Advertisement

Power Extraction from PV Module Using Hybrid ANFIS Controller

  • Tata Venkat Dixit
  • Anamika Yadav
  • S. Gupta
  • Almoataz Y. AbdelazizEmail author
Chapter
Part of the Power Systems book series (POWSYS)

Abstract

The characteristic of PV module is nonlinear, complex in nature and its performance depends on different environmental factors. In order to enhance the efficiency of photovoltaic power system, selection of a suitable power converters and control strategies are essential. In this chapter, the performance of soft-computing techniques of MPPT such as ANN and Hybrid-ANFIS are compared with well established Modified Incremental Conductance method under load and solar irradiance change. The ANFIS is able to exploit both data and knowledge to formulate more efficient hybrid intelligent system. It learns the information from experimental data and automatically determines the best membership parameters and rule bases associated to Fuzzy Inference System (FIS) to map given input output data. In this chapter, the parameters of FIS are tuned by Back-Propagation (BP) or hybrid (combination of Least Square Estimation and BP) method. Also, the effect of load impedance and converter topologies on ANFIS controller design has been investigated. Further, the detailed description of hardware implementation of ANFIS controller on DSP/FPGA platform has been presented.

References

  1. 1.
    Catalão JPS (2015) Smart and sustainable power systems: operations, planning, and economics of insular electricity grids. CRC Press, Boca RatonCrossRefGoogle Scholar
  2. 2.
    Committee RS (2016) Renewables 2016 global status report, REN21, renewable energy policy network for the 21st century, AthensGoogle Scholar
  3. 3.
    Panagiotis Karampelas LE (2016) Electrical distribution-intelligent solution for electricity transmission and distribution networks, 2016th edn. Springer, BerlinGoogle Scholar
  4. 4.
    Charles JP, Pierre M (1981) A practical method of analysis of the current-voltage characteristics of solar cells. Sol Cells 4:169–178CrossRefGoogle Scholar
  5. 5.
    Kok BC, Goh HH, Chua HG (2012) Optimal power tracker for stand-alone photovoltaic system using artificial neural network (ANN) and particle swarm optimisation (PSO). In: International conference on renewable energies and power quality, pp 1–6Google Scholar
  6. 6.
    Kulaksiz AA, Akkaya R (2012) Training data optimization for ANNs using genetic algorithms to enhance MPPT efficiency of a stand-alone PV system. Turk J Elec Eng Comp Sci 20(2):241–254Google Scholar
  7. 7.
    Rizzo SA, Scelba G (2015) ANN based MPPT methods for rapidly variable shading conditions. Appl Energy 145:124–132CrossRefGoogle Scholar
  8. 8.
    Negnevisky M (2005) Artificial intelligence: a guide to intelligent systems, 2nd edn. Pearson, DelhiGoogle Scholar
  9. 9.
    Rekioua D, Matagne E (2012) Modeling of solar irradiance and cells. Optimization of photovoltaic power systems, 2012th edn. Springer, London, pp 31–87CrossRefGoogle Scholar
  10. 10.
    Sumathi S, Ashok KL, Surekha P (2015) Application of MATLAB/SIMULINK in solar PV systems. Solar PV and wind energy conversion systems, vol XXIV. Springer, Cham, pp 59–143Google Scholar
  11. 11.
    Kumari JS, Babu CS (2012) Mathematical modeling and simulation of photovoltaic cell using Matlab-Simulink environment. Int J Electr Comput Eng 2(1):26–34Google Scholar
  12. 12.
    el Tayyan AA (2013) A simple method to extract the parameters of the single-diode model of a PV system. Turk J Phys 37:121–131Google Scholar
  13. 13.
    King DL, Kratochvil JA, Boyson WE (1997) Temperature coefficients for PV modules and arrays: measurement methods, difficulties, and results. In: 26th IEEE photovoltaic specialists conferenceGoogle Scholar
  14. 14.
    Mohamed MA (2015) Solar irradiance estimation of photovoltaic module based on Thevenin equivalent circuit model. Int J Renew Energy Res 5(4):971–972Google Scholar
  15. 15.
    Haihong B, Weiping Z, Bing C (2016) Control simulation and experimental verification of maximum power point tracking based on RT-LAB. Int J Eng 29(10):1372–1379Google Scholar
  16. 16.
    Karanjkar DS, Chatterji S, Kumar A, Shimi SL (2014) Fuzzy adaptive proportional-integral-derivative controller with dynamic set-point adjustment for maximum power point tracking in solar photovoltaic system. Taylor Fr. Jr. Syst Sci Control Eng 2583Google Scholar
  17. 17.
    Haque A (2014) Maximum power point tracking (MPPT) scheme for solar photovoltaic system. Energy Technol Policy 1(1):115–122CrossRefGoogle Scholar
  18. 18.
    Hua C, Lin J, Tzou H (2003) MPP control of a photovoltaic energy system. Eur Trans Electr Power 13(4):239–246CrossRefGoogle Scholar
  19. 19.
    Taghvaee MH, Radzi MAM, Moosavain SM, Hizam H, Marhaban MH (2013) A current and future study on non-isolated DC-DC converters for photovoltaic applications. Renew Sustain Energy Rev 17:216–227CrossRefGoogle Scholar
  20. 20.
    Walker GR, Sernia PC (2004) Cascaded DC-DC converter connection of photovoltaic modules. IEEE Trans Power Electron 19(4):1130–1139CrossRefGoogle Scholar
  21. 21.
    Radjai T, Gaubert JP, Rahmani L, Mekhilef S (2015) Experimental verification of P&O MPPT algorithm with direct control based on fuzzy logic control using CUK converter. Int Trans Electr Energy Syst 25(12):3492–3508CrossRefGoogle Scholar
  22. 22.
    Dixit TV (2018) Real time investigation on performance enhancement of power conditioing units for photo-voltic and fuel cell, NIT Raipur, (C.G.) IndiaGoogle Scholar
  23. 23.
    Enrique JM, Duran E, Sidrach-de-Cardona M, Andujar JM (2007) Theoretical assessment of the maximum power point tracking efficiency of photovoltaic facilities with different converter topologies. Sol Energy 81:31–38CrossRefGoogle Scholar
  24. 24.
    Ahmed J, Salam Z (2016) A modified P & O maximum power point tracking method with reduced steady-state oscillation and improved tracking efficiency. IEEE Trans Sustain Energy 7(4):1506–1515CrossRefGoogle Scholar
  25. 25.
    Kok ST, Mekhilef S (2014) Modified incremental conductance algorithm for photovoltaic system under partial shading conditions and load variation. IEEE Trans Ind Electron 61(10):5384–5392CrossRefGoogle Scholar
  26. 26.
    Chekired F, Mellit A, Kalogirou SA, Larbes C (2014) Intelligent maximum power point trackers for photovoltaic applications using FPGA chip: a comparative study. Sol Energy 101:83–99CrossRefGoogle Scholar
  27. 27.
    Safari A, Mekhilef S (2011) Simulation and Hardware implementation of incremental conductance MPPT with direct control method using cuk converter. IEEE Trans Ind Electron 58(4):1154–1161CrossRefGoogle Scholar
  28. 28.
    Thangavelu A, Vairakannu S, Parvathyshankar D (2017) Linear open circuit voltage variable step-size incremental conductance strategy-based hybrid MPPT controller for remote power applications. IET Power Electron 10(11):1363–1376CrossRefGoogle Scholar
  29. 29.
    Zheng H, Li S (2016) Fast and robust maximum power point tracking for solar photovoltaic systems. Am J Eng Appl Sci 9:755–769CrossRefGoogle Scholar
  30. 30.
    Liao T, Huang N (1999) Genetic algorithm-based self-learning fuzzy pi controller for buck converter. Eur Trans Electr Power 9(4):233–239CrossRefGoogle Scholar
  31. 31.
    Jang JR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–685CrossRefGoogle Scholar
  32. 32.
    Rezvani A, Izadbakhsh M, Gandomkar M, Vafaei S (2015) Implementing GA-ANFIS for maximum power point tracking in pv system. Indian J Sci Technol 8(May):982–991CrossRefGoogle Scholar
  33. 33.
    Sheraz MAAM, Muhammed K (2015) An efficient ANFIS-based pi controller for maximum power point tracking of pv systems. Springer Trans Arab J Sci Eng 40:2641–2651CrossRefGoogle Scholar
  34. 34.
    Tarek B, Said D, Benbouzid MEH (2013) Maximum power point tracking control for photovoltaic sys-tem using adaptive neuro- fuzzy ’ANFIS. In: Eighth international conference and exhibition on ecologi-cal vehicles and renewable energies, pp. 1–7Google Scholar
  35. 35.
    Acar M, Avci D (2010) An adaptive network-based fuzzy inference system (ANFIS) for the prediction of stock market return: the case of the Istanbul stock exchange. Expert Syst Appl 37:7908–7912CrossRefGoogle Scholar
  36. 36.
    Ecosense, FOUR CHANNEL SOLAR PV EMULATOR:USER, IGE-PV4C400-001/Power: 1600 W (400 \(\times \) 4)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Tata Venkat Dixit
    • 1
  • Anamika Yadav
    • 2
  • S. Gupta
    • 2
  • Almoataz Y. Abdelaziz
    • 3
    Email author
  1. 1.Department of Electrical EngineeringGoverment Polytechnic Kondagaon (C.G.)JagdalpurIndia
  2. 2.Department of Electrical EngineeringNational Institute of TechnologyRaipurIndia
  3. 3.Faculty of Engineering, Electrical Power and Machines DepartmentAin Shams UniversityCairoEgypt

Personalised recommendations