Advertisement

Functional Selective Nanostructured Coatings Synthesized by Low-Temperature Ion-Plasma Method on Polymeric Substrates

  • Z. TsybriiEmail author
  • F. Sizov
  • M. Vuichyk
  • K. Svezhentsova
  • E. Rudenko
  • I. Korotash
  • D. Polotskiy
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

The technology of low-temperature ion-plasma formation of the nanostructured films from the aluminum nitride on the various substrates, including the Mylar and Teflon flexible polymeric films was developed. The study of the structural and optical characteristics of such nanostructured coatings has shown the possibility to use them as the functional films with the selective transmissions and barriers in the infrared (IR) spectral region. Due to high thermal conductivity and specific optical properties (the Restrahlen band broadened from the wavelengths 10.3 μm up to almost 20 μm) and good transparency in visible and sub-THz spectral regions), the AlN thin polycrystalline films on polymeric substrates can be attractive for making the infrared radiation blocking filters from the background at 300 K. They can improve the performance of the sub-THz low-temperature detectors in the ground-based telescopes.

Keywords

AN nanostructured coatings IR selective filters Polymeric substrates 

References

  1. 1.
    Moreira MA, Doi I, Souza JF et al (2011) Electrical characterization and morphological properties of AlN films prepared by dc reactive magnetron sputtering. Microelectron Eng 88(5):802–806CrossRefGoogle Scholar
  2. 2.
    Morkoc H (2008) Handbook of nitride semiconductors and devices, vol 1: Materials Properties, Physics and Growth. Weinheim Wiley-VCH., Weinheim, GermanyGoogle Scholar
  3. 3.
    Garcia-Mendez M (2012) Controlled growth of C-oriented AlN thin films: experimental deposition and characterization. In: Kolesnikov N, Borisenko E (eds) Modern aspects of bulk crystal and thin film preparation. InTech.  https://doi.org/10.5772/1348Google Scholar
  4. 4.
    Ruterana P, Albrecht M, Neugebauer J (eds) (2003) Nitride semiconductors, handbook of materials and devices. Wiley-VCH Verlag GmbH&Co, WeinheimGoogle Scholar
  5. 5.
    Tansu N, Zhao H, Liu G et al (2010) III-Nitride Photonics. IEEE Photon J 2:241–248CrossRefGoogle Scholar
  6. 6.
    Liang D, Quhe R, Chen Y et al (2017) Electronic and excitonic properties of two dimensional and bulk InN crystals. RSC Adv 7:42455CrossRefGoogle Scholar
  7. 7.
    Chung DDL (2001) Materials for thermal conduction. Appl Therm Eng 21(16):1593–1605CrossRefGoogle Scholar
  8. 8.
    Alrashdan MHS et al (2017) Aluminum nitride thin film deposition using dc sputtering. In: Proceedings of the 2014 IEEE international conference on semiconductor electronics (ICSE2014).  https://doi.org/10.1109/SMELEC.2014.6920798
  9. 9.
    Balestraand F, Ghibaudo G (2001) Device and circuit cryogenic operation for low temperature electronics. Springer, BerlinGoogle Scholar
  10. 10.
    Graf UU, Honingh CE, Jacobs K et al (2015) Terahertz heterodyne array receivers for astronomy. J Infrared Milli Terahz Waves 36:896–921CrossRefGoogle Scholar
  11. 11.
    Osipov L, Rudenko E, Semenyuk V et al (2010) Highly effective source of low temperature deposition of films and coatings. Nanoindustriya (Nanoindustry) 2:4–7 (in Russian)Google Scholar
  12. 12.
    Semenuk VF, Rudenko EM, Korotash IV et al (2011) Unified technological ion-plasma facility for formation of nanostructures. Metallofiz Noveishie Tekhnol 33(2):223–231 [In Russian]Google Scholar
  13. 13.
    Akasaki I, Hashimoto M (1967) Infrared lattice vibration of vapour-grown AlN. Sol St Comm 5:851–853CrossRefGoogle Scholar
  14. 14.
    Kazan M, Pereira S, Correia MR et al (2009) Directional dependence of AlN intrinsic complex dielectric function, optical phonon lifetimes, and decay channels measured by polarized infrared reflectivity. J Appl Phys 106:023523.  https://doi.org/10.1063/1.3177323CrossRefGoogle Scholar
  15. 15.
    Park M-H, Kim S-H (2012) Thermal conductivity of AlN thin films deposited by RF magnetron sputtering. Sci Semicond Process 15:6–10CrossRefGoogle Scholar
  16. 16.
    Sizov F (2018) THz radiation detectors: state-of-the-art. Semicond Sci Technol.  https://doi.org/10.1088/1361-6641/aae473CrossRefGoogle Scholar
  17. 17.
    Rudenko E, Tsybrii Z, Sizov F et al (2017) Infrared blocking, microwave and terahertz low-loss transmission AlN films grown on flexible polymeric substrates. J Appl Phys 121:135304-1–135304-8.  https://doi.org/10.1063/1.4979858CrossRefGoogle Scholar
  18. 18.
    Zhao S, Ribbing C-G (2010) Option for reststrahlen material in optical surfaces and filters. Chin Opt Lett 8:119–124Google Scholar
  19. 19.
    Antonova K, Szekeres A, Duta L et al (2016) Orientation of the nanocrystallites in AlN thin film determined by FTIR spectroscopy. J Phys. Conference Series 682:012024.  https://doi.org/10.1088/1742-6596/682/1/012024Google Scholar
  20. 20.
    Jagannadham K, Sharma AK, Wei Q et al (1998) Structural characteristics of AlN films deposited by pulsed laser deposition and reactive magnetron sputtering: a comparative study. J Vac Sci Technol A 16(5):2804–2815CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Z. Tsybrii
    • 1
    Email author
  • F. Sizov
    • 1
  • M. Vuichyk
    • 1
  • K. Svezhentsova
    • 1
  • E. Rudenko
    • 2
  • I. Korotash
    • 2
  • D. Polotskiy
    • 2
  1. 1.V.E. Lashkaryov Institute of Semiconductor Physics NASUKievUkraine
  2. 2.Institute for Metal Physics NASUKievUkraine

Personalised recommendations