On the Possibility of Training Demonstration of the Giant Magnetoresistance Effect in Higher School

  • V. B. Loboda
  • M. Ya. Dovzhyk
  • V. O. Kravchenko
  • S. M. Khursenko
  • Yu. O. ShkurdodaEmail author
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)


The method and technique of training demonstration of the giant magnetoresistance effect on the example of film samples (single layer Co film and three-layer film Co/Cu/Co) in CIP-geometry with the help of simple experimental equipment are presented.


Nanosize multilayer films Anisotropic magnetoresistance Giant magnetoresistance 


  1. 1.
    Meisell L, Gleng R (1977) Tehnologiya tonkih plenok: spravochnik, vol 1. Sow. Radio, MoskowGoogle Scholar
  2. 2.
    Meisell L, Gleng R (1977) Tehnologiya tonkih plenok: spravochnik, vol 2. Sow. Radio, MoskowGoogle Scholar
  3. 3.
    Pogrebnjak AD, Lebed AG, Ivanov YuF (2001) Modifcation of single crystal stainless steel structure (Fe–Cr–Ni–Mn) by high-power ion beam. Vacuum 63(4):483–486. Scholar
  4. 4.
    Pogrebnjak AD, Bazyl EA (2001) Modification of wear and fatigue characteristics of Ti–V–Al alloy by Cu and Ni ion implantation and high-current electron beam treatment. Vacuum 64(1):1–7. Scholar
  5. 5.
    Pogrebnjak AD, Isakov IF, Opekunov MS et al (1987) Increased wear resistance and positron annihilation in Cu exposed to high power ion beam. Phys Lett A 123(8):410–412. Scholar
  6. 6.
    Goncharov AA, Yunda AN, Komsta H et al (2017) Effect of structure on physicomechanical properties of transition metals diboride films. Acta Phys Pol A 132(2):270–273CrossRefGoogle Scholar
  7. 7.
    Yakovin S, Zykov A, Dudin S et al (2017) Plasma assisted deposition of TaB2 coatings by magnetron sputtering system. Probl At Sci Technol 107(1):187–190Google Scholar
  8. 8.
    Bazhin AI, Goncharov AA, Pogrebnyak AD et al (2016) Superhardness effect in transition metal diborides films. Phys Met Metall 117(6):594–601CrossRefGoogle Scholar
  9. 9.
    Goncharov AA, Yunda AN, Shelest IV et al (2017) Effect of the magnetron sputtering parameters on the structure and substructural characteristics of tantalum diboride films. J Nano- Electron Phys 9(4):04014CrossRefGoogle Scholar
  10. 10.
    Pogrebnjak AD, Bondar OV, Abadias G et al (2016) Structural and mechanical properties of NbN and Nb–Si–N films: experiment and molecular dynamics simmulations. Ceram Int 42(10):11743–11756. Scholar
  11. 11.
    Baibich MN, Broto JM, Fert A et al (1988) Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys Rev Lett 61(21):2472–2475CrossRefGoogle Scholar
  12. 12.
    Binasch G, Grünberg P, Saurenbach F et al (1989) Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys Rev B 39(7):4828–4830CrossRefGoogle Scholar
  13. 13.
    Fert A (2008) Proischojdenie, razwitie i perspektiwi spintroniki. Usp Phys Nauk 178(12):1336–1348CrossRefGoogle Scholar
  14. 14.
    Shkurdoda YuO, Chornous AM, Shabelnyk YuM et al (2017) The influence of the concentration of components in magnetic layers on the magnetoresistive properties of three-layer film systems based on FexNi1−x and Cu. J Magn Magn Mater 443:190–194. Scholar
  15. 15.
    Loboda VB, Protsenko IE (1981) Structure and electrical resistance of thin scandium films (III). Study on electrical properties. Kristall Tech 16(4):489–494CrossRefGoogle Scholar
  16. 16.
    Loboda VB, Shkurdoda YuO, Kravchenko VO et al (2011) Structure and magnetoresistive properties of polycrystalline Co/Cu/Co films. Metallofiz Noveishie Tekhnol 33(2):161–169Google Scholar
  17. 17.
    Loboda VB, Kolomiets VM, Shkurdoda YuO et al (2012) Structure and magnetoresistive properties of nanocrystalline film systems based on Co, Fe, Ag, and Cu. Metallofiz Noveishie Tekhnol 34(8):1043–1055Google Scholar
  18. 18.
    Loboda VB, Khursenko SN (2006) Structure and electrical conductivity of ultrathin Ni–Cu films. JETP 103(5):790–794CrossRefGoogle Scholar
  19. 19.
    Shkurdoda YO, Chornous AM, Loboda VB et al (2016) Structure and magnetoresistive properties of three-layer film systems based on permalloy and copper. J Nano- Electron Phys 8(2):02056CrossRefGoogle Scholar
  20. 20.
    Loboda VB, Kolomiets VM, Khursenko SM et al (2014) The electrical conductivity of the three-layer polycrystalline films Co/Ag(Cu)/Fe in the conditions of atoms interdiffusion. J Nano- Electron Phys 6(1):04032Google Scholar
  21. 21.
    Protsenko IY, Mehta PK, Odnodvorets LV et al (2014) Magnetoresistive properties of quasi granular film alloys FexPt1−x at the low concentrations of Pt atoms. J Nano- Electron Phys 6:01031Google Scholar
  22. 22.
    Synashenko OV, Tkach OP, Buryk IP et al (2009) Magnetoresistive properties of multilayer nanodimensional film systems. Probl At Sci Technol 18:169Google Scholar
  23. 23.
    Protsenko I, Odnodvoretz L, Chornous A (1998) Electroconductivity and tensosensibility of multilayer films. Metallofiz Noveishie Tekhnol 20:36Google Scholar
  24. 24.
    Lytvynenko IM, Pazukha IM, Pylypenko OV et al (2015) Structural, magnetic and magnetoresistive properties of ternary film Ni–Fe–Co alloy. Metallofiz Noveishie Tekhnol 37(10):1377CrossRefGoogle Scholar
  25. 25.
    Pogorily AM, Ryabchenko SM, Tovstolytkin AI (2010) Spintronika. Osnovni javisza. Tendenzii rozvitku. Ukr Phys J 6(1):37–97 [In Ukrainian]Google Scholar
  26. 26.
    Lukashevich MG (2003) Vvedenie v magnitoelektroniku. BGU, Minsk [In Russian]Google Scholar
  27. 27.
    Sisoeva S (2005) Avtomobilnie datchiki polozenija. Komponenty technol 4(5):60–68Google Scholar
  28. 28.
    Romanova I (2014) Magnitoresistivnaya pamyat’ MRAM. Elektron-nauka-technol-biznes 8(00140):72–77Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • V. B. Loboda
    • 1
  • M. Ya. Dovzhyk
    • 1
  • V. O. Kravchenko
    • 1
  • S. M. Khursenko
    • 1
  • Yu. O. Shkurdoda
    • 2
    Email author
  1. 1.Sumy National Agrarian UniversitySumyUkraine
  2. 2.Sumy State UniversitySumyUkraine

Personalised recommendations