Advertisement

Effect of Implantation Temperature and Annealing on Synthesis of ZnSe Nanocrystals in Silica by Ion Implantation

  • M. A. MakhavikouEmail author
  • F. F. Komarov
  • O. V. Milchanin
  • L. A. Vlasukova
  • I. N. Parkhomenko
  • E. Wendler
  • J. Żuk
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

ZnSe nanocrystals have been synthesized in the silicon dioxide matrix by ion implantation of Zn+ and Se+ ions at 25 and 550 °C with subsequent rapid thermal annealing at 1000 °C for 3 min. Structural and optical properties of implanted films were analyzed using Rutherford backscattering spectrometry, transmission electron microscopy, Raman spectroscopy, and photoluminescence. It was shown that the temperature of implantation, as well as thermal treatment, affects the structural and optical properties of implanted films. In the case of high-temperature implantation, ZnSe nanocrystals have been formed already during the implantation process. In the case of room-temperature implanted samples, ZnSe nanocrystals have been synthesized only after subsequent rapid thermal annealing. It was found that implanted silica layers exhibit photoluminescence in wide visible spectral range. The origin of photoluminescence of the as-implanted and annealed silica samples is discussed.

Keywords

Silica layer Ion implantation Zinc selenide nanocrystals Structure Photoluminescence 

Notes

Acknowledgements

This research was partly supported by the Belarusian Republican Foundation for Fundamental Research, grant no. F17M-053.

References

  1. 1.
    Mora-Sero I, Munoz V, Barbe M et al (1999) Study of the chemically activated sublimation of ZnSe. J Cryst Growth 197:497–503.  https://doi.org/10.1016/S0022-0248(98)00796-9CrossRefGoogle Scholar
  2. 2.
    Kale RB, Lokhande CD (2004) Room temperature deposition of ZnSe thin films by successive ionic layer adsorption and reaction (SILAR) method. Mater Res Bull 39:1829–1839.  https://doi.org/10.1016/j.materresbull.2004.06.014CrossRefGoogle Scholar
  3. 3.
    Li J, Li X, Yang R et al (2013) A sensitive electrochemical chlorophenols sensor based on nanocomposite of ZnSe quantum dots and cetyltrimethyl ammonium bromide. Anal Chim Acta 804:76–83.  https://doi.org/10.1016/j.aca.2013.09.049CrossRefGoogle Scholar
  4. 4.
    Krivoshlykov SG (2015) Holographic recording of infrared diffractive optics based on ZnSe material. Appl Optic 54(12):3569–3575.  https://doi.org/10.1364/AO.54.003569CrossRefGoogle Scholar
  5. 5.
    Pol SV, Pol VG, Calderon-Moreno JM et al (2008) Facile synthesis of photoluminescence ZnS and ZnSe nanopowders. Langmuir 24:10462–10466.  https://doi.org/10.1021/la800921aCrossRefGoogle Scholar
  6. 6.
    Norris DJ, Yao N, Chamock FT et al (2000) High-quality manganese-doped ZnSe nanocrystals. Nano Lett 1:3–7.  https://doi.org/10.1021/nl005503hCrossRefGoogle Scholar
  7. 7.
    Gong K, Kelley DF, Kelly AM (2016) Resonance raman spectroscopy and electron-phonon coupling in zinc selenide quantum dots. J Phys Chem C 120:29533–29539.  https://doi.org/10.1021/acs.jpcc.6b12202CrossRefGoogle Scholar
  8. 8.
    Y-l Duan, S-l Yao, Dai C et al (2014) Characterization of ZnSe microspheres synthesized under different hydrothermal conditions. Trans Nonferrous Met Soc China 24:2588–2597.  https://doi.org/10.1016/S1003-6326(14)63387-2CrossRefGoogle Scholar
  9. 9.
    Peng LL, Wang YH, Li CY (2010) Ultraviolet-blue photoluminescence of ZnSe quantum dots. J Nanosci Nanotechnol 10:2113–2118.  https://doi.org/10.1166/jnn.2010.2086CrossRefGoogle Scholar
  10. 10.
    Makhavikou M, Komarov F, Parkhomenko I et al (2018) Structure and optical properties of SiO2 films with ZnSe nanocrystals formed by ion implantation. Surf Coat Techol 344:596–600.  https://doi.org/10.1016/j.surfcoat.2018.03.017CrossRefGoogle Scholar
  11. 11.
    Wang HI, Tang WT, Liao LW et al (2012) Femtosecond laser-induced formation of wurtzite phase ZnSe nanoparticles in air. J Nanomat 2012:278364.  https://doi.org/10.1155/2012/278364CrossRefGoogle Scholar
  12. 12.
    Zhang XB, Ha KL, Hark SK (2001) Selenium-related luminescent centers in metalorganic chemical-vapor-phase deposition grown ZnSe epilayers on GaAs. Appl Phys Lett 79:1127–1129.  https://doi.org/10.1063/1.1394949CrossRefGoogle Scholar
  13. 13.
    Philipose U, Xu T, Yang S et al (2006) Enhancement of band edge luminescence in ZnSe nanowires. J Appl Phys 100:084316.  https://doi.org/10.1063/1.2362930CrossRefGoogle Scholar
  14. 14.
    Kudlek GH, Pohl UW, Fricke Ch et al (1993) Electronic structure and dynamical behavior of different bound-exciton complexes in ZnSe bulk crystals. Phys B 185:325–331.  https://doi.org/10.1016/0921-4526(93)90255-5CrossRefGoogle Scholar
  15. 15.
    Kawakami Y, Ohnakado T, Tsuka M (1993) P-type ZnSe grew by molecular beam epitaxy with remote microwave plasma of N2. J Vac Sci Technol, B 11:2057–2061.  https://doi.org/10.1116/1.586542CrossRefGoogle Scholar
  16. 16.
    Roppischer H, Jacobs J, Novikov BV (1975) The influence of Zn and Se heat treatment on the exciton spectra of ZnSe Single Crystals. Phys Stat sol (a) 27:123–127.  https://doi.org/10.1002/pssa.2210270115CrossRefGoogle Scholar
  17. 17.
    Chen HS, Wang SJJ, Lo CJ et al (2005) White-light emission from organics-capped ZnSe quantum dots and application in white-light-emitting diodes. Appl Phys Lett 86:131905.  https://doi.org/10.1063/1.1886894CrossRefGoogle Scholar
  18. 18.
    Deng Z, Lie FL, Shen S et al (2009) Water-based route to the ligand-selective synthesis of ZnSe and Cd-doped ZnSe quantum dots with tunable ultraviolet A to blue photoluminescence. Langmuir 25:434–442.  https://doi.org/10.1021/la802294eCrossRefGoogle Scholar
  19. 19.
    Wei J, Li K, Chen J et al (2012) Synthesis and photoluminescence of semiconductor ZnSe hollow microspheres by two–sourced evaporation. J Alloys Compd 531:86–90.  https://doi.org/10.1016/j.jallcom.2012.03.112CrossRefGoogle Scholar
  20. 20.
    Salh R (2011) Concentration and annealing effects on luminescence properties of ion-implanted silica layers. J At, Mol, Opt Phys 2011:1–7.  https://doi.org/10.1155/2011/326368CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • M. A. Makhavikou
    • 1
    Email author
  • F. F. Komarov
    • 1
  • O. V. Milchanin
    • 1
  • L. A. Vlasukova
    • 2
  • I. N. Parkhomenko
    • 2
  • E. Wendler
    • 3
  • J. Żuk
    • 4
  1. 1.A.N. Sevchenko Institute of Applied Physical ProblemsMinskBelarus
  2. 2.Belarusian State UniversityMinskBelarus
  3. 3.Institute Für Festkörperphysik, Friedrich-Schiller-UniversitätJenaGermany
  4. 4.Institute of Physics, Maria Curie-Skłodowska UniversityLublinPoland

Personalised recommendations