnemma K (2002) On-line terrain parameter estimation for planetary rovers. In: IEEE international conference on robotics and automation, Washington DC, US, 11–15 May 2002, vol 3, pp 3142–3147Google Scholar
  6. 6.
    Iagnemma K, Kang S, Shibly H, Dubowsky S (2004) Online terrain parameter estimation for wheeled mobile robots with application to planetary rovers. IEEE Trans Robot 20(5):921–927 (Leuven, Belgium)Google Scholar
  7. 7.
    Jitpakdee R, Thonburi B, Maneewarn T (2008) Neural networks terrain classification using inertial measurement unit for an autonomous vehicle. In: SICE annual conference, Tokyo, Japan, 20–22 Aug 2008, pp 554–558Google Scholar
  8. 8.
    Gonthier Y, Papadopoulos E (1998) On the development of a real-time simulator for an electro-hydraulic forestry machine. In: IEEE international conference on robotics and automation, 16–20 May 1998, vol 1, pp 127–132Google Scholar
  9. 9.
    González A, Eugene JO, Li Y, Cashell K (2008) The use of vehicle acceleration measurements to estimate road roughness. Veh Syst Dyn 46(6):483–499Google Scholar
  10. 10.
    Ward CC, Iagnemma K (2009) Speed-independent vibration-based terrain classification for passenger vehicles. Veh Syst Dyn 47(9):1095–1113Google Scholar
  11. 11.
    Weiss C, Fröhlich H, Zell A (2006) Vibration-based terrain classification using support vector machines. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), Beijing, China, 9–15 Oct 2006, pp 4429–4434Google Scholar
  12. 12.
    Sadhukhan D (2004) Autonomous ground vehicle terrain classification using internal sensors. Master thesis, Florida State University, Tallahassee, US, 16th March 2004Google Scholar
  13. 13.
    Sadhukhan D, Moore C (2003) Online terrain estimation using internal sensors. In: Florida conference on recent advances in robotics, Boca Raton, USGoogle Scholar
  14. 14.
    Ojeda L, Borenstein J, Witus G, Karlsen R (2006) Terrain characterization and classification with a mobile robot. J Field Robot 23(2):103–122Google Scholar
  15. 15.
    DuPont EM, Robers RG, Moore CA (2006) The identification of terrains for mobile robots using eigenspace and neural network methods. In: Florida conference on recent advances in robotics (FCRAR), Miami, US, 25–26 May 2006Google Scholar
  16. 16.
    Weiss C, Stark M, Zell A (2007) SVMs for vibration-based terrain classification. In: Autonomoe Mobile System (AMS), Fachgespräch, Germany, 18–19 Oct 2007, pp 1–7Google Scholar
  17. 17.
    Olson CF, Matthies LH, Schoppers M, Maimone MW (2000) Robust stereo ego-motion for long distance navigation. In: IEEE conference on computer vision and pattern recognition, Hilton Head Island, US, 13–15 June 2000, vol 2, pp 453–458Google Scholar
  18. 18.
    Howard A, Seraji H (2001) Vision-based terrain characterization and traversability assessment. J Robot Syst 18(10):577–587Google Scholar
  19. 19.
    Thompson D, Smith T, Wettergreen D (2005) Data mining during rover traverse: from images to geologic signatures. In: 8th international symposium on artificial intelligence robotics and automation in space (ISAIRAS), Sep 2005Google Scholar
  20. 20.
    Castano R, Manduchi R, Fox J (2001) Classification experiments on real-world textures. In: Workshop on empirical evaluation in computer vision, Kauai, USA, 10 Dec 2001, pp 1–6Google Scholar
  21. 21.
    Karlsen RE, Witus G (2007) Terrain understanding for robot navigation. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), San Diego, USA, 29 Oct–2 Nov 2007, pp 895–900Google Scholar
  22. 22.
    Chetan J, Krishna KM, Jawahar CV (2010) An adaptive outdoor terrain classification methodology using monocular. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), Taipei, China, 18–22 Oct 2010, pp 766–771Google Scholar
  23. 23.
    Song D, Yi C, Suh IH, Choi B (2011) Self-supervised terrain classification based on moving objects using monocular camera. In: IEEE international conference on robotics and biomimetics (ROBIO), Phuket, Thailand, 7–11 Dec 2011, pp 527–533Google Scholar
  24. 24.
    Willians S, Howard AM (2010) Towards visual arctic terrain assessment. In: Springer tracts in advanced robotics, vol 62, pp 91–100Google Scholar
  25. 25.
    Nishiwaki K, Chestnutt J, Kagami S (2012) Autonomous navigation of a humanoid robot over unknown rough terrain using a laser range sensor. Int J Robot Res 31(11):1251–1262Google Scholar
  26. 26.
    Macedo J, Manduchi R, Matthies L (2000) Lada-based discrimination of grass from obstacles for autonomous navigation. In: ISER, Honolulu, USGoogle Scholar
  27. 27.
    Montemerlo M, Thrun S (2004) Multi-resolution pyramid for outdoor robot terrain perception. In: 19th national conference on artificial intelligence, San Jose, US, 25–29 July 2004, pp 464–469Google Scholar
  28. 28.
    Andersen JC, Blas MR, Ravn O, Andersen NA, Blanke M (2006) Traversable terrain classification for outdoor autonomous robots using single 2D laser. In: Integrated computer-aided engineering, vol 13, pp 223–232Google Scholar
  29. 29.
    Vandapel N, Huber DF, Kapuria A, Hebert M (2004) Natural terrain classification using 3D lidar data. In: IEEE International conference on robotics and automation, 26 Apr–1 May 2004, vol 5, pp 5117–5122Google Scholar
  30. 30.
    Lalonde J, Vandapel N, Huber D, Hebert M (2006) Natural terrain classification using three-dimensional ladar data for ground robot mobility. J Field Robot 23(10):839–861Google Scholar
  31. 31.
    Urmson C, Anhalt J, Clark M, Galatali T, Gonzalez JP, Gowdy J, Gutierrez A, Harbaugh S, Johnson-Roberson M, Kato H, Koon P, Peterson K, Smith B, Spiker S, Tryzelaar E, Whittaker W (2004) High speed navigation of unrehearsed terrain: red team technology for grand challenge 2004. Technical Report CMU-RI-TR-04-37), Robotics Institute, Carnegie Mellon University, Pettsburgh, PAGoogle Scholar
  32. 32.
    Golberg S, Maimone M, Matthies L (2002) Stereo vision and rover navigation software for planetary exploration. In: IEEE aerospace conference, 9–16 Mar 2002, vol 5, pp 2025–2036Google Scholar
  33. 33.
    Urmson C, Dias M, Simmons R (2002) Stereo vision based navigation for sun-synchronous exploration. In: Conference on intelligent robots and systems (IROS), Lausanne, Switzerland (2002)Google Scholar
  34. 34.
    Stavens D, Thrun S (2006) A self-supervised terrain roughness estimator for off-road autonomous driving. In: 22nd conference on uncertainty in artificial intelligence (UAI2006), Cambridge, US, 13–16 July 2006Google Scholar
  35. 35.
    Iagnemma K, Kang S, Brooks C, Dubowsky S (2003) Multi-sensor terrain estimation for planetary rovers. In: International symposium on artificial intelligence, robotics, and automation in space, Nara, JapanGoogle Scholar
  36. 36.
    Halacti I, Brooks CA, Iagnemma K (2007) Terrain classification and classier fusion for planetary exploration rovers. In: IEEE aerospace conference, Big Sky, US, 3–10 Mar 2007, pp 1–9Google Scholar
  37. 37.
    Brooks CA, Iagnemma K (2007) Self-supervised terrain classification for planetary rovers. In: IEEE aerospace conference, Big Sky, US, 3–10 Mar 2007, pp 1–9Google Scholar
  38. 38.
    Weiss C, Tamimi H, Zell A (2008) A combination of vision and vibration-based terrain classification. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), Nice, Frence, 19–23 May 2008, pp 2204–2209Google Scholar
  39. 39.
    Gollins EG, Coyle EJ (2008) Vibration-based terrain classification using surface profile input frequency responses. In: IEEE international conference on robotics and automation, Pasadena, US, 19–23 May 2008, pp 3276–3283Google Scholar
  40. 40.
    Lu L, Ordonez C, Collins EG, Jr. DuPont EM (2009) Terrain surface classification for autonomous ground vehicles using a 2D laser stripe-based structured light sensor. In: IEEE/RSJ international conference on intelligent robots and systems, St. Louis, US, 10–15 Oct 2009, pp 2174–2181Google Scholar
  41. 41.
    Manduchi R (2005) Obstacle detection and terrain classification for autonomous off-road navigation. J Auton Robot 18(1):81–102Google Scholar
  42. 42.
    Posner I, Schroeter D, Newman P (2007) Describing composite urban workspaces. In: IEEE international conference on robotics and automation, Roma, Italy, 10–14 Apr 2007, pp 4962–4968Google Scholar

Copyright information

© China Machine Press, Beijing and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Optoelectronic EngineeringChangchun University of Science and TechnologyChangchunChina

Personalised recommendations