Advertisement

Mass Transfer Model of Sputtering from Rod-Like Targets for Synthesis of Multielement Nanocoatings

  • Yu. O. KosminskaEmail author
  • V. I. Perekrestov
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

This work develops the mathematical model that allows calculating element concentration depending on substrate location at low working gas pressures for coatings deposited by new magnetron sputtering device on the basis of hollow cathode and rod-like target. In this work, a target composed of two semicylindrical constituents is considered. As the rod-like target can be made of multiple materials in any geometry, the model can be adjusted for any particular case. The calculations explain the general trend of experimental data behavior.

Keywords

Sputtering Mathematical model Mass transfer Composite target Rod target Element concentration Multielement coatings 

References

  1. 1.
    Baranov O, Bazaka K, Kersten H et al (2017) Plasma under control: advanced solutions and perspectives for plasma flux management in material treatment and nanosynthesis. Appl Phys Rev 4:041302 (1–32)Google Scholar
  2. 2.
    Levchenko I, Keidar M, Xu S et al (2013) Low-temperature plasmas in carbon nanostructure synthesis. J Vac Sci Technol B 31:050801CrossRefGoogle Scholar
  3. 3.
    Anders A (2010) High power impulse magnetron sputtering and related discharges: scalable plasma sources for plasma-based ion implantation and deposition. Surf Coat Technol 204:2864–2868CrossRefGoogle Scholar
  4. 4.
    Han JG (2009) Recent progress in thin film processing by magnetron sputtering with plasma diagnostics. J Phys D Appl Phys 42:043001CrossRefGoogle Scholar
  5. 5.
    Kelly PJ, Arnell RD (2000) Magnetron sputtering: a review of recent developments and applications. Vacuum 56:159–172CrossRefGoogle Scholar
  6. 6.
    Musil J, Baroch P, Vlcek J et al (2005) Reactive magnetron sputtering of thin films: present status and trends. Thin Solid Films 475:208–218CrossRefGoogle Scholar
  7. 7.
    Perekrestov VI, Mokrenko OA, Kosminska YuO (2010) Sputtering device for deposition highly porous coatings of metals or weakly volatile substances onto flat substrates in vacuum. UA patent 92525Google Scholar
  8. 8.
    Perekrestov VI, Kosminska YuO, Kornyushchenko AS (2007) Device for deposition of vacuum condensates. UA patent 80775Google Scholar
  9. 9.
    Perekrestov VI, Pogrebnyak OD, Kosminska YuO (2003) Device for deposition of condensates in vacuum. UA patent 57940AGoogle Scholar
  10. 10.
    Perekrestov VI, Kosminska YuO, Mokrenko OA, Dyoshin BV (2008) Device for deposition of condensates in a vacuum. UA patent 37359Google Scholar
  11. 11.
    Perekrestov VI, Pogrebnyak OD, Kosminska YuO (2003) Device for deposition of condensates in a vacuum. UA patent 57952Google Scholar
  12. 12.
    Perekrestov VI, Kosminska YuO (2004) Device for deposition of condensates in a vacuum. UA patent 69723Google Scholar
  13. 13.
    Perekrestov VI, Pogrebnyak OD, Kosminska YuO (2004) Sputtering device for deposition of condensates in a vacuum. UA patent 69974Google Scholar
  14. 14.
    Perekrestov VI, Kosminska YuO (2006) Sputtering device for deposition of condensates in a vacuum. UA patent 76257Google Scholar
  15. 15.
    Glang R (1970) Vacuum evaporation. In: Maissel L, Glang R (eds) Handbook of thin film technology, vol 1. McGraw-Hill, New York, pp 1–130Google Scholar
  16. 16.
    Depla D, Mahieu S (eds) (2008) Reactive sputter deposition. Springer-Verlag, Berlin HeidelbergGoogle Scholar
  17. 17.
    Wehner GK, Anderson GS (1970) Physics of sputtering by ion bombardment. In: Maissel L, Glang R (eds) Handbook of thin film technology, vol 1. McGraw-Hill, New York, pp 352–404Google Scholar
  18. 18.
    Perekrestov VI, Kravchenko SN, Kosminska YuO, Kononenko IN (2011) Structure of Ni–Cu condensates obtained at sputtering of composite rods. Metallofiz Nov Tekh+ 33:203–210Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of NanoelectronicsSumy State UniversitySumyUkraine

Personalised recommendations