Amplification of Pulsed Single-Frequency Lasers

  • Zhongmin Yang
  • Can Li
  • Shanhui Xu
  • Changsheng Yang
Part of the Optical and Fiber Communications Reports book series (OFCR, volume 8)


Regarding the amplification of pulsed single-frequency laser, the seed laser is generally obtained by modulating the output of a CW single-frequency laser with an electro-optic modulator (EOM) or acousto-optic modulator (AOM). As we discussed in Sect.  5.3, besides the disadvantage of compromised power, externally modulating CW laser could flexibly adjust the pulsing parameters such as pulse width and repetition rate. Therefore, the configuration of external modulation combines with MOPA that is beneficial for achieving high average/peak power single-frequency pulsing laser with adjustable parameters. Meanwhile, although it is feasible to realize relatively high average/peak power from a single Q-switched fiber resonator, by exploiting the high gain of heavily RE ion-doped multicomponent fiber, stable pulses are rather difficult to maintain in the high-power regime. Therefore, stable laser pulses from a Q-switched cavity also need to be externally amplified to higher power levels.


  1. 1.
    Jiang PP, Yang DZ, Wang YX, Chen T, Wu B, Shen YH (2009) All-fiberized MOPA structured single-mode pulse Yb-fiber laser with a linearly polarized output power of 30 W. Laser Phys Lett 6:384ADSCrossRefGoogle Scholar
  2. 2.
    Su RT, Zhou P, Xiao H, Wang XL, Xu XJ (2011) MOPA structured single-frequency nanosecond pulsed laser in all fiber format. Chin J Lasers 38:1102013CrossRefGoogle Scholar
  3. 3.
    Zhang YF, Feng ZM, Xu SH, Mo SP, Yang CS, Li C, Gan JL, Chen DD, Yang ZM (2015) Compact frequency-modulation Q-switched single-frequency fiber laser at 1083 nm. J Opt 17:125705ADSCrossRefGoogle Scholar
  4. 4.
    Su RT, Zhou P, Xiao H, Wang XL, Xu XJ (2012) 96.2 W all-fiberized nanosecond single-frequency fiber MOPA. Laser Phys 22:248ADSCrossRefGoogle Scholar
  5. 5.
    Su RT, Zhou P, Wang XL, Ma YX, Xu XJ (2012) Active coherent beam combination of two high-power single-frequency nanosecond fiber amplifiers. Opt Lett 37:497ADSCrossRefGoogle Scholar
  6. 6.
    Stutzki F, Jansen F, Liem A, Jauregui C, Limpert J, Tünnermann A (2012) 26 mJ 130 W Q-switched fiber-laser system with near-diffraction-limited beam quality. Opt Lett 37:1073ADSCrossRefGoogle Scholar
  7. 7.
    Zhu R, Zhou J, Liu J, Chen WB (2011) High energy, narrow-linewidth, ytterbium-doped pulsed fiber amplifier. SPIE 8192:81922SADSGoogle Scholar
  8. 8.
    Su R, Zhou P, Xiao H, Wang XL, Xu XJ (2012) 150 W high-average-power, single-frequency nanosecond fiber laser in strictly all-fiber format. Appl Opt 51:3655ADSCrossRefGoogle Scholar
  9. 9.
    Wang XL, Zhou P, Su RT, Xiao H, Xu XJ, Liu ZJ (2013) A 280 W high average power, single-frequency all-fiber nanosecond pulsed laser. Laser Phys 23:015101ADSCrossRefGoogle Scholar
  10. 10.
    Liu Y, Liu J, Chen W (2011) Eye-safe, single-frequency pulsed all-fiber laser for Doppler wind lidar. Chin Opt Lett 9:090604ADSCrossRefGoogle Scholar
  11. 11.
    Shi W, Petersen EB, Leigh M, Zong J, Yao ZD, Chavez-Pirson A, Peyghambarian N (2009) High SBS-threshold single-mode single-frequency monolithic pulsed fiber laser in the C-band. Opt Express 17:8237ADSCrossRefGoogle Scholar
  12. 12.
    Petersen E, Shi W, Chavez-Pirson A, Peyghambarian N (2012) High peak-power single-frequency pulses using multiple stage, large core phosphate fibers and preshaped pulses. Appl Opt 51:531ADSCrossRefGoogle Scholar
  13. 13.
    Limpert J, Deguil-Robin N, Manek-Hönninger I, Salin F, Röser F, Liem A, Schreiber T, Nolte S, Zellmer H, Tünnermann A, Broeng J, Petersson A, Jakobsen C (2005) High-power rod-type photonic crystal fiber laser. Opt Express 13:1055ADSCrossRefGoogle Scholar
  14. 14.
    Liu CH, Chang G, Litchinitser N, Guertin D, Jacobsen N, Tankala K, Galvanauskas A (2007) Chirally coupled core fibers at 1550-nm and 1064-nm for effectively single-mode core size scaling. CLEO, CtuBB3Google Scholar
  15. 15.
    Wong WS, Peng X, Mclaughlin JM, Dong L (2005) Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers. Opt Lett 30:2855ADSCrossRefGoogle Scholar
  16. 16.
    Jiang Z, Marciante JR (2005) Mode-area scaling of helical-core dual-clad fiber lasers and amplifiers. CLEO 3:1849Google Scholar
  17. 17.
    Ramachandran S, Nicholson JW, Ghalmi S, Yan MF, Wisk P, Monberg E, Dimarcello FV (2006) Light propagation with ultra-large modal areas in optical fibers. Opt Lett 31:1797ADSCrossRefGoogle Scholar
  18. 18.
    Nicholson JW, Fini JM, Liu X, DeSantolo AM, Westbrook PS, Windeler RS, Monberg E, DiMarcello F, Headley C, DiGiovanni DJ (2013) Single-frequency pulse amplification in a higher-order mode fiber amplifier with fundamental-mode output. CLEO, CW3M.3Google Scholar
  19. 19.
    Geng JH, Wang Q, Jiang Z, Luo T, Jiang SB, Czarnecki G (2011) Kilowatt-peak-power, single-frequency, pulsed fiber laser near 2 μm. Opt Lett 36:2293ADSCrossRefGoogle Scholar
  20. 20.
    Fang Q, Shi W, Kieu K, Petersen E, Chavez-Pirson A, Peyghambarian N (2012) High power and high energy monolithic single-frequency 2 μm nanosecond pulsed fiber laser by using large core Tm-doped germanate fibers: experiment and modeling. Opt Express 20:16410ADSCrossRefGoogle Scholar
  21. 21.
    Wang X, Jin X, Zhou P, Wang XL, Xiao H, Liu ZJ (2015) 105 W ultra-narrowband nanosecond pulsed laser at 2 μm based on monolithic Tm-doped fiber MOPA. Opt Express 23:4233ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Zhongmin Yang
    • 1
  • Can Li
    • 2
  • Shanhui Xu
    • 1
  • Changsheng Yang
    • 1
  1. 1.State Key Laboratory of Luminescent Materials and Devices and Institute of Optical Communication MaterialsSouth China University of TechnologyGuangzhouChina
  2. 2.Department of Electrical and Electronic EngineeringThe University of Hong KongHongkongChina

Personalised recommendations