Multifractal Analysis of the Surfaces of Protective (TiAlSiY)N, Me1−xN/CrN and Me1−xN/ZrN Coatings
Conference paper
First Online:
Abstract
In the present paper, a technique for the preparation of protective (TiAlSiY)N, MexN/CrN and Mex/ZrN coatings is shown. The algorithm of multifractal fluctuation analysis is described, and the results of the numerical investigation of microroughness of surfaces of investigated samples are presented. As follows from the calculated numerical parameters, the surface of (TiAlSiY)N/CrN coating is the smoothest and the surface of (TiAlSiY)N is the most non-uniform.
Keywords
Surface morphology Multifractal analysis Self-similarity Vacuum depositionNotes
Acknowledgements
The authors gratefully to Ministry of Education and Science of Ukraine for financial support (Project No. 0117U003923).
References
- 1.Mandelbrot BB (1982) The fractal geometry of nature. Freeman, San FranciscoGoogle Scholar
- 2.Family F, Vicsek T (1991) Dynamics of fractal surfaces. World Scientific, SingaporeCrossRefGoogle Scholar
- 3.Paladin G, Vulpiani A (1987) Anomalous scaling laws in multifractal objects. Phys Rep 156(4):147–225. https://doi.org/10.1016/0370-1573(87)90110-4CrossRefGoogle Scholar
- 4.Feder J (1988) Fractals. Plenum Publishers, New YorkCrossRefGoogle Scholar
- 5.Talibuddin S, Runt JP (1998) Reliability test of popular fractal techniques applied to small two-dimensional self-affine data sets. J Appl Phys 76(9):5070. https://doi.org/10.1063/1.358490CrossRefGoogle Scholar
- 6.Sornette D (2001) Critical phenomena in natural science. Springer, New YorkGoogle Scholar
- 7.Pogrebnjak AD, Bor’ba SO, YaO Kravchenko et al (2016) Effect of the high doze of N + (1018 cm−2) ions implantation into the (TiHfZrVNbTa)N nanostructured coating on its microstructure, elemental and phase compositions, and physico-mechanical properties. J Superhard Mater 38(6):393–401. https://doi.org/10.3103/S1063457616060034CrossRefGoogle Scholar
- 8.Berladir KV, Budnik AO, Dyadyura KA et al (2016) Physicochemical principles of the technology of formation of polymer composite materials based on polytetrafluoroethylene—a review. High Temp Mater Process 20(2):157–184. https://doi.org/10.1615/HighTempMatProc.2016017875CrossRefGoogle Scholar
- 9.Pogrebnjak A, Maksakova O, Kozak C et al (2016) Physical and mechanical properties of nanostructured (Ti–Zr–Nb)N coatings obtained by vacuum-arc deposition method. Prz Elektrotechniczny 2016(8):180–183. https://doi.org/10.15199/48.2016.08.49CrossRefGoogle Scholar
- 10.Pogrebnjak AD, Beresnev VM, Kolesnikov DA et al (2013) Multicomponent (Ti-Zr-Hf-V-Nb)N nanostructure coatings fabrication, high hardness and wear resistance. Acta Phys Pol A 123(5):816–818. https://doi.org/10.12693/APhysPolA.123.816CrossRefGoogle Scholar
- 11.Makowiec D, Galaska R, Dudkowska A et al (2006) Long range dependencies in heart rate signal—revisited. Phys A 369(2):632–644. https://doi.org/10.1016/j.physa.2006.02.038CrossRefGoogle Scholar
- 12.Kravchenko Ya O, Coy LE, Peplińska B et al (2018) Nano-multilayered coatings of (TiAlSiY) N/MeN (Me = Mo, Cr and Zr): influence of composition of the alternating layer on their structural and mechanical properties. J Alloy Compd 767:483–495. https://doi.org/10.1016/j.jallcom.2018.07.090CrossRefGoogle Scholar
- 13.Pogrebnjak AD, Borisyuk VN, Bagdasaryan AA et al (2014) The multifractal investigation of surface microgeometry of (Ti-Hf-Zr-V-Nb)N nitride coatings. JNEP 6(4):04018Google Scholar
- 14.Lyashenko IA, Borysiuk VN, Manko NN (2014) Statistical analysis of self-similar behaviour in the shear induced melting model. Cond Matt Phys 17(2):23003. https://doi.org/10.5488/CMP.17.23003CrossRefGoogle Scholar
- 15.Kravchenko Y, Maksakova O, Drodziel P et al (2016) Effect of thermal annealing and deposition conditions on the structure and mechanical properties of a multilayer nitride coating based on Ta. High Temp Mater Process 20(1):85–92CrossRefGoogle Scholar
- 16.Olemskoi OI, Danyl’chenko SM, Borysyuk VM et al (2009) Multifractal analysis of X-ray patterns of complex condensed media. Metallofiz Noveishie Tekhnol 31(6):777–789Google Scholar
- 17.Gu GF, Zhou WX (2006) Detrended uctuation analysis for fractals and multifractals in higher dimensions. Phys Rev E 74:061104. https://doi.org/10.1103/PhysRevE.74.061104CrossRefGoogle Scholar
- 18.Lee JW, Lee KE, Rikvold PA (2006) Multifractal behavior of the Korean stock-market index KOSPI. Phys A 364:355–361. https://doi.org/10.1016/j.physa.2005.08.082CrossRefGoogle Scholar
- 19.Halsey TC, Jensen MH, Kadano LP et al (1986) Fractal measures and their singularities: the characterization of strange sets. Phys Rev A 33:1141–1151. https://doi.org/10.1103/PhysRevA.33.1141CrossRefGoogle Scholar
- 20.Kantelhardt JW, Zschiegner SA, Koscielny-Bunde E et al (2002) Multifractal detrended fluctuation analysis of nonstationary time series. Phys A 316(1–4):87–114. https://doi.org/10.1016/S0378-4371(02)01383-3CrossRefGoogle Scholar
- 21.Chhabra AB, Sreenivasa KR (1991) Negative dimensions: theory, computation, and experiment. Phys Rev A 43:1114–1117. https://doi.org/10.1103/PhysRevA.43.1114CrossRefGoogle Scholar
- 22.Kimiagar S, Sadegh Movahed M, Khorram S et al (2009) Fractal analysis of discharge current uctuations. J Stat Mech 3:03020. https://doi.org/10.1088/1742-5468/2009/03/P03020CrossRefGoogle Scholar
- 23.Biksa A, Yamamoto K, Dosbaeva G et al (2010) Wear behavior of adaptive nano-multilayered AlTiN/MexN PVD coatings during machining of aerospace alloys. Tribol Int 43(8):1491–1499. https://doi.org/10.1016/j.triboint.2010.02.008CrossRefGoogle Scholar
- 24.Olemskoi AI, Yushchenko OV, Borisyuk VN, Zhilenko TI, Kosminska YuO, Perekrestov VI (2012) Hierarchical condensation near phase equilibrium. Phys A 391:3277–3284. https://doi.org/10.1016/j.physa.2011.10.027CrossRefGoogle Scholar
- 25.Kavasseri RG, Nagarajan R (2005) A multifractal description of wind speed records. Chaos Soliton Fract 24(1):165–173. https://doi.org/10.1016/j.chaos.2004.09.004CrossRefGoogle Scholar
- 26.Olemskoi A, Shuda I, Borisyuk V (2010) Generalization of multifractal theory within quantum calculus. EPL 89(5):1–12. https://doi.org/10.1209/0295-5075/89/50007CrossRefGoogle Scholar
- 27.Pogrebnyak AD, Shpak AP, Azarenkov NA et al (2009) Structures and properties of hard and superhard nanocomposite coatings. Phys-Usp 52:29–54. https://doi.org/10.3367/UFNe.0179.200901b.0035CrossRefGoogle Scholar
- 28.Pogrebnjak AD, Bondar OV, Abadias G et al (2016) Structural and mechanical properties of NbN and Nb-Si-N films: experiment and molecular dynamics simulations. Ceram Int 42(10):11743–11756. https://doi.org/10.1016/j.ceramint.2016.04.095CrossRefGoogle Scholar
- 29.Pogrebnjak AD, Bazyl EA (2001) Modification of wear and fatigue characteristics of Ti-V-Al alloy by Cu and Ni ion implantation and high-current electron beam treatment. Vacuum 64(1):1–7. https://doi.org/10.1016/S0042-207X(01)00160-9CrossRefGoogle Scholar
- 30.Pogrebnjak AD, Rogoz VM, Bondar OV et al (2016) Structure and physicomechanical properties of NbN-based protective nanocomposite coatings: a re-view. Prot Met Phys Chem Surf 52:802–813. https://doi.org/10.1134/S2070205116050191CrossRefGoogle Scholar
- 31.Kadyrzhanov DB, Zdorovets MV, Kozlovskiy AL et al (2018) Influence of ionizing irradiation on the parameters of Zn nanotubes arrays for design of flexible electronics elements. Dev Methods Measur 9(1):66–73. https://doi.org/10.21122/2220-9506-2018-9-1-66-73CrossRefGoogle Scholar
Copyright information
© Springer Nature Singapore Pte Ltd. 2019