Advertisement

Method for Identification of Optical Resonances of Metal Films

  • M. Yu. BarabashEmail author
  • G. G. Vlaykov
  • A. A. Kolesnichenko
  • L. V. Ryabov
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

In this paper, the properties of thin (10–100 nm, R > 7 Ω) copper films deposited on glass substrates at T = 300 K are considered. The thin films were produced by thermal evaporation in a vacuum with residual gas pressure (10−2–10−3 Pa). The substrates had luminescence under exciting by Raman light (Raman scattering) of 30 mW power, with a wavelength of 785 nm. The resonances were identified by comparing the absorption and Raman spectra at excitation wavelengths of 633 and 785 nm. Among films with a close absorption level, films with the largest amplitude of the Raman signal had a structure with the maximum value of optical resonances. Under the influence of exciting light of 30 mW, the Raman spectrum and the color of these films changed. Copper films deposited on glass substrates at a temperature of 300 °C with an electrical resistivity R < 0.5 Ω/square did not have pronounced Raman peaks, their Raman spectrum and color did not change under 300 mW excitation light with a wavelength λ of 785 nm.

Keywords

Optical resonance Thin films Raman scattering Clusters 

Notes

Acknowledgements

The work was carried out within the framework of Fundamental problems of new nanomaterials and nanotechnologies (2015–2019) of The National Academy of Science of Ukraine.

References

  1. 1.
    Joannopoulos JD, Johnson SG, Winn JN et al (2008) Photonic crystals. Molding the flow of light. Princeton University PressGoogle Scholar
  2. 2.
    Klimov VV (2009) Nanoplasmonica. Fizmatlit, MoscowGoogle Scholar
  3. 3.
    Toropov A, Shubina T (2015) Plasmonic effects. In: Metal-semiconductor nanostructures. Oxford Science Publications, Press Oxford University.  https://doi.org/10.1093/acprof:oso/9780199699315.001.0001
  4. 4.
    Komisarenko FE, Zhukov MV, Muhin IS et al. (2017) Formirovanie metallicheskih nanoostovkov pri elektronnom obluchenii tonkoy plenki zolota na stekle. J Tech Phys 87(2):306–309 (in Russian).  https://doi.org/10.21883/JTF.2017.02.44143.1784CrossRefGoogle Scholar
  5. 5.
    Samsonov VM, Kuznezova YV, D’yakova EV (2016) O fractal’nih svoystvah agregatov metallicheskih nanoclasterov na tverdoy poverhnosti. J Tech Phys 86(2):306–309 (in Russian)Google Scholar
  6. 6.
    Korolenko PV, Rizhikova YV (2015) Konstructivnie fractali v modelyah nanoclusterov. In: Proceedings of the conference “M.V. Lomonosov readings, physics section”. Moscow State University, Moscow, p 5 (in Russian)Google Scholar
  7. 7.
    Gryn’ko DO, Barabash MY, Borshagivskiy EG et al (2008) Template as a tool of nanotechnology group. Nanosyst Nanomater Nanotech 6(N1):91–103Google Scholar
  8. 8.
    Hlebzov NG (2008) Optica i biofotonica nanochastiz s plasmonnim rezonansom. Quantum Electron 38(N6):504–529 (in Russian)CrossRefGoogle Scholar
  9. 9.
    Kim YK, Ok G, Choi SW et al (2017) The interfacing structural effect of Ag/grapheme oxide nanohybrid films on surface enhanced Raman scattering. Nanoscale 9:5872.  https://doi.org/10.1039/c7nr00308kCrossRefGoogle Scholar
  10. 10.
    Petrov YuI (1986) Klasteri i malie chastizi. Nauka, Moscow (in Russian)Google Scholar
  11. 11.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, BerlinCrossRefGoogle Scholar
  12. 12.
    Karpov SV, Slabko VV (2003) Optichiskie I fotofizicheskie svoystva fractal’no strukturirovanih zoley metallov. SO RAN, Novosibirsk (in Russian)Google Scholar
  13. 13.
    Bobovich YS (1972) Lazernaya spektroskopiya spontannogo kombinatsionnogo rasseyaniya slabo vzaimodeystvuyuschih molekul i ee prilozheniya. UFN 108:401 (in Russian).  https://doi.org/10.3367/UFNr.0108.197211a.0401CrossRefGoogle Scholar
  14. 14.
    Arbuzov VI (2008) Osnovi radiazionnogo opticheskogo materialovedeniya. SPbGUITMO, SPb (in Russian)Google Scholar
  15. 15.
    Trofimov VI, Osadisenko VL (1993) Rost i morfologiya tonkih plenok. Energoatomizdat, Moscow (in Russian)Google Scholar
  16. 16.
    Lewis B, Anderson JC (1978) Nuclation and growth of thin films. Academic Press, New YorkGoogle Scholar
  17. 17.
    Lazarev VB, Sobolev VV, Shapligin IS (1983) Himicheskiev i fizicheskie svoystva prostih oksidov metallov. Nauka, Moscow (in Russian)Google Scholar
  18. 18.
    Byub P (1962) Fotoprovodimost’ tverdih tel. Foreign. liter-ra, Moscow (in Russian)Google Scholar
  19. 19.
    Colomban P, Henry D (2005) Raman signature modification induced by copper nanoparticles in silicate glass. J Raman Spectrosc 36(9):884–890CrossRefGoogle Scholar
  20. 20.
    Kukushkin SA, Osipov AV (1998) Prozessi kondensazii tonkih plenok. UFN 168:1083–1116 (in Russian). https://doi.org/10.3367/UFNr.0168.199810b.1083CrossRefGoogle Scholar
  21. 21.
    Morozov NF, Paukshto MV, Tovstik PE (1997) Proceedings of international conference and exhibition: “Micro-Mat 97”, Berlin, p 218Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • M. Yu. Barabash
    • 1
    Email author
  • G. G. Vlaykov
    • 1
  • A. A. Kolesnichenko
    • 1
  • L. V. Ryabov
    • 1
  1. 1.Technical Centre of National Academy of Science of UkraineKievUkraine

Personalised recommendations