Advertisement

Fiber Nonlinear Single-Frequency Lasers

  • Zhongmin Yang
  • Can Li
  • Shanhui Xu
  • Changsheng Yang
Chapter
Part of the Optical and Fiber Communications Reports book series (OFCR, volume 8)

Abstract

Other than the rare-earth ions dopants, nonlinear effects can also provide optical gain in a fiber, generally at a detuned wavelength. Since this detuning can be controlled through modifying the parameters of the glass fiber or the pump source, the nonlinear fiber effects (i.e., stimulated Raman scattering and four-wave mixing) can therefore be leveraged to allow for laser operation at spectral bands that cannot be covered by conventional rare-earth ions. However, since the nonlinear effects generally require a long optical path to take place, the resulted narrow mode spacing renders single-mode oscillation difficult to be realized. In this way, relatively complex cavity design such as multi-ring structure is indispensable to achieve fiber nonlinear single-frequency lasers. An exception is the Brillouin fiber laser, which has a very narrow gain bandwidth (several tens of MHz) and can even suppress the linewidth of the pump laser, while its wavelength detuning from the pump is negligible (<0.1 nm). In this chapter, we first introduce the nonlinear effects in optical fibers. Then the Raman and Brillouin fiber lasers are discussed together with the random distributed feedback laser scheme, with the following discussion of fiber optical parametric oscillator.

References

  1. 1.
    Singh SP, Singh N (2007) Nonlinear effects in optical fibers: origin, management and applications. PIER 73:249CrossRefGoogle Scholar
  2. 2.
    Agrawal GP (2001) Nonlinear fiber optics, 5th edn. Academic, New YorkzbMATHGoogle Scholar
  3. 3.
    Dianov EM, Prokhorov AM (2000) Medium-power CW Raman fiber lasers. IEEE J Sel Top Quantum Electron 6:1022ADSCrossRefGoogle Scholar
  4. 4.
    Feng Y, Taylor LR, Calia DB (2009) 150 W highly-efficient Raman fiber laser. Opt Express 17:23678ADSCrossRefGoogle Scholar
  5. 5.
    Hill KO, Kawasaki BS, Johnson DC (1976) CW Brillouin laser. Appl Phys Lett 28:608ADSCrossRefGoogle Scholar
  6. 6.
    Lecoeuche V, Niay P, Douay M, Bernage P, Randoux S, Zemmouri J (2000) Bragg grating based Brillouin fibre laser. Opt Commun 177:303ADSCrossRefGoogle Scholar
  7. 7.
    Shirazi MR, Harun SW, Biglary M, Ahmad H (2008) Linear cavity Brillouin fiber laser with improved characteristics. Opt Lett 33:770ADSCrossRefGoogle Scholar
  8. 8.
    Norcia S, Frey R, Tonda-Goldstein S, Dolfi D, Huignard J (2004) High-efficiency single-frequency Brillouin fiber laser with a tunable coupling coefficient. J Opt Soc Am B 21:1424ADSCrossRefGoogle Scholar
  9. 9.
    Norcia S, Tonda-Goldstein S, Dolfi D, Huignard J, Frey R (2003) Efficient single-mode Brillouin fiber laser for low-noise optical carrier reduction of microwave signals. Opt Lett 28:1888ADSCrossRefGoogle Scholar
  10. 10.
    Geng J, Staines S, Wang Z, Zong J, Blake M, Jiang S (2006) Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth. IEEE Photon Technol Lett 18:1813ADSCrossRefGoogle Scholar
  11. 11.
    Spirin VV, Lopez-Mercado CA, Mégret P, Fotiadi AA (2012) Single-mode Brillouin fiber laser passively stabilized at resonance frequency with self-injection locked pump laser. Laser Phys Lett 9:377ADSCrossRefGoogle Scholar
  12. 12.
    Spirin VV, López-Mercado CA, Kinet D, Mégret P, Zolotovskiy IO, Fotiadi AA (2013) A single-longitudinal-mode Brillouin fiber laser passively stabilized at the pump resonance frequency with a dynamic population inversion grating. Laser Phys Lett 10:15102ADSCrossRefGoogle Scholar
  13. 13.
    Wang G, Zhan L, Liu J, Zhang T, Li J, Zhang L, Peng J, Yi L (2013) Watt-level ultrahigh-optical signal-to-noise ratio single-longitudinal-mode tunable Brillouin fiber laser. Opt Lett 38:19ADSCrossRefGoogle Scholar
  14. 14.
    Yong JC, Thévenaz L, Kim BY (2003) Brillouin fiber laser pumped by a DFB laser diode. J Lightwave Technol 21:546ADSCrossRefGoogle Scholar
  15. 15.
    Chen X, Xian L, Ogusu K, Li H (2012) Single-longitudinal-mode Brillouin fiber laser incorporating an unpumped erbium-doped fiber loop. Appl Phys B Lasers Opt 107:791ADSCrossRefGoogle Scholar
  16. 16.
    Cowle GJ, Stepanov DY (1996) Hybrid Brillouin/erbium fiber laser. Opt Lett 21:1250ADSCrossRefGoogle Scholar
  17. 17.
    Cowie GJ, Yu D, Chieng YT (1997) Brillouin/erbium fiber lasers. J Lightwave Technol 15:1198ADSCrossRefGoogle Scholar
  18. 18.
    Guan W, Marciante JR (2009) Single-frequency 1 W hybrid Brillouin/ytterbium fiber laser. Opt Lett 34:3131ADSCrossRefGoogle Scholar
  19. 19.
    Guan W, Marciante JR (2010) Power scaling of single-frequency hybrid Brillouin/ytterbium fiber lasers. IEEE J Quantum Electron 46:674ADSCrossRefGoogle Scholar
  20. 20.
    Zhou H, Sun C, Chen M, Chen W, Meng Z (2012) Characteristics of a Brillouin-erbium fiber laser based on Brillouin pump preamplification. Appl Opt 51:7046ADSCrossRefGoogle Scholar
  21. 21.
    Abedin KS (2005) Observation of strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenide fiber. Opt Express 13:10266ADSCrossRefGoogle Scholar
  22. 22.
    Abedin KS (2006) Brillouin amplification and lasing in a single-mode As2Se3 chalcogenide fiber. Opt Lett 31:1615ADSCrossRefGoogle Scholar
  23. 23.
    Abedin KS (2006) Single-frequency Brillouin lasing using single-mode As2Se3 chalcogenide fiber. Opt Express 14:4037ADSCrossRefGoogle Scholar
  24. 24.
    Abedin KS (2006) Stimulated Brillouin scattering in single-mode tellurite glass fiber. Opt Express 14:11766ADSCrossRefGoogle Scholar
  25. 25.
    Qin G, Mori A, Ohishi Y (2007) Brillouin lasing in a single-mode tellurite fiber. Opt Lett 32:2179ADSCrossRefGoogle Scholar
  26. 26.
    Qin G, Sotobayashi H, Tsuchiya M, Mori A, Suzuki T, Ohishi Y (2008) Stimulated Brillouin scattering in a single-mode tellurite fiber for amplification, lasing, and slow light generation. J Lightwave Technol 26:492ADSCrossRefGoogle Scholar
  27. 27.
    Tow KH, Léguillon Y, Fresnel S, Besnard P, Brilland L, Méchin D, Toupin P, Troles J (2013) Towards more coherent sources using a microstructured chalcogenide Brillouin Fiber laser. IEEE Photon Technol Lett 25:238ADSCrossRefGoogle Scholar
  28. 28.
    Harun SW, Shahi S, Ahmad H (2009) Compact Brillouin-erbium fiber laser. Opt Lett 34:46ADSCrossRefGoogle Scholar
  29. 29.
    Chen M, Meng Z, Tu X, Zhou H (2013) Low-noise, single-frequency, single-polarization Brillouin/erbium fiber laser. Opt Lett 38:2041ADSCrossRefGoogle Scholar
  30. 30.
    Chen M, Meng Z, Zhou H (2013) Low-threshold, single-mode, compact Brillouin/erbium fiber ring laser. J Lightwave Technol 31:1980ADSCrossRefGoogle Scholar
  31. 31.
    Perlin VE, Winful HG (2001) Distributed feedback fiber Raman laser. IEEE J Quantum Electron 37:38ADSCrossRefGoogle Scholar
  32. 32.
    Hu Y, Broderick NG (2009) Improved design of a DFB Raman fibre laser. Opt Commun 282:3356ADSCrossRefGoogle Scholar
  33. 33.
    Westbrook PS, Abedin KS, Nicholson JW, Kremp T, Porque J (2011) Raman fiber distributed feedback lasers. Opt Lett 36:2895ADSCrossRefGoogle Scholar
  34. 34.
    Shi J, Alam S, Ibsen M (2012) Highly efficient Raman distributed feedback fibre lasers. Opt Express 20:5082ADSCrossRefGoogle Scholar
  35. 35.
    Shi J, Alam S, Ibsen M (2012) Sub-watt threshold, kilohertz-linewidth Raman distributed-feedback fiber laser. Opt Lett 37:1544ADSCrossRefGoogle Scholar
  36. 36.
    Siekiera A, Engelbrecht R, Nothofer A, Schmauss B (2012) Short 17-cm DBR Raman fiber laser with a narrow spectrum. IEEE Photon Technol Lett 24:107ADSCrossRefGoogle Scholar
  37. 37.
    Abedin KS, Westbrook PS, Nicholson JW, Porque J, Kremp T, Liu X (2012) Single-frequency Brillouin distributed feedback fiber laser. Opt Lett 37:605ADSCrossRefGoogle Scholar
  38. 38.
    Winful HG, Kabakova IV, Eggleton BJ (2013) Model for distributed feedback Brillouin lasers. Opt Express 21:16191ADSCrossRefGoogle Scholar
  39. 39.
    Turitsyn SK, Babin SA, Churkin DV, Vatnik ID, Nikulin M, Podivilov EV (2014) Random distributed feedback fibre lasers. Phys Rep 542:133ADSCrossRefGoogle Scholar
  40. 40.
    Turitsyn SK, Babin SA, El-Taher AE, Harper P, Churkin DV, Kablukov SI, Ania-Castaón JD, Karalekas V, Podivilov EV (2010) Random distributed feedback fibre laser. Nat Photonics 4:231ADSCrossRefGoogle Scholar
  41. 41.
    Churkin DV, Babin SA, El-Taher AE, Harper P, Kablukov SI, Karalekas V, Ania-Castaón JD, Podivilov EV, Turitsyn SK (2010) Raman fiber lasers with a random distributed feedback based on Rayleigh scattering. Phys Rev A 82:33828ADSCrossRefGoogle Scholar
  42. 42.
    Sugavanam S, Tarasov N, Shu X, Churkin DV (2013) Narrow-band generation in random distributed feedback fiber laser. Opt Express 21:16466ADSCrossRefGoogle Scholar
  43. 43.
    Pang M, Xie S, Bao X, Zhou D, Lu Y, Chen L (2012) Rayleigh scattering-assisted narrow linewidth Brillouin lasing in cascaded fiber. Opt Lett 37:3129ADSCrossRefGoogle Scholar
  44. 44.
    Pang M, Bao X, Chen L (2013) Observation of narrow linewidth spikes in the coherent Brillouin random fiber laser. Opt Lett 38:1866ADSCrossRefGoogle Scholar
  45. 45.
    Pang M, Bao X, Chen L, Qin Z, Lu Y, Lu P (2013) Frequency stabilized coherent Brillouin random fiber laser: theory and experiments. Opt Express 21:27155ADSCrossRefGoogle Scholar
  46. 46.
    Liz rraga N, Puente NP, Chaikina EI, Leskova TA, Múndez ER (2009) Single-mode Er-doped fiber random laser with distributed Bragg grating feedback. Opt Express 17:395ADSCrossRefGoogle Scholar
  47. 47.
    Gagné M, Kashyap R (2009) Demonstration of a 3 mW threshold Er-doped random fiber laser based on a unique fiber Bragg grating. Opt Express 17:19067ADSCrossRefGoogle Scholar
  48. 48.
    Li Y, Lu P, Bao X, Ou Z (2014) Random spaced index modulation for a narrow linewidth tunable fiber laser with low intensity noise. Opt Lett 39:2294ADSCrossRefGoogle Scholar
  49. 49.
    Li Y, Lu P, Baset F, Ou Z, Song J, Alshehri A, Bhardwaj VR, Bao X (2014) Narrow linewidth low frequency noise Er-doped fiber ring laser based on femtosecond laser induced random feedback. Appl Phys Lett 105:101105ADSCrossRefGoogle Scholar
  50. 50.
    Marhic ME, Kagi N, Chiang T, Kazovsky LG (1996) Broadband fiber optical parametric amplifiers. Opt Lett 21:573ADSCrossRefGoogle Scholar
  51. 51.
    Serkland DK, Kumar P (1999) Tunable fiber-optic parametric oscillator. Opt Lett 24:92ADSCrossRefGoogle Scholar
  52. 52.
    Nowak GA, Kao Y, Xia TJ, Islam MN, Nolan D (1998) Low-power high-efficiency wavelength conversion based on modulational instability in high-nonlinearity fiber. Opt Lett 23:936ADSCrossRefGoogle Scholar
  53. 53.
    Marhic ME, Wong K, Kazovsky LG, Tsai T (2002) Continuous-wave fiber optical parametric oscillator. Opt Lett 27:1439ADSCrossRefGoogle Scholar
  54. 54.
    Zlobina EA, Kablukov SI, Babin SA (2015) High-efficiency CW all-fiber parametric oscillator tunable in 0.92-1 μm range. Opt Express 23:833ADSCrossRefGoogle Scholar
  55. 55.
    Yang S, Cheung KK, Zhou Y, Wong KK (2010) Tunable single-longitudinal-mode fiber optical parametric oscillator. Opt Lett 35:481ADSCrossRefGoogle Scholar
  56. 56.
    Zhou Y, Zhang C, Chui PC, Wong KK (2011) A tunable-plus-band continuous-wave single-longitudinal-mode fiber-optical parametric oscillator. IEEE Photon Technol Lett 23:1451ADSCrossRefGoogle Scholar
  57. 57.
    Lei GK, Lim LT, Marhic ME (2013) Continuous-wave fiber optical parametric oscillator with sub-MHz linewidth. Opt Commun 306:17ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Zhongmin Yang
    • 1
  • Can Li
    • 2
  • Shanhui Xu
    • 1
  • Changsheng Yang
    • 1
  1. 1.State Key Laboratory of Luminescent Materials and Devices and Institute of Optical Communication MaterialsSouth China University of TechnologyGuangzhouChina
  2. 2.Department of Electrical and Electronic EngineeringThe University of Hong KongHongkongChina

Personalised recommendations