Advertisement

Determination of the Percolation Threshold for (FeCoZr)x(SiO2)(100−x) Nanocomposite

  • V. BondarievEmail author
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

This work presents an explanation of the effect of metallic phase content x on AC electrical properties of nanocomposites (FeCoZr)x(SiO2)(100−x) and determination of the percolation threshold for series of nanocomposite samples with metallic phase content x = 48.3–82.8 at.%. Frequency and temperature dependencies of conductivity σ(f, T) and phase shift angle θ(f, T) for series of nanocomposite produced by ion-beam sputtering in pure argon atmosphere were determined. Samples with metallic phase content x < 79.8 at.% exhibit dielectric type of conductivity dσ/dT > 0. Increase in concentration of metallic phase x ≥ 79.8 at.% causes a change of conductivity character from dielectric to metallic dσ/dT < 0. Comparison of the conductivity at Tp = 20 K and conductivity at room temperature allowed to determine the percolation threshold for a series of samples of nanocomposite (FeCoZr)x(SiO2)(100−x). Metallic phase particles form the “endless cluster” that crosses though sample from the electrode to electrode in nanocomposites with x ≥ 80 at.%.

Keywords

Nanocomposites Conductivity Percolation Metallic phase 

References

  1. 1.
    Komarov FF, Zukowski P, Kryvasheyeu RM et al (2015) Effects of surfactant and fabrication procedure on the electrical conductivity and electromagnetic shielding of single-walled carbon nanotube films. Phys Status Solidi Appl Mater Sci 212:425–432.  https://doi.org/10.1002/pssa.201431493CrossRefGoogle Scholar
  2. 2.
    Pogrebnjak AD, Berestok TO, Opanasyuk AS et al (2014) Structural properties and elemental composition of Au+ implanted ZnO films, obtained by sol-gel method. J Nano- Electron Phys 6:1–5Google Scholar
  3. 3.
    Astashynskaya MV, Astashynski VV, Kvasov NT et al (2016) Microstructure of amorphous copper-carbon thin films formed by plasma-enhanced chemical vapor deposition. High Temp Mater Process Int Q High-Technol Plasma Process 20:115–126.  https://doi.org/10.1615/HighTempMatProc.2016017797CrossRefGoogle Scholar
  4. 4.
    Boiko O (2017) Ferromagnetic alloy–ferroelectric ceramic nanocomposites for nanoelectronics: the influence of heat treatment on electrical properties. High Temp Mater Process Int Q High-Technol Plasma Process 21:251–259.  https://doi.org/10.1615/HighTempMatProc.2018025554CrossRefGoogle Scholar
  5. 5.
    Fedotova J, Kasiuk J, Przewoznik J et al (2011) Effect of oxide shells on the magnetic and magnetotransport characteristics of oxidized FeCoZr nanogranules in Al2O3. J Alloys Compd 509:9869–9875Google Scholar
  6. 6.
    Kopia A, Nowakowski P, Suliga I et al (2006) Porównanie własności katalitycznych nanokrystalicznych tlenków ceru CeO2 i rutenu RuO2. Inżynieria Mater 27:1069–1072Google Scholar
  7. 7.
    Judy JH (2005) Advancements in PMR thin-film media. J Magn Magn Mater 287:16–26.  https://doi.org/10.1016/j.jmmm.2004.10.004CrossRefGoogle Scholar
  8. 8.
    Timopheev AA, Ryabchenko SM, Kalita VM et al (2011) Growth-induced perpendicular anisotropy of grains in Co-Al-O nanogranular ferromagnetic films. Phys Solid State 53:494–503.  https://doi.org/10.1134/S1063783411030309CrossRefGoogle Scholar
  9. 9.
    Yatsun EI, Ageev EV, Ugrimov AS (2017) Preparation of protective nanocomposite coatings by ultra-fast gas-dynamic formation using hard alloy electro-erosion powders. Chem Pet Eng 52:774–778.  https://doi.org/10.1007/s10556-017-0269-yCrossRefGoogle Scholar
  10. 10.
    Beresnev VM, Sobol’ OV, Pogrebnjak AD et al (2017) Structure and properties of vacuum arc single-layer and multiperiod two-layer nitride coatings based on Ti(Al): Si layers. J Nano- Electron Phys 9:1033–1033.  https://doi.org/10.21272/jnep.9(1).01033CrossRefGoogle Scholar
  11. 11.
    Wang TL, Yang CH, Shieh YT et al (2009) Synthesis of CdSe-poly(N-vinyl carbazole) nanocomposite by atom transfer radical polymerization for potential optoelectronic applications. Macromol Rapid Commun 30:1679–1683.  https://doi.org/10.1002/marc.200900349CrossRefGoogle Scholar
  12. 12.
    Pantsialeyeu KU, Krautsevich AU, Rovba IA et al (2017) Analysis of the electrophysical and photoelectric properties of nanocomposite polymers by the modified Kelvin probe. Devices Methods Meas 8:386–397.  https://doi.org/10.21122/2220-9506-2017-8-4-55-62CrossRefGoogle Scholar
  13. 13.
    Haiduk YS, Reutskaya OG, Savitsky AA et al (2016) Micropower gas sensor based on the composition tungsten oxide and multiwall carbon nanotubes. Devices Methods Meas 7:41–49.  https://doi.org/10.21122/2220-9506-2016-7-1-60-69
  14. 14.
    Shklovskii BI, Efros AL (1985) Electronic properties of doped semiconductors. Springer, Berlin, Heidelberg, New York, TokyoGoogle Scholar
  15. 15.
    Jönsson BJ, Turkki T, Ström V et al (1996) Oxidation states and magnetism of Fe nanoparticles prepared by a laser evaporation technique. J Appl Phys 79:5063–5065.  https://doi.org/10.1063/1.361572CrossRefGoogle Scholar
  16. 16.
    Kravchenko YO, Coy LE, Peplińska B et al (2018) Nano-multilayered coatings of (TiAlSiY)N/MeN (Me = Mo, Cr and Zr): influence of composition of the alternating layer on their structural and mechanical properties. J Alloy Compd 767:483–495CrossRefGoogle Scholar
  17. 17.
    Pogrebnjak AD, Beresnev VM, Bondar OV et al (2018) Superhard CrN/MoN coatings with multilayer architecture. Mater Des 153:47–59CrossRefGoogle Scholar
  18. 18.
    Smyrnova KV, Pogrebnjak AD, Beresnev VM et al (2018) Microstructure and physical-mechanical properties of (TiAlSiY)N nanostructured coatings under different energy conditions. Met Mater Int 24(5):1024–1035CrossRefGoogle Scholar
  19. 19.
    Pogrebnjak AD, Ivashchenko VI, Skrynskyy PL et al (2018) Experimental and theoretical studies of the physicochemical and mechanical properties of multi-layered TiN/SiC films: temperature effects on the nanocomposite structure. Compos B Eng 142:85–94CrossRefGoogle Scholar
  20. 20.
    Pogrebnjak AD, Beresnev VM, Smyrnova KV et al (2018) The influence of nitrogen pressure on the fabrication of the two-phase superhard nanocomposite (TiZrNbAlYCr)N coatings. Mater Lett 211:316–318CrossRefGoogle Scholar
  21. 21.
    Stauffer D, Aharony A (1994) Introduction to percolation theory. Taylor and Francis, LondonGoogle Scholar
  22. 22.
    Efros AL, Shklovskii BI (1976) Critical behavior of conductivity and dielectric constant near the metal-nonmetal transition threshold. Phys Status Solidi 76:475–485.  https://doi.org/10.1002/pssb.2220760205CrossRefGoogle Scholar
  23. 23.
    Grimmett G (1999) Percolation. Springer, BerlinCrossRefGoogle Scholar
  24. 24.
    Zukowski P, Kołtunowicz T, Partyka J et al (2009) Electrical properties of nanostructures (CoFeZr)x + (Al2O3)1−x with use of alternating current. Vacuum 83:S275–S279.  https://doi.org/10.1016/j.vacuum.2009.01.081CrossRefGoogle Scholar
  25. 25.
    Zukowski P, Kołtunowicz T, Partyka J et al (2007) Dielectric properties and model of hopping conductivity of GaAs irradiated by H+ ions. Vacuum 81:1137–1140.  https://doi.org/10.1016/j.vacuum.2007.01.070CrossRefGoogle Scholar
  26. 26.
    Chockalingam R, Basu S (2011) Impedance spectroscopy studies of Gd-CeO2-(LiNa)CO3 nano composite electrolytes for low temperature SOFC applications. Int J Hydrogen Energy 36:14977–14983.  https://doi.org/10.1016/j.ijhydene.2011.03.165CrossRefGoogle Scholar
  27. 27.
    Svito I, Fedotova JA, Milosavljević M et al (2015) Influence of sputtering atmosphere on hopping conductance in granular nanocomposite (FeCoZr)x(Al2O3)1−x films. J Alloys Compd 615:S344–S347.  https://doi.org/10.1016/j.jallcom.2013.12.061CrossRefGoogle Scholar
  28. 28.
    Koltunowicz TN, Zukowski P, Boiko O et al (2016) Capacitive properties of nanocomposite (FeCoZr)x(PZT)(100−x) produced by sputtering with the use of argon and oxygen ions beam. J Mater Sci Mater Electron 27:1171–1176.  https://doi.org/10.1007/s10854-015-3868-4CrossRefGoogle Scholar
  29. 29.
    Koltunowicz TN, Zukowski P, Bondariev V et al (2015) Voltage and current resonance in nanocomposite (FeCoZr)x(CaF2)100−x produced by ion-beam sputtering in pure argon atmosphere. Acta Phys Pol A 128:897–900Google Scholar
  30. 30.
    Boiko O, Koltunowicz TN, Zukowski P et al (2017) The effect of sputtering atmosphere parameters on dielectric properties of the ferromagnetic alloy—ferroelectric ceramics nanocomposite (FeCoZr)x(PbZrTiO3)(100−x). Ceram Int 43:2511–2516.  https://doi.org/10.1016/j.ceramint.2016.11.052CrossRefGoogle Scholar
  31. 31.
    Zukowski P, Koltunowicz TN, Bondariev V et al (2016) Determining the percolation threshold for (FeCoZr)x(CaF2)(100−x) nanocomposites produced by pure argon ion-beam sputtering. J Alloys Compd 683:62–66.  https://doi.org/10.1016/j.jallcom.2016.05.070CrossRefGoogle Scholar
  32. 32.
    Bondariev V (2017) Percolation threshold of granular metal-dielectric nanocomposites (FeCoZr)x(CaF2)1−x produced in atmosphere of argon and oxygen. In: Romaniuk RS, Linczuk M (eds) International society for optics and photonics, p 104455AGoogle Scholar
  33. 33.
    Koltunowicz TN, Zukowski P, Bondariev V et al (2015) The effect of annealing on the impedance of (FeCoZr)x(CaF2)(100−x) nanocomposite films produced by the ion-beam sputtering in vacuum. Vacuum 120:44–50.  https://doi.org/10.1016/j.vacuum.2015.01.030CrossRefGoogle Scholar
  34. 34.
    Koltunowicz TN (2015) Test station for frequency-domain dielectric spectroscopy of nanocomposites and semiconductors. J Appl Spectrosc 82:653–658.  https://doi.org/10.1007/s10812-015-0158-0CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Electrical Devices and High Voltage TechnologyLublin University of TechnologyLublinPoland

Personalised recommendations