Advertisement

Fundamental Principle and Enabling Technologies of Single-Frequency Fiber Lasers

  • Zhongmin Yang
  • Can Li
  • Shanhui Xu
  • Changsheng Yang
Chapter
Part of the Optical and Fiber Communications Reports book series (OFCR, volume 8)

Abstract

In this chapter, we focus on the fundamental principle and enabling technologies of single-frequency fiber lasers. Essentially, the strategy is to implement a narrow band-pass filter to guarantee a single longitudinal mode oscillating in a laser cavity. In this way, the oscillation mode spacing of the cavity should be wide enough to alleviate the requirement on the filter and, more importantly, to realize a more stable single-frequency laser operation. We therefore first introduce the principle of single-frequency lasing and then the important properties of this type of lasers, as well as the corresponding characterizing method. After that, the cavity design of single-frequency fiber lasers is discussed, in terms of representative linear and ring cavity structures and other schemes leveraging different fiber optical filtering effect. Finally, we discuss different cavity designs that enable advanced laser performances such as linearly polarized operation, linewidth and noise suppression, continuous wavelength tuning, and frequency modulation.

References

  1. 1.
    Koo KP, Wanser KH, Kersey AD (1995) Fibre laser sensor with ultrahigh strain resolution using interferometric interrogation. Electron Lett 31:1180CrossRefGoogle Scholar
  2. 2.
    Kringlebotn JT, Loh WH, Laming RI (1996) Polarimetric Er3+-doped fiber distributed feedback laser sensor for differential pressure and force measurements. Opt Lett 21:1869ADSCrossRefGoogle Scholar
  3. 3.
    Zayhowski JJ (1990) Limits imposed by spatial hole burning on the single-mode operation of standing-wave laser cavities. Opt Lett 15:431ADSCrossRefGoogle Scholar
  4. 4.
    Paschotta R, Nilsson J, Reekie L, Trooper AC, Hanna DC (1997) Single-frequency ytterbium-doped fiber laser stabilized by spatial hole burning. Opt Lett 22:40ADSCrossRefGoogle Scholar
  5. 5.
    Polynkin P, Polynkin A, Mansuripur M, Moloney J, Peyghambarian N (2005) Single-frequency laser oscillator with watts-level output power at 1.5 μm by use of a twisted-mode technique. Opt Lett 30:2745ADSCrossRefGoogle Scholar
  6. 6.
    Taccheo S, Laporta P, Svelto O, De Geronimo G (1998) Theoretical and experimental analysis of intensity noise in a codoped erbium-ytterbium glass laser. Appl Phys B Lasers Opt 66:19ADSCrossRefGoogle Scholar
  7. 7.
    Rønnekleiv E (2001) Frequency and intensity noise of single-frequency fiber Bragg grating lasers. Opt Fiber Technol 7:206ADSCrossRefGoogle Scholar
  8. 8.
    Cranch GA, Englund MA, Kirkendall CK (2003) Intensity noise characteristics of erbium-doped distributed-feedback fiber lasers. IEEE J Quantum Electron 39:1579ADSCrossRefGoogle Scholar
  9. 9.
    Foster S, Cranch GA, Tikhomirov A (2009) Experimental evidence for the thermal origin of 1/f frequency noise in erbium-doped fiber lasers. Phys Rev A 79:53802ADSCrossRefGoogle Scholar
  10. 10.
    Cranch GA, Miller GA (2011) Fundamental frequency noise properties of extended cavity erbium fiber lasers. Opt Lett 36:906ADSCrossRefGoogle Scholar
  11. 11.
    Schawlow AL, Townes CH (1958) Infrared and optical masers. Phys Rev 112:1940ADSCrossRefGoogle Scholar
  12. 12.
    Ball GA, Hull-Allen CG, Livas J (1994) Frequency noise of a Bragg grating fibre laser. Electron Lett 30:1229CrossRefGoogle Scholar
  13. 13.
    Babin SA, Dmitriev AK, Dychkov AS, Kablukov SI, Lugovoy AA (2009) Low frequency noise distributed-feedback ytterbium fibre laser. Quantum Electron 39:906ADSCrossRefGoogle Scholar
  14. 14.
    Fourcault W, Léger J-M, Costes V, Fratter I, Mondin L (2010) Athermal fiber laser for the swarm absolute scalar magnetometer. In: International conference on Space OpticsGoogle Scholar
  15. 15.
    Wanser KH (1992) Fundamental phase noise limit in optical fibres due to temperature fluctuations. Electron Lett 28:53ADSCrossRefGoogle Scholar
  16. 16.
    Foster S, Tikhomirov A, Milnes M (2007) Fundamental thermal noise in distributed feedback fiber lasers. IEEE J Quantum Electron 43:378ADSCrossRefGoogle Scholar
  17. 17.
    Foster S (2008) Fundamental limits on 1/f frequency noise in rare-earth-metal-doped fiber lasers due to spontaneous emission. Phys Rev A 78:13820ADSCrossRefGoogle Scholar
  18. 18.
    Voo NY, Horak P, Ibsen M, Loh WH (2005) Anomalous linewidth behavior in short-cavity single-frequency fiber lasers. IEEE Photon Technol Lett 17:546ADSCrossRefGoogle Scholar
  19. 19.
    Horak P, Voo NY, Ibsen M, Loh WH (2006) Pump-noise-induced linewidth contributions in distributed feedback fiber lasers. IEEE Photon Technol Lett 18:998ADSCrossRefGoogle Scholar
  20. 20.
    Foster SB, Tikhomirov AE (2010) Pump-noise contribution to frequency noise and linewidth of distributed-feedback fiber lasers. IEEE J Quantum Electron 46:734ADSCrossRefGoogle Scholar
  21. 21.
    Meng Z, Hu Y, Xiong S, Stewart G, Whitenett G, Culshaw B (2005) Phase noise characteristics of a diode-pumped Nd:YAG laser in an unbalanced fiber-optic interferometer. Appl Opt 44:3425ADSCrossRefGoogle Scholar
  22. 22.
    Stéphan GM, Tam TT, Blin S, Besnard P, Têtu M (2005) Laser line shape and spectral density of frequency noise. Phys Rev A 71:043809ADSCrossRefGoogle Scholar
  23. 23.
    Horak P, Loh WH (2006) On the delayed self-heterodyne interferometric technique for determining the linewidth of fiber lasers. Opt Express 14:3923ADSCrossRefGoogle Scholar
  24. 24.
    Tsuchida H (1990) Simple technique for improving the resolution of the delayed self-heterodyne method. Opt Lett 15:640ADSCrossRefGoogle Scholar
  25. 25.
    Mercer LB (1991) 1/f frequency noise effects on self-heterodyne linewidth measurements. J Lightwave Technol 9:485ADSCrossRefGoogle Scholar
  26. 26.
    Li C, Xu S, Xiao Y, Feng Z, Yang C, Huang X, Zhou K, Yang Z (2015) Experimental investigation on linewidth characteristics of a single-frequency phosphate fiber laser at 1.0 μm. Laser Phys 25:025103ADSCrossRefGoogle Scholar
  27. 27.
    Kashyap R, Armitage JR, Wyatt R, Davey ST, Williams DL (1990) All-fibre narrowband reflection gratings at 1500 nm. Electron Lett 26:730ADSCrossRefGoogle Scholar
  28. 28.
    Archambault J, Grubb SG (1997) Fiber gratings in lasers and amplifiers. J Lightwave Technol 15:1378ADSCrossRefGoogle Scholar
  29. 29.
    Guzmán-Chávez AD, Barmenkov YO, Kir'yanov AV, Mendoza-Santoyo F (2009) A narrow-line Erbium-doped fiber laser and its application for testing fiber Bragg gratings. Opt Commun 282:3775ADSCrossRefGoogle Scholar
  30. 30.
    Perez-Herrera RA, Chen S, Zhao W, Sun T, Grattan K, Lopez-Amo M (2010) Stability performance of short cavity Er-doped fiber lasers. Opt Commun 283:1067–1070ADSCrossRefGoogle Scholar
  31. 31.
    Kringlebotn JT, Archambault J, Reekie L, Payne DN (1994) Er3+: Yb3+-codoped fiber distributed-feedback laser. Opt Lett 19:2101ADSCrossRefGoogle Scholar
  32. 32.
    Nikulin MA, Churin DE, Vlasov AA, Podivilov EV (2010) Distributed feedback ytterbium fiber laser: experiment and analytical model. JOSA B 27:1414ADSCrossRefGoogle Scholar
  33. 33.
    Yelen K, Hickey LM, Zervas MN (2004) A new design approach for fiber DFB lasers with improved efficiency. IEEE J Quantum Electron 40:711ADSCrossRefGoogle Scholar
  34. 34.
    Dong L, Loh WH, Caplen JE, Minelly JD, Hsu K, Reekie L (1997) Efficient single-frequency fiber lasers with novel photosensitive Er/Yb optical fibers. Opt Lett 22:694ADSCrossRefGoogle Scholar
  35. 35.
    Voo NY, Sahu JK, Ibsen M (2005) 345-mW 1836-nm single-frequency DFB fiber laser MOPA. IEEE Photon Technol Lett 17:2550ADSCrossRefGoogle Scholar
  36. 36.
    Wong A, Chung WH, Tam HY, Lu C (2011) Ultra-short distributed feedback fiber laser with sub-kilohertz linewidth for sensing applications. Laser Phys 21:163ADSCrossRefGoogle Scholar
  37. 37.
    Rønnekleiv E, Hadeler O, Vienne G (1999) Stability of an Er-Yb-doped fiber distributed-feedback laser with external reflections. Opt Lett 24:617ADSCrossRefGoogle Scholar
  38. 38.
    Cheng Y, Kringlebotn JT, Loh WH, Laming RI, Payne DN (1995) Stable single-frequency traveling-wave fiber loop laser with integral saturable-absorber-based tracking narrow-band filter. Opt Lett 20:875ADSCrossRefGoogle Scholar
  39. 39.
    Xu P, Hu Z, Jiang N, Ma L, Hu Y (2012) Transient reflectance spectra of adaptive filters based on dynamic population gratings. Opt Lett 37:1992ADSCrossRefGoogle Scholar
  40. 40.
    Havstad SA, Fischer B, Willner AE, Wickham MG (1999) Loop-mirror filters based on saturable-gain or-absorber gratings. Opt Lett 24:1466ADSCrossRefGoogle Scholar
  41. 41.
    Chen H, Babin F, Leblanc M, Schinn GW (2003) Widely tunable single-frequency erbium-doped fiber lasers. IEEE Photon Technol Lett 15:185ADSCrossRefGoogle Scholar
  42. 42.
    Zhang K, Kang JU (2008) C-band wavelength-swept single-longitudinal mode erbium-doped fiber ring laser. Opt Express 16:14173ADSCrossRefGoogle Scholar
  43. 43.
    Meng Z, Stewart G, Whitenett G (2006) Stable single-mode operation of a narrow-linewidth, linearly polarized, erbium-fiber ring laser using a saturable absorber. J Lightwave Technol 24:2179ADSCrossRefGoogle Scholar
  44. 44.
    Yang XX, Zhan L, Shen QS, Xia YX (2008) High-power single-longitudinal-mode fiber laser with a ring Fabry–Perot resonator and a saturable absorber. IEEE Photon Technol Lett 20:879ADSCrossRefGoogle Scholar
  45. 45.
    Liaw SK, Wang S, Shin CS, Yu YL, Chen NK, Hsu KC, Manshina A, Tver yanovich Y (2010) Linear-cavity fiber laser using subring-cavity incorporated saturable absorber for single-frequency operation. Laser Phys 20:1744ADSCrossRefGoogle Scholar
  46. 46.
    Yin M, Huang S, Lu B, Chen H, Ren Z, Bai J (2013) Slope efficiency over 30% single-frequency ytterbium-doped fiber laser based on Sagnac loop mirror filter. Appl Opt 52:6799ADSCrossRefGoogle Scholar
  47. 47.
    Pan Z, Ye Q, Cai H, Qu R (2014) Fiber ring with long delay used as a cavity mirror for narrowing fiber laser linewidth. IEEE Photon Technol Lett 26:1621ADSCrossRefGoogle Scholar
  48. 48.
    Chen D, Fu H, Liu W (2007) Single-longitudinal-mode erbium-doped fiber laser based on a fiber Bragg grating Fabry-Perot filter. Laser Phys 17:1246ADSCrossRefGoogle Scholar
  49. 49.
    Cheng XP, Shum P, Tse CH, Zhou JL, Tang M, Tan WC, Wu RF, Zhang J (2008) Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry–Pérot etalon. IEEE Photon Technol Lett 20:976ADSCrossRefGoogle Scholar
  50. 50.
    Wang X, Zhu T, Chen L, Bao X (2011) Tunable Fabry-Perot filter using hollow-core photonic bandgap fiber and micro-fiber for a narrow-linewidth laser. Opt Express 19:9617ADSCrossRefGoogle Scholar
  51. 51.
    Wan H, Jiang W, Gong Y, Pan C, Sun X (2012) Single-longitudinal-mode fiber ring laser stabilized by tandem all-fiber Fabry-Perot micro-cavities. IEEE Photon Technol Lett 24:404ADSCrossRefGoogle Scholar
  52. 52.
    Chen X, Yao J, Zeng F, Deng Z (2005) Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating. IEEE Photon Technol Lett 17:1390ADSCrossRefGoogle Scholar
  53. 53.
    Chen X, Yao J, Deng Z (2005) Ultranarrow dual-transmission-band fiber Bragg grating filter and its application in a dual-wavelength single-longitudinal-mode fiber ring laser. Opt Lett 30:2068ADSCrossRefGoogle Scholar
  54. 54.
    Yin B, Feng S, Liu Z, Bai Y, Jian S (2014) Tunable and switchable dual-wavelength single polarization narrow linewidth SLM erbium-doped fiber laser based on a PM-CMFBG filter. Opt Express 22:22528ADSCrossRefGoogle Scholar
  55. 55.
    Yin B, Liu Z, Feng S, Bai Y, Li H, Jian S (2015) Stable single-polarization single-longitudinal-mode linear cavity Erbium-doped fiber laser based on structured CFBG. Appl Opt 54:6ADSCrossRefGoogle Scholar
  56. 56.
    Rodríguez-Cobo L, Quintela MA, Rota-Rodrigo S, López-Amo M, López-Higuera JM (2013) Single-longitudinal mode laser structure based on a very narrow filtering technique. Opt Express 21:10289ADSCrossRefGoogle Scholar
  57. 57.
    Rodriquez-Cobo L, Quintela M, Menezo P, Lopez-Higuera J (2014) Study of fiber Bragg grating spectral overlapping for laser structures. IEEE Photon Technol Lett 26:1108ADSCrossRefGoogle Scholar
  58. 58.
    Muhammad FD, Zulkifli MZ, Latif AA, Harun SW, Ahmad H (2012) Graphene-based saturable absorber for single-longitudinal-mode operation of highly doped erbium-doped fiber laser. IEEE J Photon 4:467ADSCrossRefGoogle Scholar
  59. 59.
    Chen S, Wang Q, Zhao C, Li Y, Zhang H, Wen S (2014) Stable single-longitudinal-mode fiber ring laser using topological insulator-based saturable absorber. J Lightwave Technol 32:3836ADSGoogle Scholar
  60. 60.
    Xu O, Lu S, Feng S, Tan Z, Ning T, Jian S (2009) Single-longitudinal-mode erbium-doped fiber laser with the fiber-Bragg-grating-based asymmetric two-cavity structure. Opt Commun 282:962ADSCrossRefGoogle Scholar
  61. 61.
    Ting F, Feng-Ping Y, Qi L, Wan-Jing P, Su-Chun F, Si-Yu T, Xiao-Dong W (2013) Stable single longitudinal mode erbium-doped silica fiber laser based on an asymmetric linear three-cavity structure. Chin Phys B 22:14208CrossRefGoogle Scholar
  62. 62.
    Zhao Y, Chang J, Wang Q, Ni J, Song Z, Qi H, Wang C, Wang P, Gao L, Sun Z (2013) Research on a novel composite structure Er3+-doped DBR fiber laser with a π-phase shifted FBG. Opt Express 21:22515ADSCrossRefGoogle Scholar
  63. 63.
    Zhang J, Yue C, Schinn GG, Clements WR, Lit JW (1996) Stable single-mode compound-ring erbium-doped fiber laser. J Lightwave Technol 14:104ADSCrossRefGoogle Scholar
  64. 64.
    Lee C, Chen Y, Liaw S (1998) Single-longitudinal-mode fiber laser with a passive multiple-ring cavity and its application for video transmission. Opt Lett 23:358ADSCrossRefGoogle Scholar
  65. 65.
    Lee C, Chi S (2000) Single-longitudinal-mode operation of a grating-based fiber-ring laser using self-injection feedback. Opt Lett 25:1774ADSCrossRefGoogle Scholar
  66. 66.
    Zhang X, Zhu NH, Xie L, Feng BX (2007) A stabilized and tunable single-frequency erbium-doped fiber ring laser employing external injection locking. J Lightwave Technol 25:1027ADSCrossRefGoogle Scholar
  67. 67.
    Yeh C, Huang TT, Chien H, Ko C, Chi S (2007) Tunable S-band erbium-doped triple-ring laser with single-longitudinal-mode operation. Opt Express 15:382ADSCrossRefGoogle Scholar
  68. 68.
    Pan S, Yao J (2010) A wavelength-tunable single-longitudinal-mode fiber ring laser with a large sidemode suppression and improved stability. IEEE Photon Technol Lett 22:413ADSCrossRefGoogle Scholar
  69. 69.
    Liaw SK, Wang S, Shin CS, Chen NK, Hsu KC, Manshina A, Tver yanovich Y, Su C, Wang LK (2010) Single-longitudinal-mode linear-cavity fiber laser using multiple subring-cavities. Laser Phys 20:1608ADSCrossRefGoogle Scholar
  70. 70.
    Yin F, Yang S, Chen H, Chen M, Xie S (2011) 60-nm-Wide tunable single-longitudinal-mode ytterbium fiber laser with passive multiple-ring cavity. 0IEEE Photon Technol Lett 23:1658CrossRefGoogle Scholar
  71. 71.
    Feng S, Mao Q, Tian Y, Ma Y, Li W, Wei L (2013) Widely tunable single longitudinal mode fiber laser with cascaded fiber-ring secondary cavity. IEEE Photon Technol Lett 25:323ADSCrossRefGoogle Scholar
  72. 72.
    Salehiomran A, Rochette M (2013) An all-pole-type cavity based on smith predictor to achieve single longitudinal mode fiber lasers. IEEE Photon Technol Lett 25:2141ADSCrossRefGoogle Scholar
  73. 73.
    Feng T, Yan F, Peng W, Liu S, Tan S, Liang X, Wen X (2014) A high stability wavelength-tunable narrow-linewidth and single-polarization erbium-doped fiber laser using a compound-cavity structure. Laser Phys Lett 11:045101ADSCrossRefGoogle Scholar
  74. 74.
    Pan D, Ke C, Fu S, Liu Y, Liu D, Willner AE (2013) All-optical spectral linewidth reduction of lasers for coherent optical communication. Opt Lett 38:5220ADSCrossRefGoogle Scholar
  75. 75.
    Wang T, Yang T, Jia D, Wang Z, Ge C (2014) Multi-wavelength lasers with suppressed spectral linewidth of 10 kHz. Opt Express 22:26862ADSCrossRefGoogle Scholar
  76. 76.
    Sun J, Huang L (2007) Single-longitudinal-mode fiber ring laser using internal lasing injection and self-injection feedback. Opt Eng 46:74201CrossRefGoogle Scholar
  77. 77.
    Quintela M, Perez-Herrera RA, Canales I, Fernandez-Vallejo M, Lopez-Amo M, Lopez-Higuera JM (2010) Stabilization of dual-wavelength erbium-doped fiber ring lasers by single-mode operation. IEEE Photon Technol Lett 22:368ADSCrossRefGoogle Scholar
  78. 78.
    Perez-Herrera RA, Ullan A, Leandro D, Fernandez-Vallejo M, Quintela MA, Loayssa A, Lopez-Higuera JM, Lopez-Amo M (2012) L-band multiwavelength single-longitudinal mode fiber laser for sensing applications. J Lightwave Technol 30:1173ADSCrossRefGoogle Scholar
  79. 79.
    Nakazawa M (1983) Rayleigh backscattering theory for single-mode optical fibers. J Opt Soc Am 73:1175ADSCrossRefGoogle Scholar
  80. 80.
    Zhu T, Bao X, Chen L, Liang H, Dong Y (2010) Experimental study on stimulated Rayleigh scattering in optical fibers. Opt Express 18:22958ADSCrossRefGoogle Scholar
  81. 81.
    Zhu T, Bao X, Chen L (2011) A single longitudinal-mode tunable fiber ring laser based on stimulated rayleigh scattering in a nonuniform optical fiber. J Lightwave Technol 29:1802ADSCrossRefGoogle Scholar
  82. 82.
    Zhu T, Chen FY, Huang SH, Bao XY (2013) An ultra-narrow linewidth fiber laser based on Rayleigh backscattering in a tapered optical fiber. Laser Phys Lett 10:055110ADSCrossRefGoogle Scholar
  83. 83.
    Zhu T, Huang S (2014) Ultra-narrow linewidth fiber laser with self-injection feedback based on Rayleigh backscattering. In Conference on Lasers and Electro-Optics: Science and Innovations, pp. W1N–W5NGoogle Scholar
  84. 84.
    Yin G, Saxena B, Bao X (2011) Tunable Er-doped fiber ring laser with single longitudinal mode operation based on Rayleigh backscattering in single mode fiber. Opt Express 19:25981ADSCrossRefGoogle Scholar
  85. 85.
    Fu LB, Ibsen M, Turner PW, Richardson DJ, Payne DN (2002) Keyed axis single-polarisation all-fibre DFB laser. Electron Lett 38:1537CrossRefGoogle Scholar
  86. 86.
    Feng Z, Mo S, Xu S, Huang X, Zhong Z, Yang C, Li C, Zhang W, Chen D, Yang Z (2013) A compact linearly polarized low-noise single-frequency fiber laser at 1064 nm. Appl Phys Express 6:052701ADSCrossRefGoogle Scholar
  87. 87.
    Zhang W, Li C, Mo S, Yang C, Feng Z, Xu S, Xiong S, Peng Y, Zhang Q, Yang Z (2012) A compact low noise single-frequency linearly polarized DBR fiber laser at 1550 nm. Chin Phys Lett 29:084205ADSCrossRefGoogle Scholar
  88. 88.
    Kessler T, Hagemann C, Grebing C, Legero T, Sterr U, Riehle F, Martin MJ, Chen L, Ye J (2012) A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity. Nature Photon 6:687ADSCrossRefGoogle Scholar
  89. 89.
    Vogt S, Lisdat C, Legero T, Sterr U, Ernsting I, Nevsky A, Schiller S (2011) Demonstration of a transportable 1 Hz-linewidth laser. Appl Phys B Lasers Opt 104:741ADSCrossRefGoogle Scholar
  90. 90.
    Mo S, Li Z, Huang X, Xu S, Feng Z, Zhang W, Li C, Yang C, Qian Q, Chen D, Yang Z (2014) 820 Hz linewidth short-linear-cavity single-frequency fiber laser at 1.5 μm. Laser Phys Lett 11:035101ADSCrossRefGoogle Scholar
  91. 91.
    Mo S, Huang X, Xu S, Feng Z, Li C, Yang C, Yang Z (2015) Compact slow-light single-frequency fiber laser at 1550 nm. Appl Phys Express 8:082703ADSCrossRefGoogle Scholar
  92. 92.
    Mo S, Huang X, Xu S, Li C, Yang C, Feng Z, Zhang W, Chen D, Yang Z (2014) 600-Hz linewidth short-linear-cavity fiber laser. Opt Lett 39:5818ADSCrossRefGoogle Scholar
  93. 93.
    Kunz PD, Heavner TP, Jefferts SR (2013) Polarization-enhanced absorption spectroscopy for laser stabilization. Appl Opt 52:8048ADSCrossRefGoogle Scholar
  94. 94.
    Lee H, Suh M, Chen T, Li J, Diddams SA, Vahala KJ (2013) Spiral resonators for on-chip laser frequency stabilization. Nat Commun 4(2468):2468CrossRefGoogle Scholar
  95. 95.
    Kwee P, Willke B, Danzmann K (2009) Shot-noise-limited laser power stabilization with a high-power photodiode array. Opt Lett 34:2912ADSCrossRefGoogle Scholar
  96. 96.
    Kieu K, Mansuripur M (2007) Fiber laser using a microsphere resonator as a feedback element. Opt Lett 32:244ADSCrossRefGoogle Scholar
  97. 97.
    Zhao Y, Li Y, Wang Q, Meng F, Lin Y, Wang S, Lin B, Cao S, Cao J, Fang Z (2012) 100-Hz linewidth diode laser with external optical feedback. IEEE Photon Technol Lett 24:1795ADSCrossRefGoogle Scholar
  98. 98.
    Pan ZQ, Zhou J, Yang F, Ye Q, Cai HW, Qu RH, Fang ZJ (2013) Low-frequency noise suppression of a fiber laser based on a round-trip EDFA power stabilizer. Laser Phys 23:035105ADSCrossRefGoogle Scholar
  99. 99.
    Danion G, Bondu F, Loas G, Alouini M (2014) GHz bandwidth noise eater hybrid optical amplifier: design guidelines. Opt Lett 39:4239ADSCrossRefGoogle Scholar
  100. 100.
    Yamada M (2012) Analysis of Intensity and Frequency Noises in Semiconductor Optical Amplifier. IEEE J Quantum Electron 48:980ADSCrossRefGoogle Scholar
  101. 101.
    Feng ZM, Li C, Xu SH, Huang X, Yang CS, Zhou KJ, Gan JL, Deng HQ, Yang ZM (2015) Significant intensity noise suppression of single-frequency fiber laser via cascading semiconductor optical amplifier. Laser Phys Lett 12:095101ADSCrossRefGoogle Scholar
  102. 102.
    Li C, Xu S, Huang X, Xiao Y, Feng Z, Yang C, Zhou K, Lin W, Gan J, Yang Z (2015) All-optical frequency and intensity noise suppression of single-frequency fiber laser. Opt Lett 40:1964ADSCrossRefGoogle Scholar
  103. 103.
    Shieh W, Yang Q, Ma Y (2008) 107 Gb/s coherent optical OFDM transmission over 1000-km SSMF fiber using orthogonal band multiplexing. Opt Express 16:6378ADSCrossRefGoogle Scholar
  104. 104.
    Zhang Y, Li C, Xu S, Deng H, Feng Z, Yang C, Huang X, Zhang Y, Gan J, Yang Z (2016) A broad continuous temperature tunable DBR single-frequency fiber laser at 1064 nm. IEEE Photon J 8:1501107Google Scholar
  105. 105.
    Ball GA, Morey WW (1994) Compression-tuned single-frequency Bragg grating fiber laser. Opt Lett 19:1979ADSCrossRefGoogle Scholar
  106. 106.
    Zhang Y, Zhang Y, Zhao Q, Li C, Yang C, Feng Z, Deng H, Zhou E, Xu X, Wong KKY, Yang Z, Xu S (2016) Ultra-narrow linewidth full C-band tunable single-frequency linear-polarization fiber laser. Opt Express 24:26209ADSCrossRefGoogle Scholar
  107. 107.
    Gabai H, Botsev Y, Hahami M, Eyal A (2015) Optical frequency domain reflectometry at maximum update rate using I/Q detection. Opt Lett 40:1725ADSCrossRefGoogle Scholar
  108. 108.
    Saliba SD, Scholten RE (2009) Linewidths below 100 kHz with external cavity diode lasers. Appl Opt 48:6961ADSCrossRefGoogle Scholar
  109. 109.
    Li C, Xu S, Mo S, Zhan B, Zhang W, Yang C, Feng Z, Yang Z (2013) A linearly frequency modulated narrow linewidth single-frequency fiber laser. Laser Phys Lett 10:075106ADSCrossRefGoogle Scholar
  110. 110.
    Li C, Xu S, Huang X, Feng Z, Yang C, Zhou K, Gan J, Yang Z (2016) High-speed frequency modulated low-noise single-frequency fiber laser. IEEE Photon Technol Lett 28:1692ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Zhongmin Yang
    • 1
  • Can Li
    • 2
  • Shanhui Xu
    • 1
  • Changsheng Yang
    • 1
  1. 1.State Key Laboratory of Luminescent Materials and Devices and Institute of Optical Communication MaterialsSouth China University of TechnologyGuangzhouChina
  2. 2.Department of Electrical and Electronic EngineeringThe University of Hong KongHongkongChina

Personalised recommendations