Stain Effect on the Properties of Polar Dielectric Thin Films

  • Alexander TkachEmail author
  • Olena Okhay
  • André Santos
  • Sebastian Zlotnik
  • Ricardo Serrazina
  • Paula M. Vilarinho
  • M. Elisabete Costa
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)


Low cost scalable processing and substrates are critical for optimized polar dielectric performance of functional oxide thin films if they are to achieve commercialization. Here, we present a comprehensive investigation of the role low-cost MgO, Al2O3, SrTiO3 and Si substrates on the structural and electrical properties of sol-gel derived SrTiO3 (ST) and K0.5Na0.5NbO3 (KNN) thin films. The substrate is found to have a strong effect on the stress/stain state and, consequently, on the dielectric and ferroelectric response of the films. A tensile stress induced in-plane by the thermal expansion mismatch between the substrates and the films observed for ST and KNN films deposited on platinized Al2O3 and Si substrates, respectively, lowers the relative permittivity and remanent polarization values in the parallel plate capacitor geometry. In contrast, a compressive stress/strain observed for ST films deposited on MgO/Pt and KNN films on SrTiO3/Pt substrates result in superior polarization and dielectric permittivity, corresponding to enhanced out-of-plane displacement of Ti4+ ions in ST films and Nb5+ ions in KNN films. It is thus demonstrated that for polycrystalline polar dielectric thin films the relative permittivity and polarization may be optimized through an induced compressive stress state.


Thin films Sol-gel Thermal expansion Stress/strain Ferroelectric hysteresis Dielectric properties 



This work was developed within the scope of the project CICECO-Aveiro Institute of Materials, POCI-01-0145-FEDER-007679 (FCT Ref. UID/CTM/50011/2013), financed by national funds through the FCT/MEC and when appropriate co-financed by FEDER under the PT2020 Partnership Agreement as well as within FCT independent researcher grant IF/00602/2013. M. R. Soares is acknowledged for XRD strain measurements.


  1. 1.
    Müller KA, Burkard H (1979) SrTiO3: an intrinsic quantum paraelectric below 4 K. Phys Rev B 19:3593–3602CrossRefGoogle Scholar
  2. 2.
    Müller KA (1959) Electron paramagnetic resonance of manganese IV in SrTiO3. Phys Rev Lett 2:341–343CrossRefGoogle Scholar
  3. 3.
    Unoki H, Sakudo T (1967) Electron spin resonance of Fe3+ in SrTiO3 with special reference to the 110°K phase transition. J Phys Soc Jpn 23:546–552CrossRefGoogle Scholar
  4. 4.
    Shirane G, Yamada Y (1969) Lattice-dynamical study of the 110°K phase transition in SrTiO3. Phys Rev 177:858–863CrossRefGoogle Scholar
  5. 5.
    Vendik OG, Hollmann EK, Kozyrev AB, Prudan AM (1999) Ferroelectric tuning of planar and bulk microwave devices. J Supercond 12:325–338CrossRefGoogle Scholar
  6. 6.
    Tagantsev AK, Sherman VO, Astafiev KF, Venkatesh J, Setter N (2003) Ferroelectric materials for microwave tunable applications. J Electroceram 11:5–66CrossRefGoogle Scholar
  7. 7.
    Sirenko AA, Akimov IA, Fox JR, Clark AM, Li H-C, Si W, Xi XX (1999) Observation of the first-order Raman scattering in SrTiO3 thin films. Phys Rev Lett 82:4500–4503CrossRefGoogle Scholar
  8. 8.
    Pertsev NA, Tagantsev AK, Setter N (2000) Phase transitions and strain-induced ferroelectricity in SrTiO3 epitaxial thin films. Phys Rev B 61:R825–R829CrossRefGoogle Scholar
  9. 9.
    Astafiev K, Sherman V, Tagantsev A et al (2003) Shift of phase transition temperature in strontium titanate thin films. Integr Ferroelectr 59:1371–1379CrossRefGoogle Scholar
  10. 10.
    Haeni JH, Irvin P, Chang W et al (2004) Room-temperature ferroelectricity in strained SrTiO3. Nature 430:758–761CrossRefGoogle Scholar
  11. 11.
    Nuzhnyy D, Petzelt J, Kamba S et al (2009) Soft mode behavior in SrTiO3/DyScO3 thin films: evidence of ferroelectric and antiferrodistortive phase transitions. Appl Phys Lett 95:232902CrossRefGoogle Scholar
  12. 12.
    Li JF, Wang K, Zhu FY, Cheng LQ, Yao FZ (2013) (K,Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges. J Am Ceram Soc 96:3677–3696CrossRefGoogle Scholar
  13. 13.
    Saito Y, Takao H, Tani T et al (2004) Lead-free piezoceramics. Nature 432:84–87CrossRefGoogle Scholar
  14. 14.
    Rafiq MA, Costa ME, Tkach A, Vilarinho PM (2015) Impedance analysis and conduction mechanisms of lead free potassium sodium niobate (KNN) single crystals and polycrystals: a comparison study. Cryst Growth Des 15:1289–1294CrossRefGoogle Scholar
  15. 15.
    Rafiq MA, Tkach A, Costa ME, Vilarinho PM (2015) Defects and charge transport in Mn-doped K0.5Na0.5NbO3 ceramics. Phys Chem Phys 17:24403–24411CrossRefGoogle Scholar
  16. 16.
    Rodel J, Webber KG, Dittmer R, Jo W, Kimura M, Damjanovic D (2015) Transferring lead-free piezoelectric ceramics into application. J Eur Ceram Soc 35:1659–1681CrossRefGoogle Scholar
  17. 17.
    Tanaka K, Hayashi H, Kakimoto KI, Ohsato H, Iijima T (2007) Effect of (Na,K)—excess precursor solutions on alkoxy-derived (Na,K)NbO3 powders and thin films. Jpn J Appl Phys 46:6964–6970CrossRefGoogle Scholar
  18. 18.
    Ahn CW, Lee SY, Lee HJ, Bae JS, Jeong ED, Choi JS (2009) The effect of K and Na excess on the ferroelectric and piezoelectric properties of K0.5Na0.5NbO3 thin film. J Phys D Appl Phys 42:215304Google Scholar
  19. 19.
    Yan X, Ren W, Wu X, Shi P, Yao X (2010) Lead-free (K,Na)NbO3 ferroelectric thin films: Preparation, structure and electrical properties. J Alloy Compd 508:129–132CrossRefGoogle Scholar
  20. 20.
    Kang C, Park JH, Shen D, Ahn H, Park M, Kim D-J (2010) Growth and characterization of (K0.5Na0.5)NbO3 thin films by a sol-gel method. J Sol-Gel Sci Technol 58:85–90CrossRefGoogle Scholar
  21. 21.
    Kupec A, Malic B, Tellier J, Tchernychova E, Glinsek S, Kosec M (2012) Lead-free ferroelectric potassium sodium niobate thin films from solution: composition and structure. J Am Ceram Soc 95:515–523CrossRefGoogle Scholar
  22. 22.
    Yu Q, Li J-F, Sun W, Zhou Z, Xu Y, Xie Z-K, Lai F-P, Wang Q-M (2013) Electrical properties of K0.5Na0.5NbO3 thin films grown on Nb:SrTiO3 single-crystalline substrates with different crystallographic orientations. J Appl Phys 113:024101Google Scholar
  23. 23.
    Vendrell X, Raymond O, Ochoa DA, García JE, Mestres L (2015) Growth and physical properties of highly oriented La-doped (K,Na)NbO3 ferroelectric thin films. Thin Solid Films 577:35–41CrossRefGoogle Scholar
  24. 24.
    Deng Q, Zhang J, Huang T, Xu L, Jiang K, Li Y, Hu Z, Chu J (2015) Optoelectronic properties and polar nano-domain behavior of sol-gel derived K0.5Na0.5Nb1-xMnxO3-δ nanocrystalline films with enhanced ferroelectricity. J Mater Chem C 3:8225–8234CrossRefGoogle Scholar
  25. 25.
    Won SS, Lee J, Venugopal V et al (2016) Lead-free Mn-doped (K0.5,Na0.5)NbO3 piezoelectric thin films for MEMS-based vibrational energy harvester applications. Appl Phys Lett 108:232908Google Scholar
  26. 26.
    Weng C, Tsai C, Hong C, Lin C (216) Effects of non-stoichiometry on the microstructure, oxygen vacancies, and electrical properties of KNN-based thin films. ECS J. Solid State Sci Technol 5:49–56CrossRefGoogle Scholar
  27. 27.
    Malic B, Razpotnik H, Koruza J, Kokalj S, Cilensek J, Kosec M (2011) Linear thermal expansion of lead-free piezoelectric K0.5Na0.5NbO3 ceramics in a wide temperature range. J Am Ceram Soc 94:2273–2275CrossRefGoogle Scholar
  28. 28.
    Tkach A, Okhay O, Reaney IM, Vilarinho PM (2018) Mechanical strain engineering of dielectric tunability in polycrystalline SrTiO3 thin films. J Mater Chem C 6:2467–2475CrossRefGoogle Scholar
  29. 29.
    Okhay O, Tkach A, Wu A, Vilarinho PM (2013) Manipulation of dielectric permittivity of sol-gel SrTiO3 films by deposition conditions. J Phys D Appl Phys 46:505315CrossRefGoogle Scholar
  30. 30.
    Tkach A, Santos A, Zlotnik S, Serrazina R, Okhay O, Bdikin I, Costa ME, Vilarinho PM (2018) Strain-mediated substrate effect on the dielectric and ferroelectric response of potassium sodium niobate thin films. Coatings 8:449CrossRefGoogle Scholar
  31. 31.
    Wachtman JB Jr, Wheat ML, Marzullo S (1963) A method for determining the elastic constants of a cubic crystal from velocity measurements in a single arbitrary direction; application to SrTiO3. J Res NBS 67:A193–A209CrossRefGoogle Scholar
  32. 32.
    Jeager RE, Egerton L (1962) Hot pressing of potassium sodium niobates. J Am Ceram Soc 45:209–213CrossRefGoogle Scholar
  33. 33.
    Egerton L, Dillon DM (1959) Piezoelectric and dielectric properties of ceramics in the system potassium sodium niobate. J Am Ceram Soc 42:438–442CrossRefGoogle Scholar
  34. 34.
    Zhang J, Weiss CV, Alpay SP (2011) Effect of thermal stresses on the dielectric properties of strontium titanate thin films. Appl Phys Lett 99:042902CrossRefGoogle Scholar
  35. 35.
    Levin I, Krayzman V, Cibin G, Tucker MG, Eremenko M, Chapman K, Paul RL (2017) Coupling of emergent octahedral rotations to polarization in (K,Na)NbO3 ferroelectrics. Sci Rep 7:15620CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Alexander Tkach
    • 1
    Email author
  • Olena Okhay
    • 1
  • André Santos
    • 1
  • Sebastian Zlotnik
    • 1
  • Ricardo Serrazina
    • 1
  • Paula M. Vilarinho
    • 1
  • M. Elisabete Costa
    • 1
  1. 1.Department of Materials and Ceramic EngineeringCICECO—Aveiro Institute of Materials, University of AveiroAveiroPortugal

Personalised recommendations