Advertisement

Representative Applications of Single-Frequency Fiber Lasers

  • Zhongmin Yang
  • Can Li
  • Shanhui Xu
  • Changsheng Yang
Chapter
Part of the Optical and Fiber Communications Reports book series (OFCR, volume 8)

Abstract

Along with the continuous development of single-frequency fiber laser technologies, numerous research works concerning the actual application of single-frequency laser sources have been carrying out. In this chapter, we will briefly introduce the current developing status of representative applications of single-frequency fiber laser in the following three aspects: next-generation optical communication, high precision optical sensing, and laser coherent beam combining.

References

  1. 1.
    Psaltis D, Al E, Psaltis D (2009) Coherent optical information systems. Science 298:1359ADSCrossRefGoogle Scholar
  2. 2.
    Tokle T, Davidson CR, Nissov M, Cai JX, Foursa D, Pilipetskii A (2004) 6500 km transmission of RZ-DQPSK WDM signals. Electron Lett 40:444CrossRefGoogle Scholar
  3. 3.
    Hmood JK, Harun SW, Emami SD, Khodaei A, Noordin KA, Ahmad H, Shalaby HM (2015) Performance analysis of an all-optical OFDM system in presence of non-linear phase noise. Opt Express 23:3886ADSCrossRefGoogle Scholar
  4. 4.
    Lin C, Djordjevic IB, Zou D (2015) Achievable information rates calculation for optical OFDM few-mode fiber long-haul transmission systems. Opt Express 23:16846ADSCrossRefGoogle Scholar
  5. 5.
    Li G (2009) Recent advances in coherent optical communication. Adv Opt Photon 1:279CrossRefGoogle Scholar
  6. 6.
    Shieh W, Yi X, Ma Y, Yang Q (2008) Coherent optical OFDM: has its time come [Invited]. J Opt Netw 7:234CrossRefGoogle Scholar
  7. 7.
    Ly-Gagnon DS, Tsukamoto S, Katoh K, Kikuchi K (2006) Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation. J Lightwave Technol 24:12ADSCrossRefGoogle Scholar
  8. 8.
    Li J, Li L, Tao Z, Hoshida T, Rasmussen JC (2011) Laser-linewidth-tolerant feed-forward carrier phase estimator with reduced complexity for QAM. J Lightwave Technol 29:2358ADSCrossRefGoogle Scholar
  9. 9.
    Cheng J, Tang M, Fu S, Shum PP, Liu D, Xiang M, Feng Z, Yu D (2014) Relative phase noise estimation and mitigation in Raman amplified coherent optical communication system. Opt Express 22:1257ADSCrossRefGoogle Scholar
  10. 10.
    Olsson N, Van Der Ziel J (1987) Performance characteristics of 1.5-μm external cavity semiconductor lasers for coherent optical communication. J Lightwave Technol 5:510ADSCrossRefGoogle Scholar
  11. 11.
    Wong Y, Hsu C, Yang CC (1999) Characteristics of a dual-wavelength semiconductor laser near 1550 nm. IEEE Photon Technol Lett 11:173ADSCrossRefGoogle Scholar
  12. 12.
    Chandrasekhar S, Liu X (2011) Enabling components for future high-speed coherent communication systems. In: Optical fiber communication conference, p U5Google Scholar
  13. 13.
    Zhang D, Zhao J, Yang Q, Liu W, Fu Y, Li C, Luo M, Hu S, Hu Q, Wang L (2012) Compact MEMS external cavity tunable laser with ultra-narrow linewidth for coherent detection. Opt Express 20:19670ADSCrossRefGoogle Scholar
  14. 14.
    Bennetts S, McDonald GD, Hardman KS, Debs JE, Kuhn CC, Close JD, Robins NP (2014) External cavity diode lasers with 5 kHz linewidth and 200nm tuning range at 1.55 μm and methods for linewidth measurement. Opt Express 22:10642ADSCrossRefGoogle Scholar
  15. 15.
    Saliba SD, Scholten RE (2009) Linewidths below 100 kHz with external cavity diode lasers. Appl Opt 48:6961ADSCrossRefGoogle Scholar
  16. 16.
    Schmogrow R, Hillerkuss D, Wolf S, uerle BB, Winter M, Kleinow P, Nebendahl B, Dippon T, Schindler PC, Koos C (2012) 512 QAM Nyquist sinc-pulse transmission at 54 Gbit/s in an optical bandwidth of 3 GHz. Opt Express 20:6439ADSCrossRefGoogle Scholar
  17. 17.
    Omiya T, Yoshida M, Nakazawa M (2013) 400 Gbit/s 256 QAM-OFDM transmission over 720 km with a 14 bit/s/Hz spectral efficiency by using high-resolution FDE. Opt Express 21:2632ADSCrossRefGoogle Scholar
  18. 18.
    Beppu S, Kasai K, Yoshida M, Nakazawa M (2015) 2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz. Opt Express 23:4960ADSCrossRefGoogle Scholar
  19. 19.
    Culshaw B, Kersey A (2008) Fiber-optic sensing: a historical perspective. J Lightwave Technol 26:1064ADSCrossRefGoogle Scholar
  20. 20.
    Liu Y, Zhang W, Xu T, He J, Zhang F, Li F (2011) Fiber laser sensing system and its applications. Photon Sensors 1:43ADSCrossRefGoogle Scholar
  21. 21.
    Zhu J, Yang K, Yin H, Wang H, Yu B (2013) Proposal for eliminating the external disturbance via digital PGC technique in a multiplexed fiber interferometer measurement system. Opt Commun 295:53ADSCrossRefGoogle Scholar
  22. 22.
    Wang P, Chang J, Zhu C, Sun B, Lv G, Zhang S, Zhao Y, Sun Z, Zhang X, Peng G (2014) A four-element sensor array consisting of asymmetric distributed-feedback fiber lasers. Photon Sensors 4:180ADSCrossRefGoogle Scholar
  23. 23.
    Yu K, Wu C, Mao Y, Wang Z, Lu C, Tam H, Zhao Y (2014) Distributed Bragg reflector fibre laser-based sensor array for multi-parameter detection. Electron Lett 50:1301CrossRefGoogle Scholar
  24. 24.
    Lam TT, Chow JH, Mow-Lowry CM, McClelland DE, Littler I (2009) A stabilized fiber laser for high-resolution low-frequency strain sensing. IEEE Sensors J 9:983ADSCrossRefGoogle Scholar
  25. 25.
    Hu X, Chen W, Fan L, Meng Z, Chen M (2014) An optical modulation method to suppress stimulated Brillouin scattering and the phase noise in a remote interferometric fiber sensing system. Opt Fiber Technol 20:547ADSCrossRefGoogle Scholar
  26. 26.
    Wen H, Skolianos G, Fan S, Bernier M, Vallée R, Digonnet MJ (2013) Slow-light fiber-Bragg-grating strain sensor with a 280-femtostrain/√Hz resolution. J Lightwave Technol 31:1804ADSCrossRefGoogle Scholar
  27. 27.
    Guo J, Yang C (2015) Highly stabilized phase-shifted fiber bragg grating sensing system for ultrasonic detection. IEEE Photon Technol Lett 27:848ADSCrossRefGoogle Scholar
  28. 28.
    Liu Q, Tokunaga T, He Z (2012) Sub-nano resolution fiber-optic static strain sensor using a sideband interrogation technique. Opt Lett 37:434ADSCrossRefGoogle Scholar
  29. 29.
    Zhang F, Zhang W, Li F, Liu Y (2011) DFB fiber laser hydrophone with band-pass response. Opt Lett 36:4320ADSCrossRefGoogle Scholar
  30. 30.
    Lv C, Guo X, Gao J, Liu Y, Li B, Wu C, Ge C (2015) Design evaluation of DBR fiber laser sensor for directional lateral force monitoring. IEEE Photon Technol Lett 27:1515ADSCrossRefGoogle Scholar
  31. 31.
    Liu Y, Wang L, Tian C, Zhang M, Liao Y (2008) Analysis and optimization of the PGC method in all digital demodulation systems. J Lightwave Technol 26:3225ADSCrossRefGoogle Scholar
  32. 32.
    Fang G, Xu T, Li F (2013) 16-channel fiber laser sensing system based on phase generated carrier algorithm. IEEE Photon Technol Lett 25:2185ADSCrossRefGoogle Scholar
  33. 33.
    Lam TT, Chow JH, Shaddock DA, Littler I, Gagliardi G, Gray MB, McClelland DE (2010) High-resolution absolute frequency referenced fiber optic sensor for quasi-static strain sensing. Appl Opt 49:4029ADSCrossRefGoogle Scholar
  34. 34.
    Geng J, Spiegelberg C, Jiang S (2005) Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry. IEEE Photon Technol Lett 17:1827ADSCrossRefGoogle Scholar
  35. 35.
    Li C, Xu S, Mo S, Zhan B, Zhang W, Yang C, Feng Z, Yang Z (2013) A linearly frequency modulated narrow linewidth single-frequency fiber laser. Laser Phys Lett 10:75106CrossRefGoogle Scholar
  36. 36.
    Chen M, Meng Z, Tu X, Zhang Y (2014) Fast-tuning, low-noise, compact Brillouin/erbium fiber laser. Opt Lett 39:689ADSCrossRefGoogle Scholar
  37. 37.
    Meng Z, Hu Y, Xiong S, Stewart G, Whitenett G, Culshaw B (2005) Phase noise characteristics of a diode-pumped Nd: YAG laser in an unbalanced fiber-optic interferometer. Appl Opt 44:3425ADSCrossRefGoogle Scholar
  38. 38.
    Zhang Y, Guan B, Tam H (2009) Ultra-short distributed Bragg reflector fiber laser for sensing applications. Opt Express 17:10050ADSCrossRefGoogle Scholar
  39. 39.
    Guan B, Jin L, Zhang Y, Tam H (2012) Polarimetric heterodyning fiber grating laser sensors. J Lightwave Technol 30:1097ADSCrossRefGoogle Scholar
  40. 40.
    Guan B, Wang S (2010) Fiber grating laser current sensor based on magnetic force. IEEE Photon Technol Lett 22:230ADSCrossRefGoogle Scholar
  41. 41.
    Liu W, Guo T, Wong AC, Tam H, He S (2010) Highly sensitive bending sensor based on Er3+-doped DBR fiber laser. Opt Express 18:17834ADSCrossRefGoogle Scholar
  42. 42.
    Wo J, Jiang M, Malnou M, Sun Q, Zhang J, Shum PP, Liu D (2012) Twist sensor based on axial strain insensitive distributed Bragg reflector fiber laser. Opt Express 20:2844ADSCrossRefGoogle Scholar
  43. 43.
    Jin L, Tan Y, Quan Z, Li M, Guan B (2012) Strain-insensitive temperature sensing with a dual polarization fiber grating laser. Opt Express 20:6021ADSCrossRefGoogle Scholar
  44. 44.
    Jin L, Quan Z, Cheng L, Guan B (2013) Hydrostatic pressure measurement with heterodyning fiber grating lasers: mechanism and sensitivity enhancement. J Lightwave Technol 31:1488ADSCrossRefGoogle Scholar
  45. 45.
    Cheng L, Han J, Guo Z, Jin L, Guan B (2013) Faraday-rotation-based miniature magnetic field sensor using polarimetric heterodyning fiber grating laser. Opt Lett 38:688ADSCrossRefGoogle Scholar
  46. 46.
    Lyu C, Wu C, Tam H, Lu C, Ma J (2013) Polarimetric heterodyning fiber laser sensor for directional acoustic signal measurement. Opt Express 21:18273ADSCrossRefGoogle Scholar
  47. 47.
    Qi Y, Liu C, Zhou J, Lou Q, Chen W, Dong J, Wei Y (2009) Single-frequency linearly polarized master-oscillator fiber power amplifier system and its application in high fill factor coherent beam combining. Appl Opt 48:5514ADSCrossRefGoogle Scholar
  48. 48.
    Ma Y, Zhou P, Wang X, Ma H, Xu X, Si L, Liu Z, Zhao Y (2010) Coherent beam combination with single-frequency dithering technique. Opt Lett 35:1308ADSCrossRefGoogle Scholar
  49. 49.
    Ma P, Zhou P, Wang X, Ma Y, Su R, Liu Z (2013) Influence of perturbative phase noise on active coherent polarization beam combining system. Opt Express 21:29666ADSCrossRefGoogle Scholar
  50. 50.
    Liu Z, Zhou P, Wang X, Ma Y, Xu X (2013) Kilowatt coherent beam combining of high-power Fiber amplifiers using single-frequency dithering techniques. In: Brignon A (ed) Coherent laser beam combining. Wiley-VCH, Weinheim, p 75CrossRefGoogle Scholar
  51. 51.
    Ma Y, Wang X, Leng J, Xiao H, Dong X, Zhu J, Du W, Zhou P, Xu X, Si L (2011) Coherent beam combination of 1.08 kW fiber amplifier array using single-frequency dithering technique. Opt Lett 36:951ADSCrossRefGoogle Scholar
  52. 52.
    Su R, Zhou P, Wang X, Ma Y, Xu X (2012) Active coherent beam combination of two high-power single-frequency nanosecond fiber amplifiers. Opt Lett 37:497ADSCrossRefGoogle Scholar
  53. 53.
    Su R, Zhou P, Wang X, Ma P, Xu X (2013) Actively coherent beam combining of two single-frequency 1083 nm nanosecond Fiber amplifiers in low-repetition-rate. IEEE Photon Technol Lett 25:1485ADSCrossRefGoogle Scholar
  54. 54.
    Lombard L, Azarian A, Cadoret K, Bourdon P, Goular D, Canat G, Jolivet V, Jaouën Y, Vasseur O (2011) Coherent beam combination of narrow-linewidth 1.5 μm fiber amplifiers in a long-pulse regime. Opt Lett 36:523ADSCrossRefGoogle Scholar
  55. 55.
    Wang X, Zhou P, Wang X, Ma Y, Su R, Xiao H, Si L, Liu Z (2014) 108 W coherent beam combining of two single-frequency Tm-doped fiber MOPAs. Laser Phys Lett 11:105101ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Zhongmin Yang
    • 1
  • Can Li
    • 2
  • Shanhui Xu
    • 1
  • Changsheng Yang
    • 1
  1. 1.State Key Laboratory of Luminescent Materials and Devices and Institute of Optical Communication MaterialsSouth China University of TechnologyGuangzhouChina
  2. 2.Department of Electrical and Electronic EngineeringThe University of Hong KongHongkongChina

Personalised recommendations