Advertisement

Effect of Temperature on the Growth of Pores in Binary Bi/Sn Films

  • S. I. PetrushenkoEmail author
  • S. V. Dukarov
  • Z. V. Bloshenko
  • I. G. Churilov
  • V. N. Sukhov
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

The work is devoted to the study of through pores that arise in binary Bi/Sn films when they are annealed near the melting point. It is shown, that the study of the temperature dependence of the average pores size can be used to measure the activation energy of diffusion processes that ensure the de-wetting of the samples under study. Concentration dependence of the activation energy of diffusion in bilayer Bi/Sn films is obtained. It is shown, that the diffusion activation energy has a minimum in the homogeneous region and is practically constant at a component concentration corresponding to the two-phase section of the phase diagram.

Keywords

Thin films Binary systems Diffusion Through pores 

Notes

Acknowledgements

This work was supported by the Ministry of Education and Science of Ukraine.

References

  1. 1.
    Dukarov SV, Petrushenko SI, Sukhov VN et al (2014) Effect of temperature on the pores growth in the polycrystalline films of fusible metals. Probl At Sci Technol  89(1):110–114Google Scholar
  2. 2.
    Dukarov SV, Petrushenko SI, Sukhov VN et al (2016) In situ research on temperature dependence of the lattice parameters of fusible metals in thin Cu-Pb and Cu-Bi films. Funct Mater 23(2):218–223. http://dx.doi.org/10.15407/fm23.02.218CrossRefGoogle Scholar
  3. 3.
    Bi J, Gao Q, Ao J et al (2018) Influence of Cu on Ga diffusion during post-selenizing the electrodeposited Cu/In/Ga metallic precursor process. Sol Energy Mater Sol Cells 182:92–97.  https://doi.org/10.1016/j.solmat.2018.03.007CrossRefGoogle Scholar
  4. 4.
    Unutulmazsoy Y, Merkle R, Fischer D et al (2017) The oxidation kinetics of thin nickel films between 250 and 500 °C. Phys Chem Chem Phys 19:9045–9052.  https://doi.org/10.1039/C7CP00476ACrossRefGoogle Scholar
  5. 5.
    Kryshtal AP, Bogatyrenko SI, Sukhov RV et al (2014) The kinetics of the formation of a solid solution in an Ag–Pd polycrystalline film system. Appl Phys A Mater Sci Process 116:1891–1896.  https://doi.org/10.1007/s00339-014-8349-8CrossRefGoogle Scholar
  6. 6.
    Dukarov SV, Petrushenko SI, Sukhov VN (2018) Growth of island films during vapor-liquid condensation. J Nano Electron Phys 10(1):01023.  https://doi.org/10.21272/jnep.10(1).01023CrossRefGoogle Scholar
  7. 7.
    Gladkikh NT, Dukarov SV, Sukhov VN et al (2011) Condensation mechanism of AgCL and NaCl island films on a nickel substrate. Funct Mater 18(4):529–533Google Scholar
  8. 8.
    Petrushenko SI, Dukarov SV, Sukhov VN (2016) Stability limits of the liquid phase in the layered Mo/Pb/Mo, Mo/Bi/Mo and Mo/In/Mo film systems. J Nano Electron Phys 8(4(2)):04073. http://dx.doi.org/10.21272/jnep.8(4(2)).04073
  9. 9.
    Bazlov AI, Tabachkova NYu, Zolotorevsky VS et al (2018) Unusual crystallization of Al85Y8Ni5Co2 metallic glass observed in situ in TEM at different heating rates. Intermetallics 94:192–199.  https://doi.org/10.1016/j.intermet.2017.12.024CrossRefGoogle Scholar
  10. 10.
    Kolendovskii MM, Bogatyrenko SI, Kryshtal AP et al (2012) Piezoquartz resonator as an in situ method for studying the phase transitions in thin metal and alloy films. Tech Phys 57(6):849–855.  https://doi.org/10.1134/S1063784212060175CrossRefGoogle Scholar
  11. 11.
    Petrushenko SI, Dukarov SV, Sukhov VN (2016) Growth of through pores and thermal dispersion of continuous polycrystalline films of copper. Metallofizika i Noveishie Tekhnologii 38(10):1351–1366.  https://doi.org/10.15407/mfint.38.10.1351CrossRefGoogle Scholar
  12. 12.
    Petrushenko SI, Dukarov SV, Sukhov VN (2017) Effect of lead on the thermal dispersion of continuous polycrystalline copper films. Vacuum 142:29–36.  https://doi.org/10.1016/j.vacuum.2017.04.037CrossRefGoogle Scholar
  13. 13.
    Kashezhev AZ, Kumykov VK, Kutuev RA et al (2016) Density and surface tension of diluted Sn–In alloys. Bull Russ Acad Sci Phys 80(6):746–749.  https://doi.org/10.3103/S1062873816060150CrossRefGoogle Scholar
  14. 14.
    Bogatyrenko SI, Minenkov AA, Kryshtal AP (2018) Supercooling under crystallization of Bi-Sn eutectic alloy in contact with Bi, Sn and amorphous C. Vacuum 152:1–7.  https://doi.org/10.1016/j.vacuum.2018.02.039CrossRefGoogle Scholar
  15. 15.
    Petrushenko SI, Dukarov SV, Sukhov VN et al (2015) Inner size effect in the polycrystalline metal films of fusible metals. J Nano Electron Phys 7(2):02033Google Scholar
  16. 16.
    Xiang Z, Wang T, Ma S et al (2018) Microstructural evolution and phase transformation kinetics of MnBi alloys. J Alloys Compd 741:951–956.  https://doi.org/10.1016/j.jallcom.2018.01.147CrossRefGoogle Scholar
  17. 17.
    Wang CP, Yu WJ, Li ZS et al (2011) Thermodynamic assessments of the Bi–U and Bi–Mn systems. J Nucl Mater 412(1):66–71.  https://doi.org/10.1016/j.jnucmat.2011.02.021CrossRefGoogle Scholar
  18. 18.
    Yoon JW, Lee CB, Jung SB (2002) Interfacial reactions between Sn-58 mass%Bi eutectic solder and (Cu, Electroless Ni-P/Cu) substrate. Mater Trans 43(8):1821–1826.  https://doi.org/10.2320/matertrans.43.1821CrossRefGoogle Scholar
  19. 19.
    Yoon JW, Jung SB (2003) Investigation of interfacial reactions between Sn–5Bi solder and Cu substrate. J Alloys Comp 359:202–208.  https://doi.org/10.1016/S0925-8388(03)00291-3CrossRefGoogle Scholar
  20. 20.
    Wang B, Xiao S, Gan X et al (2014) Diffusion properties of liquid lithium–lead alloys from atomistic simulation. Comput Mater Sci 93:74–80.  https://doi.org/10.1016/j.commatsci.2014.06.020CrossRefGoogle Scholar
  21. 21.
    Jia P, Zhang J, Hu X et al (2018) Correlation between the resistivity and the atomic clusters in liquid Cu-Sn alloys. Physica B Condens Matter 537:58–62.  https://doi.org/10.1016/j.physb.2018.02.003CrossRefGoogle Scholar
  22. 22.
    Porth CB, Cahoon JR (2010) Interdiffusion of Bi in liquid Sn. J Phase Equilib Diffus 31(2):149–156.  https://doi.org/10.1007/s11669-010-9681-0CrossRefGoogle Scholar
  23. 23.
    Kryshtal AP, Sukhov RV, Minenkov AA (2012) Critical thickness of contact melting in the Au/Ge layered film system. J Alloys Comp 512(1):311–315.  https://doi.org/10.1016/j.jallcom.2011.09.086CrossRefGoogle Scholar
  24. 24.
    Akhkubekov AA, Akhkubekova SN, Bagov AM et al (2016) Effect of electrotransfer and indium additions on contact melting and phase formation in bismuth–tin systems. Bull Russ Acad Sci Phys 80(11):1322–1325.  https://doi.org/10.3103/S1062873816110034CrossRefGoogle Scholar
  25. 25.
    Gudieva OV, Kambolov DA, Korotkov PK et al (2015) Contact melting temperature of small-dimensional phases. Bull Russ Acad Sci Phys 79(6):784–785.  https://doi.org/10.3103/S106287381506012XCrossRefGoogle Scholar
  26. 26.
    Gladkikh NT, Kryshtal’AP, Sukhov RV (2010) Contact melting in layered film systems of the eutectic type. Phys Solid State 52(3):633–640.  https://doi.org/10.1134/S1063783410030273CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • S. I. Petrushenko
    • 1
    Email author
  • S. V. Dukarov
    • 1
  • Z. V. Bloshenko
    • 1
  • I. G. Churilov
    • 1
  • V. N. Sukhov
    • 1
  1. 1.V. N. Karazin Kharkiv National UniversityKharkivUkraine

Personalised recommendations