Advertisement

Brassinosteroid Mediated Regulation of Photosynthesis in Plants

  • Husna Siddiqui
  • Fareen Sami
  • Mohammad Faizan
  • Ahmad Faraz
  • Shamsul Hayat
Chapter

Abstract

Brassinosteroids (BRs) are sterol derivatives with multiple hydroxyl groups occurring universally in plants. Photosynthesis is the process which acts as base for the growth of the plant. BRs promote the activation as well as synthesis of enzymes responsible for the formation of chlorophyll. BRs regulate different components of photosynthetic machinery like photochemistry, stomatal conductance and enzymes of Calvin cycle. BRs promote photosynthetic carbon fixation by altering the functioning of stomata. The BR-mediated regulation of various photosynthetic components operates constitutively to promote net photosynthetic rate and ultimately, the growth and development of the plants. Thus, the role of BRs in regulating photosynthesis becomes an important area of research. The present chapter summarizes the BR-mediated changes in photosynthesis and its associated components under normal and stress conditions.

Keywords

Brassinosteroids Primary photochemistry Carbohydrate synthesis Net photosynthetic rate Abiotic stress 

References

  1. Abdullahi, B. A., Gu, X. G., Gan, Q. L., & Yang, Y. H. (2002). Brassinolide amelioration of aluminum toxicity in mungbean seedling growth. Journal of Plant Nutrition, 26, 1725–1734.CrossRefGoogle Scholar
  2. Adak, M. K., & Gupta, D. K. D. (1999). Photosynthesis and net assimilation rate of rice cultivars as influenced by waterlogging. Indian Journal of Plant Physiology, 4, 334–336.Google Scholar
  3. Alam, M. M., Hayat, S., Ali, B., & Ahmad, A. (2007). Effect of 28-homobrassinolide treatment on nickel toxicity in Brassica juncea. Photosynthetica, 45, 139–142.CrossRefGoogle Scholar
  4. Ali, A. A., & Abdel-Fattah, R. I. (2006). Osmolytes antioxidant behavior in Phaseolus vulgaris and Hordeum vulgare with brassinosteroid under salt stress. Journal of Agronomy, 5, 167–174.CrossRefGoogle Scholar
  5. Ali, B., Hayat, S., Hasan, S. A., & Ahmad, A. (2006). Effect of root applied 28-homobrassinolide on the performance of Lycopersicon esculentum. Scientia Horticulturae, 110, 267–273.CrossRefGoogle Scholar
  6. Ali, B., Hayat, S., & Ahmad, A. (2007). 28-Homobrassinolide ameliorates the saline stress in chickpea (Cicer arietinum L.). Environmental and Experimental Botany, 59, 217–223.CrossRefGoogle Scholar
  7. Ali, Q., Athar, H. R., & Ashraf, M. (2008a). Modulation of growth, photosynthetic capacity and water relations in salt stressed wheat plants by exogenously applied 24-epibrassinolide. Plant Growth Regulation, 56, 107–116.CrossRefGoogle Scholar
  8. Ali, B., Hayat, S., Fariduddin, Q., & Ahmad, A. (2008b). 24-Epibrassinolide protects against the stress generated by salinity and nickel in Brassica juncea. Chemosphere, 72, 1387–1392.PubMedCrossRefGoogle Scholar
  9. Ali, B., Hasan, S. A., Hayat, S., Hayat, Q., Yadav, S., Fariduddin, Q., & Ahmad, A. (2008c). A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L. Wilczek). Environmental and Experimental Botany, 62, 153–159.CrossRefGoogle Scholar
  10. Allen, D. J., & Ort, D. R. (2001). Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends in Plant Science, 6, 36–42.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Alyemeni, M. N., & Al-Quwaiz, S. M. (2016). Effect of 28-homobrassinolide on the performance of sensitive and resistant varieties of Vigna radiata. Saudi Journal of Biological Sciences, 23, 698–705.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Alyemeni, M. N., Hayat, S., Wijaya, L., & Anaji, A. (2013). Foliar application of 28-homobrassinolide mitigates salinity stress by increasing the efficiency of photosynthesis in Brassica juncea. Acta Botânica Brasílica, 27, 502–505.CrossRefGoogle Scholar
  13. Anuradha, S., & Rao, S. S. (2003). Application of brassinosteroids to rice seeds (Oryza sativa L.) reduced the impact of salt stress on growth, prevented photosynthetic pigment loss and increased nitrate reductase activity. Plant Growth Regulation, 40, 29–32.CrossRefGoogle Scholar
  14. Anuradha, S., & Rao, S. S. R. (2009). Effect of 24-epibrassinolide on the photosynthetic activity of radish plants under cadmium stress. Photosynthetica, 47, 317–320.CrossRefGoogle Scholar
  15. Arfan, M., Athar, H. R., & Ashraf, M. (2007). Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? Journal of Plant Physiology, 164, 685–694.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Asha, A., & Lingakumar, K. (2015). Effect of 24-Epibrassinollide on the morphological and biochemical constitutions Vigna unguiculata (L.) seedlings. Indian Journal of Science Research and Technology, 3, 35–39.Google Scholar
  17. Ashraf, M., & Harris, P. J. C. (2013). Photosynthesis under stressful environments: An overview. Photosynthetica, 51, 163–190.CrossRefGoogle Scholar
  18. Ashraf, M., & Sultana, R. (2000). Combination effect of NaCl salinity and nitrogen form on mineral composition of sunflower plants. Biologia Plantarum, 43, 615–619.CrossRefGoogle Scholar
  19. Avudainayagam, S., Megharaj, M., Owens, G., Kookana, R. S., Chittleborough, D., & Naidu, R. (2003). Chemistry of chromium in soils with emphasis on tannery waste sites. In Reviews of environmental contamination and toxicology (pp. 53–91). New York: Springer.CrossRefGoogle Scholar
  20. Badger, M. R., & Price, G. D. (1994). The role of carbonic anhydrase in photosynthesis. Annual Review of Plant Biology, 45, 369–392.CrossRefGoogle Scholar
  21. Bai, M. Y., Shang, J. X., Oh, E., Fan, M., Bai, Y., Zentella, R., Sun, T. P., & Wang, Z. Y. (2012). Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nature Cell Biology, 14, 810–817.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Bajguz, A. (2009). Brassinosteroid enhanced the level of abscisic acid in Chlorella vulgaris subjected to short-term heat stress. Journal of Plant Physiology, 166, 882–886.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Bajguz, A., & Asami, T. (2005). Suppression of Wolffia arrhiza growth by brassinazole, an inhibitor of brassinosteroid biosynthesis and its restoration by endogenous 24-epibrassinolide. Phytochemistry, 66, 1787–1796.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Bajguz, A., & Czerpak, R. (1998). Physiological and biochemical role of brassinosteroids and their structure activity relationship in the green alga Chlorella vulgaris Beijerinck (Chlorophyceae). Plant Growth Regulation, 17, 131–139.CrossRefGoogle Scholar
  25. Bajguz, A., & Hayat, S. (2009). Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiology and Biochemistry, 47, 1–8.PubMedCrossRefGoogle Scholar
  26. Baker, N. R., & Oxborough, K. (2004). Chlorophyll fluorescence as a probe of photosynthetic productivity. In E. Papageorgiou & G. Govindjee (Eds.), Chlorophyll fluorescence: A signature of photosynthesis. Dordrecht: Kluwer Academic Publishers.Google Scholar
  27. Barceló, J. U. A. N., & Poschenrieder, C. (1990). Plant water relations as affected by heavy metal stress: A review. Journal of Plant Nutrition, 13, 1–37.CrossRefGoogle Scholar
  28. Behnamnia, M., Kalantari, K. M., & Rezanejad, F. (2009). Exogenous application of brassinosteroid alleviates drought-induced oxidative stress in Lycopersicon esculentum L. General and Applied Plant Physiology, 35, 22–34.Google Scholar
  29. Berger, S., Papadopoulos, M., Schreiber, U., Kaiser, W., & Roitsch, T. (2004). Complex regulation of gene expression, photosynthesis and sugar levels by pathogen infection in tomato. Physiologia Plantarum, 122, 419–428.CrossRefGoogle Scholar
  30. Berry, J., & Bjorkman, O. (1980). Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Physiology, 31, 491–543.CrossRefGoogle Scholar
  31. Bhatia, D. S., & Kaur, J. (1997). Effect of homobrassinolide and humicil on chlorophyll content, hill activity and yield components in mungbean Vigna radiata (l.) Wilczek. Phytomorphology, 47, 421–426.Google Scholar
  32. Braun, P., & Wild, A. (1984). The influence of brassinosteroid on growth and parameters of photosynthesis of wheat and mustard plants. Journal of Plant Physiology, 116, 189–196.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Çağ, S., Gören-Sağlam, N., Çıngıl-Barış, Ç., & Kaplan, E. (2007). The effect of different concentration of epibrassinolide on chlorophyll, protein and anthocyanin content and peroxidase activity in excised red cabbage (Brassica oleraceae L.) cotyledons. Biotechnology & Biotechnological Equipment, 21, 422–425.CrossRefGoogle Scholar
  34. Cevahir, G., Yentür, S., Eryilmaz, F., & Yilmazer, N. (2008). Influence of brassinosteroids on pigment content of Glycine max L.(soybean) grown in dark and light. Journal of Applied Biological Sciences, 1, 23–28.Google Scholar
  35. Chen, L. M., Lin, C. C., & Kao, C. H. (2000). Copper toxicity in rice seedlings: Changes in antioxidative enzyme activities, H2O2 level, and cell wall peroxidase activity in roots. Botanical Bulletin of Academia Sinica, 41, 99–103Google Scholar
  36. Chen, C., Huang, D., & Liu, J. (2009). Functions and toxicity of nickel in plants: Recent advances and future prospects. CLEAN – Soil, Air, Water, 37, 304–313.CrossRefGoogle Scholar
  37. Choudhary, S. P., Kanwar, M., Bhardwaj, R., Jing-Quan, Y. U., & Lam-Son, P. T. (2012). Chromium stress mitigation by polyamine-brassinosteroid application involves phytohormonal and physiological strategies in Raphanus sativus L. PLoS One, 7, e33210.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Chugh, L. K., Gupta, V. K., & Sawhney, S. K. (1992). Effect of cadmium on enzymes of nitrogen metabolism in pea seedlings. Phytochemistry, 31, 395–400.CrossRefGoogle Scholar
  39. Clouse, S. D., Langford, M., & McMorris, T. C. (1996). A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiology, 111, 671–678.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Dalio, R. J. D., Pinheiro, H. P., Sodek, L., & Haddad, C. R. B. (2011). The effect of 24-epibrassinolide and clotrimazole on the adaptation of Cajanus cajan (L.) Millsp. to salinity. Acta Physiologiae Plantarum, 33, 1887–1896.CrossRefGoogle Scholar
  41. Dubey, R. S. (2005). Photosynthesis in plants under stressful conditions. In M. Pessarakli (Ed.), Handbook of photosynthesis (2nd ed., pp. 717–737). New York: CRC Press/Taylor and Francis Group.Google Scholar
  42. Ekinci, M., Yildirim, E., Dursun, A., & Turan, M. (2012). Mitigation of salt stress in lettuce (Lactuca sativa L. var. Crispa) by seed and foliar 24-epibrassinolide treatments. Horticultural Science, 47, 631–636.Google Scholar
  43. Ernst, W. H. O. (1980). Biochemical aspects of cadmium in plants. In J. O. Nriagu (Ed.), Cadmium in the environment, part 1 (pp. 639–653). New York: Wiley.Google Scholar
  44. Eskandari, M., & Eskandari, A. (2013). Effects of 28-homobrassinolide on growth, photosynthesis and essential oil content of Satureja khuzestanica. International Journal of Plant Physiology and Biochemistry, 5, 36–41.CrossRefGoogle Scholar
  45. Farazi, E., Afshari, H., & Abadi, H. H. (2015). Effect of different concentrations of brassinosteroid on physiomorphological characteristics of five pistachio genotypes (Pistacia vera. L). Journal of Nuts, 6, 143–153.Google Scholar
  46. Fariduddin, Q., Ahmad, A., Hayat, S., & Ahmad, A. (2000). The response of chickpea, raised from the seeds pre-treated with 28-homobrassinolide. In National seminar on plant physiological paradigm for fostering agro and biotechnology and augmenting environmental productivity in millennium, 134.Google Scholar
  47. Fariduddin, Q., Ahmad, A., & Hayat, S. (2003). Photosynthetic response of Vigna radiata to pre-sowing seed treatment with 28-homobrassinolide. Photosynthetica, 41, 307–310.CrossRefGoogle Scholar
  48. Fariduddin, Q., Ahmad, A., & Hayat, S. (2004). Responses of Vigna radiata to foliar application of 28-homobrassinolide and kinetin. Biologia Plantarum, 48, 465–468.CrossRefGoogle Scholar
  49. Fariduddin, Q., Hayat, S., Ali, B., & Ahmad, A. (2006). Effect of 28-homobrassinolide on the nitrate reductase, carbonic anhydrase activities and net photosynthetic rate in Vigna radiata. Acta Botanica Croatica, 65, 19–23.Google Scholar
  50. Fariduddin, Q., Hasan, S. A., Ali, B., Hayat, S., & Ahmad, A. (2008). Effect of modes of application of 28-homobrassinolide on mung bean. Turkish Journal of Biology, 32, 17–21.Google Scholar
  51. Fariduddin, Q., Yusuf, M., Hayat, S., & Ahmad, A. (2009). Effect of 28-homobrassinolide on antioxidant capacity and photosynthesis in Brassica juncea plants exposed to different levels of copper. Environmental and Experimental Botany, 66, 418–424.CrossRefGoogle Scholar
  52. Fariduddin, Q., Yusuf, M., Chalkoo, S., Hayat, S., & Ahmad, A. (2011). 28-homobrassinolide improves growth and photosynthesis in Cucumis sativus L. through an enhanced antioxidant system in the presence of chilling stress. Photosynthetica, 49, 55–64.CrossRefGoogle Scholar
  53. Fariduddin, Q., Khalil, R. R., Mir, B. A., Yusf, M., & Ahmad, A. (2013). 24-Epibrassinolide regulates photosynthesis, antioxidant enzyme activities and proline content of Cucumis sativus under salt and/or copper stress. Environmental Monitoring and Assessment, 185, 7845–7856.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Farooq, M., Wahid, A., & Basra, S. M. A. (2009). Improving water relations and gas exchange with brassinosteroids in rice under drought stress. Journal of Agronomy and Crop Science, 195, 262–269.CrossRefGoogle Scholar
  55. Farooq, M., Wahid, A., Lee, D. J., Cheema, S. A., & Aziz, T. (2010). Drought stress: Comparative time course action of the foliar applied glycinebetaine, salicylic acid, nitrous oxide, brassinosteroids and spermine in improving drought resistance of rice. Journal of Agronomy and Crop Science, 196, 336–345.CrossRefGoogle Scholar
  56. Flowers, T. J. (2004). Improving crop salt tolerance. Journal of Experimental Botany, 55, 307–319.PubMedCrossRefPubMedCentralGoogle Scholar
  57. Gabr, M. A., Fathi, M. A., Azza, I. M., & Mekhaeil, G. B. (2011). Influences of some chemical substances used to induce early harvest of ‘Canino’ apricot trees. Natural Science, 9, 59–65.Google Scholar
  58. Gruszka, D. (2013). The brassinosteroid signaling pathway-new key players and interconnections with other signaling networks crucial for plant development and stress tolerance. International Journal of Molecular Sciences, 14, 8740–8774.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Gururani, M. A., Upadhyaya, C. P., Strasser, R. J., Woong, Y. J., & Park, S. W. (2012). Physiological and biochemical responses of transgenic potato plants with altered expression of PSII manganese stabilizing protein. Plant Physiology and Biochemistry, 58, 182–194.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Halliwell, B., & Gutteridge, J. M. C. (1984). Oxygen toxicity, oxygen radical, transition metals and disease. The Biochemical Journal, 219, 1–14.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Hamada, K. (1986). Brassinolide in crop cultivation. In Plant growth regulators in agriculture (FFTC Book Series) (Vol. 34, pp. 188–196). Taipei: Food and Fertilizer Technology Center for the Asian and Pacific Region.Google Scholar
  62. Hayat, S., Ahmad, A., Mobin, M., Fariduddin, Q., & Azam, Z. M. (2001). Carbonic anhydrase, photosynthesis, and seed yield in mustard plants treated with phytohormones. Photosynthetica, 39, 111–114.CrossRefGoogle Scholar
  63. Hayat, S., Ali, B., Hasan, S. A., & Ahmad, A. (2007). Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environmental and Experimental Botany, 60, 33–41.CrossRefGoogle Scholar
  64. Hayat, S., Hasan, S. A., Hayat, Q., & Ahmad, A. (2010). Brassinosteroids protect Lycopersicon esculentum from cadmium toxicity applied as shotgun approach. Protoplasma, 239, 3–14.PubMedCrossRefGoogle Scholar
  65. Hayat, S., Yadav, S., Wani, A. S., Irfan, M., & Ahmad, A. (2011). Comparative effect of 28-homobrassinolide and 24-epibrassinolide on the growth, carbonic anhydrase activity and photosynthetic efficiency of Lycopersicon esculentum. Photosynthetica, 49, 397–404.CrossRefGoogle Scholar
  66. Hayat, S., Hayat, Q., Alyemeni, M. N., Wani, A. S., Pichtel, J., & Ahmad, A. (2012). Role of proline under changing environments: A review. Plant Signaling & Behavior, 7, 1456–1466.CrossRefGoogle Scholar
  67. He, R. Y., Wang, G. J., & Wang, X. S. (1991). Effects of brassinolide on growth and chilling resistance of maize seedlings. In ACS symposium series-American Chemical Society.Google Scholar
  68. He, J. X., Gendron, J. M., Sun, Y., Gampala, S. S., Gendron, N., Sun, C. Q., & Wang, Z. Y. (2005). BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science, 307, 1634–1638.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Holá, D., Rothová, O., Kočová, M., Kohout, L., & Kvasnica, M. (2010). The effect of brassinosteroids on the morphology, development and yield of field-grown maize. Plant Growth Regulation, 61, 29–43.CrossRefGoogle Scholar
  70. Hopkins, W. J. (1995). Introduction to plant physiology. New York: Wiley.Google Scholar
  71. Hu, W. H., Yan, X. H., Xiao, Y. A., Zenga, J. J., Qia, H. J., & Ogweno, J. O. (2013). 24-Epibrassinosteroid alleviate drought-induced inhibition of photosynthesis in Capsicum annuum. Scientia Horticulturae, 150, 232–237.CrossRefGoogle Scholar
  72. Janeczko, A., Koscielniak, J., Pilipowicz, M., Szarek-Lukaszewska, G., & xSkoczowski, A. (2005). Protection of winter rape photosystem 2 by 24-epibrassinolide under cadmium stress. Photosynthetica, 43, 293–298.CrossRefGoogle Scholar
  73. Janeczko, A., Gullner, G., Skoczowski, A., Dubert, F., & Barna, B. (2007). Effects of brassinosteroid infiltration prior to cold treatment on ion leakage and pigment contents in rape leaves. Biologia Plantarum, 51, 355–358.CrossRefGoogle Scholar
  74. Jiang, Y. P., Cheng, F., Zhou, Y. H., Xia, X. J., Mao, W. H., Shi, K., Chen, Z. X., & Yu, J. Q. (2012). Hydrogen peroxide functions as a secondary messenger for brassinosteroids-induced CO2 assimilation and carbohydrate metabolism in Cucumis sativus. Journal of Zhejiang University. Science. B, 13, 811–823.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Kapoor, D., Rattan, A., Gautam, V., Kapoor, N., & Bhardwaj, R. (2014). 24-epibrassinolide Mediated Changes in photosynthetic pigments and antioxidative defence system of radish seedlings under cadmium and mercury stress. Journal of Stress Physiology and Biochemistry, 10, 3.Google Scholar
  76. Katsumi, M. (1991). Physiological modes of brassinolide action in cucumber hypocotyl growth. In ACS symposium series-American Chemical Society (USA).Google Scholar
  77. Khan, S., Cao, Q., Zheng, Y. M., Huanga, Y. Z., & Zhua, Y. G. (2008). Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environmental Pollution, 152, 686–692.PubMedCrossRefPubMedCentralGoogle Scholar
  78. Kim, T. W., Guan, S., Sun, Y., Deng, Z., Tang, W., Shang, J. X., Sun, Y., Burlingame, A. L., & Wang, Z. Y. (2009). Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nature Cell Biology, 11, 1254–1260.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Kim, T. W., Michniewicz, M., Bergmann, D. C., & Wang, Z. Y. (2012). Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway. Nature, 482, 419–422.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Kinoshita, T., Cano-Delgado, A., Seto, H., Hiranuma, S., Fujioka, S., Yoshida, S., & Chory, J. (2005). Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature, 433, 167–171.PubMedCrossRefPubMedCentralGoogle Scholar
  81. Koca, H., Bor, M., Özdemir, F., & Türkan, I. (2007). The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environmental and Experimental Botany, 60, 344–351.CrossRefGoogle Scholar
  82. Krause, H., & Weis, W. (1991). Chlorophyll Fluorescence and Photosynthesis: The Basics. Annual Review of Plant Physiology and Plant Molecular Biology, 42, 313–349.CrossRefGoogle Scholar
  83. Krumova, S., Zhiponova, M., Dankov, K., Velikova, V., Balashev, K., Andreeva, T., Russinova, E., & Taneva, S. (2013). Brassinosteroids regulate the thylakoid membrane architecture and the photosystem II function. Journal of Photochemistry and Photobiology B: Biology, 126, 97–104.CrossRefGoogle Scholar
  84. Kulaeva, O. N., Burkhanova, E. A., Fedina, A. B., Khokhlova, V. A., Bokebayeva, G. A., Vorbrodt, H. M., & Adam, G. N. (1991). Effect of brassinosteroids on protein synthesis and plant-cell ultrastructure under stress conditions. In ACS symposium series-American Chemical Society (USA).Google Scholar
  85. Kupper, H., Gotz, B., Mijovilovich, A., Kupper, F. C., & Meyer-Klaucke, W. (2009). Complexation and toxicity of copper in higher plants. I. Characterization of copper accumulation, speciation, and toxicity in Crassula helmsii as a new copper accumulator. Plant Physiology, 151, 702–714.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Li, J., & Nam, K. H. (2002). Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase. Science, 295(5558), 1299–1301.Google Scholar
  87. Li, Y. H., Liu, Y. J., Xu, X. L., Jin, M., An, L. Z., & Zhang, H. (2012). Effect of 24-epibrassinolide on drought stress-induced changes in Chorispora bungeana. Biologia Plantarum, 56, 192–196.CrossRefGoogle Scholar
  88. Li, X. J., Guo, X., Zhou, Y. H., Shi, K., Zhou, J., Yu, J. Q., & Xia, X. J. (2016). Overexpression of a brassinosteroid biosynthetic gene dwarf enhances photosynthetic capacity through activation of calvin cycle enzymes in tomato. BMC Plant Biology, 16, 33.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Lima, J. V., & Lobato, A. K. S. (2017). Brassinosteroids improve photosystem II efficiency, gas exchange, antioxidant enzymes and growth of cowpea plants exposed to water deficit. Physiology and Molecular Biology of Plants, 23, 59–72.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Maestri, E., Klueva, N., Perrotta, C., Gulli, M., Nguyen, H. T., & Marmiroli, N. (2002). Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Molecular Biology, 48, 667–681.PubMedCrossRefPubMedCentralGoogle Scholar
  91. Maity, U., & Bera, A. K. (2009). Effect of exogenous application of brassinolide and salicylic acid on certain physiological and biochemical aspects of green gram (Vigna radiata L. Wilczek). Indian Journal of Agricultural Research, 43, 194–199.Google Scholar
  92. Marschner, H. (1995). Mineral nutrition of higher plants (2nd ed.). London: Academic.Google Scholar
  93. Mohanty, N., Vass, I., & Demeter, S. (1989). Impairment of photosystem 2 activity at the level of secondary quinone electron acceptor in chloroplasts treated with cobalt, nickel and zinc ions. Physiologia Plantarum, 76, 386–390.CrossRefGoogle Scholar
  94. Moroney, J. V., Bartlett, S. G., & Samuelsson, G. (2001). Carbonic anhydrases in plants and algae. Plant, Cell & Environment, 24, 141–153.CrossRefGoogle Scholar
  95. Mossor-Pietraszewska, T. (2001). Effect of aluminium on plant growth and metabolism. Acta Biochimica Polonica, 48, 673–686.PubMedPubMedCentralGoogle Scholar
  96. Nath, K., Jajoo, A., Poudyal, R. S., Timilsina, R., Park, Y. S., Aroe, E. Y., Nam, H. G., & Lee, C. H. (2013). Towards a critical understanding of the photosystem II repair mechanism and its regulation during stress conditions. FEBS Letters, 587, 3372–3381.PubMedCrossRefPubMedCentralGoogle Scholar
  97. Naz, F. S., Yusuf, M., Khan, T. A., Fariduddin, Q., & Ahmad, A. (2015). Low level of selenium increases the efficacy of 24-epibrassinolide through altered physiological and biochemical traits of Brassica juncea plants. Food Chemistry, 185, 441–448.PubMedCrossRefPubMedCentralGoogle Scholar
  98. Nellaepalli, S., Zsiros, O., Toth, T., Yadavalli, V., Garab, G., Subramanyam, R., & Kovács, L. (2014). Heat- and light-induced detachment of the light harvesting complex from isolated photosystem I supercomplexes. Journal of Photochemistry and Photobiology B: Biology, 137, 13–20.CrossRefGoogle Scholar
  99. Nishiyama, Y., Allakhverdiev, S. I., & Murata, N. (2011). Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II. Physiologia Plantarum, 142(1), 35–46.Google Scholar
  100. Noctor, G., Mhamdi, A., & Foyer, C. H. (2014). The roles of reactive oxygen metabolism in drought: Not so cut and dried. Plant Physiology, 164, 1636–1648.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Ogweno, J. O., Song, X. S., Shi, K., HU, W. H., Mao, W. H., Zhou, Y. H., Yu, J. Q., & Nogues, S. (2008). Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. Journal of Plant Growth Regulation, 27, 49–57.CrossRefGoogle Scholar
  102. Oh, M. H., Wang, X., Wu, X., Zhao, Y., Clouse, S. D., & Huber, S. C. (2010). Autophosphorylation of Tyr-610 in the receptor kinase BAK1 plays a role in brassinosteroid signaling and basal defense gene expression. Proceedings of the National Academy of Sciences, 107, 17827–17832.CrossRefGoogle Scholar
  103. Oh, M. H., Sun, J., Oh, D. H., Zielinski, R. E., Clouse, S. D., & Huber, S. C. (2011). Enhancing Arabidopsis leaf growth by engineering the BRASSINOSTEROID INSENSITIVE1 receptor kinase. Plant Physiology, 157, 120–131.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Pan, J., Lin, S., & Woodbury, N. W. (2012). Bacteriochlorophyll excited-state quenching pathways in bacterial reaction centres with the primary donor oxidized. The Journal of Physical Chemistry. B, 116, 2014–2022.PubMedCrossRefPubMedCentralGoogle Scholar
  105. Pandey, D. M., Goswami, C. L., & Kumar, B. (2001). Hormonal regulation of photosynthetic enzymes in cotton under water stress. Photosynthetica, 38, 403–407.CrossRefGoogle Scholar
  106. Pareek, A., Singla, S. L., & Grover, A. (1998). Protein alterations associated with salinity, desiccation, high and low temperature stresses and abscisic acid application in lal nakanda, a drought tolerant rice cultivar. Current Science, 75, 1170–1174.Google Scholar
  107. Peng, P., Yan, Z., Zhu, Y., & Li, J. (2008). Regulation of the Arabidopsis GSK3-like kinase BRASSINOSTEROID-INSENSITIVE 2 through proteasome-mediated protein degradation. Molecular Plant, 1, 338–346.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Perveen, S., Shahbaz, M., & Ashraf, M. (2010). Regulation in gas exchange and quantum yield of photosystem II (PSII) in salt-stressed and non-stressed wheat plants raised from seed treated with triacontanol. Pakistan Journal of Botany, 42, 3073–3081.Google Scholar
  109. Pinheiro, H. A., Silva, J. V., & Endres, L. (2008). Leaf gas exchange, chloroplastic pigments and dry matter accumulation in castor bean (Ricinus communis L) seedlings subjected to salt stress conditions. Indstrial Crops and Products, 27, 385–392.CrossRefGoogle Scholar
  110. Piñol, R., & Simón, E. (2009). Effect of 24-epibrassinolide on chlorophyll fluorescence and photosynthetic CO2 assimilation in Vicia faba plants treated with the photosynthesis-inhibiting herbicide terbutryn. Journal of Plant Growth Regulation, 28, 97–105.CrossRefGoogle Scholar
  111. Pociecha, E., Dziurka, M., Oklestkova, J., & Janeczko, A. (2016). Brassinosteroids increase winter survival of winter rye (Secale cereale L.) by affecting photosynthetic capacity and carbohydrate metabolism during the cold acclimation process. Plant Growth Regulation, 80, 127–135.CrossRefGoogle Scholar
  112. Pociecha, E., Dziurka, D., Waligórski, P., Tomasz, K., & Janeczko, A. (2017). 24-epibrassinolide pre-treatment modifies cold-induced photosynthetic acclimation mechanisms and phytohormone response of perennial ryegrass in cultivar-dependent manner. Journal of Plant Growth Regulation, 36, 618–628 Google Scholar
  113. Portis, A. R., Jr. (1992). Regulation of ribulose 1, 5-bisphosphate carboxylase/oxygenase activity. Annual Review of Plant Biology, 43, 415–437.CrossRefGoogle Scholar
  114. Poschenrieder, C., Gunse, B., & Barceló, J. (1989). Influence of cadmium on water relations, stomatal resistance, and abscisic acid content in expanding bean leaves. Plant Physiology, 90, 1365–1371.PubMedPubMedCentralCrossRefGoogle Scholar
  115. Qayyum, B. U., Shahbaz, M. U., & Akram, N. A. (2007). Interactive effect of foliar application of 24-epibrassinolide and root zone salinity on morpho-physiological attributes of wheat (Triticum aestivum L.). International Journal of Agriculture and Biology, 9, 584–589.Google Scholar
  116. Rady, M. M. (2011). Effect of 24-epibrassinolide on growth, yield, antioxidant system and cadmium content of bean (Phaseolus vulgaris L.) plants under salinity and cadmium stress. Scientia Horticulturae, 129, 232–237.CrossRefGoogle Scholar
  117. Raven, J. A., Evans, M. C., & Korb, R. E. (1999). The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosynthesis Research, 60, 111–150.CrossRefGoogle Scholar
  118. Reddy, M. P., & Vora, A. B. (1986). Changes in pigment composition, Hill reaction activity and saccharides metabolism in Bajra (Pennisetum typhoides S & H) leaves under NaCl salinity. Photosynthetica, 20, 50–55.Google Scholar
  119. Rhodes, D., Nadolska-Orczyk, A., & Rich, P. J. (2002). Salinity, osmolytes and compatible solutes. In Salinity: Environment-plants-molecules (pp. 181–204). Dordrecht: Springer.Google Scholar
  120. Sairam, R. K. (1994a). Effect of homobrassinolide application on metabolic activity and grain yield of wheat under normal and water-stress condition. Journal of Agronomy and Crop Science, 173, 11–16.CrossRefGoogle Scholar
  121. Sairam, R. K. (1994b). Effects of homobrassinolide application on plant metabolism and grain yield under irrigated and moisture-stress conditions of two wheat varieties. Plant Growth Regulation, 14, 173–181.CrossRefGoogle Scholar
  122. Sam, O., Núñez, M., Ruiz-Sánchez, M. C., Dell’Amico, J., Falcón, V., De La Rosa, M. C., & Seoane, J. (2001). Effect of a brassinosteroid analogue and high temperature stress on leaf ultrastructure of Lycopersicon esculentum. Biologia Plantarum, 44, 213–218.CrossRefGoogle Scholar
  123. Serna, M., Hernández, F., Coll, F., & Amords, A. (2012). Brassinosteroid analogues effect on yield and quality parameters of field-grown lettuce (Lactuca sativa L.). Scientia Horticulturae, 143, 29–37.CrossRefGoogle Scholar
  124. Shahbaz, M., Ashraf, M., & Athar, H. U. R. (2008). Does exogenous application of 24-epibrassinolide ameliorate salt induced growth inhibition in wheat (Triticum aestivum L.)? Plant Growth Regulation, 55, 51–64.CrossRefGoogle Scholar
  125. Sharma, I., Ching, E., Saini, S., Bhardwaj, R., & Pati, P. K. (2013). Exogenous application of brassinosteroid offers tolerance to salinity by altering stress responses in rice variety Pusa Basmati-1. Plant Physiology and Biochemistry, 69, 17–26.PubMedCrossRefPubMedCentralGoogle Scholar
  126. Sheoran, I. S., Singal, H. R., & Singh, R. (1990). Effect of cadmium and nickel on photosynthesis and the enzymes of the photosynthetic carbon reduction cycle in pigeonpea (Cajanus cajan L.). Photosynthesis Research, 23, 345–351.PubMedCrossRefPubMedCentralGoogle Scholar
  127. Siddiqui, H., Hayat, S., & Bajguz, A. (2018a). Regulation of photosynthesis by brassinosteroids in plants. Acta Physiologiae Plantarum, 40, 59.CrossRefGoogle Scholar
  128. Siddiqui, H., Ahmed, K. B. M., & Hayat, S. (2018b). Comparative effect of 28-homobrassinolide and 24-epibrassinolide on the performance of different components influencing the photosynthetic machinery in Brassica juncea L. Plant Physiology and Biochemistry, 129, 198–212.PubMedCrossRefPubMedCentralGoogle Scholar
  129. Siddiqui, H., Yusuf, M., Faraz, A., Faizan, M., Sami, F., & Hayat, S. (2018c). 24-Epibrassinolide supplemented with silicon enhances the photosynthetic efficiency of Brassica juncea under salt stress. South African Journal of Botony, 118, 120–128.CrossRefGoogle Scholar
  130. Simões-Araújo, J. L., Rumjanek, N. G., & Margis-Pinheiro, M. (2003). Small heat shock proteins genes are differentially expressed in distinct varieties of common bean. Brazilian Journal of Plant Physiology, 15, 33–41.CrossRefGoogle Scholar
  131. Singh, I., & Shono, M. (2005). Physiological and molecular effects of 24-epibrassinolide, a brassinosteroid on thermotolerance of tomato. Plant Growth Regulation, 47, 111–119.CrossRefGoogle Scholar
  132. Singh, P. K., & Tewari, R. K. (2003). Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassica juncea L. plants. Journal of Environmental Biology, 24, 107–112.PubMedPubMedCentralGoogle Scholar
  133. Singh, I., Kumar, U., Singh, S. K., Gupta, C., Singh, M., & Kushwaha, S. R. (2012). Physiological and biochemical effect of 24-epibrassinoslide on cold tolerance in maize seedlings. Physiology and Molecular Biology of Plants, 18, 229–236.PubMedPubMedCentralCrossRefGoogle Scholar
  134. Smith, S., & Stewart, G. R. (1990). Effect of potassium levels on the stomatal behavior of the hemi-parasite Striga hermonthica. Plant Physiology, 94, 1472–1476.PubMedPubMedCentralCrossRefGoogle Scholar
  135. Sofo, A., Tuzio, A. C., Dichio, B., & Xiloyannis, C. (2005). Influence of water deficit and rewatering on the components of the ascorbate–glutathione cycle in four interspecific Prunus hybrids. Plant Science, 169, 403–412.CrossRefGoogle Scholar
  136. Stobart, A. K., Griffiths, W. T., Ameen-Bukhari, I., & Sherwood, R. P. (1985). The effect of Cd2+ on the biosynthesis of chlorophyll in leaves of barley. Physiologia Plantarum, 63, 293–298.CrossRefGoogle Scholar
  137. Sültemeyer, D., Schmidt, C., & Fock, H. P. (1993). Carbonic anhydrases in higher plants and aquatic microorganisms. Physiologia Plantarum, 88, 179–190.CrossRefGoogle Scholar
  138. Swamy, K. N., & Rao, S. S. R. (2009). Effect of 24-epibrassinolide on growth, photosynthesis, and essential oil content of Pelargonium graveolens (L.) Herit. Russian Journal of Plant Physiology, 56, 616–620.CrossRefGoogle Scholar
  139. Swamy, K. N., Vardhini, B. V., Ramakrishna, B., Anuradha, S., Siddulu, N., & Rao, S. S. R. (2014). Role of 28-homobrassinolide on growth biochemical parameters of Trigonella foenu-graecum L. plants subjected to lead toxicity. International Journal of Multidisciplinary Current Research, 2, 317–321.Google Scholar
  140. Takahashi, S., & Badger, M. R. (2011). Photoprotection in plants: A new light on photosystem II damage. Trends in Plant Science, 16, 53–60.PubMedCrossRefPubMedCentralGoogle Scholar
  141. Thussagunpanit, J., Jutamanee, K., & Kaveeta, L. (2015). Comparative effects of brassinosteroid and brassinosteroid mimic on improving photosynthesis, lipid peroxidation, and rice seed set under heat stress. Journal of Plant Growth Regulation, 34, 320–331.CrossRefGoogle Scholar
  142. Tikkanen, M., & Aro, E. M. (2014). Integrative regulatory network of plant thylakoid energy transduction. Trends in Plant Science, 19, 10–17.PubMedCrossRefPubMedCentralGoogle Scholar
  143. Vassilev, A., & Yordanov, I. (1997). Reductive analysis of factors limiting growth of cadmium-treated plants: A review. Bulgarian Journal of Plant Physiology, 23, 114–133.Google Scholar
  144. Verma, A., Malik, C. P., & Gupta, V. K. (2011). In vitro effects of brassinosteroids on the growth and antioxidant enzyme activities in groundnut. ISRN Agronomy, 2012, 1–8.CrossRefGoogle Scholar
  145. Vert, G., & Chory, J. (2006). Downstream nuclear events in brassinosteroid signaling. Nature, 441, 96–100.PubMedCrossRefPubMedCentralGoogle Scholar
  146. Wang, X., & Chory, J. (2006). Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane. Science, 313, 1118–1122.PubMedCrossRefPubMedCentralGoogle Scholar
  147. Weast, R. C. (1984). CRC handbook of chemistry and physics (64th ed.). Boca Raton: CRC.Google Scholar
  148. Went, F. W., & Thimann, K. V. (1937). Phytohormones. New York: Osmun/Universe Books.Google Scholar
  149. Wise, R. R., & Naylor, A. W. (1987). Chilling-enhanced photooxidation the peroxidative destruction of lipids during chilling injury to photosynthesis and ultrastructure. Plant Physiology, 83, 272–277.PubMedPubMedCentralCrossRefGoogle Scholar
  150. Wolff, S. P., Garner, A., & Dean, R. T. (1986). Free radicals, lipids and protein degradation. Trends in Biochemical Sciences, 11, 27–31.CrossRefGoogle Scholar
  151. Wu, X. X., He, J., Zhu, Z. W., Yang, S. J., & Zha, D. S. (2014). Protection of photosynthesis and antioxidative system by 24-epibrassinolide in Solanum melongena under cold stress. Biologia Plantarum, 58, 185–188.CrossRefGoogle Scholar
  152. Xia, X. J., Huang, Y. Y., Wang, L., Huang, L. F., Yu, Y. L., Zhou, Y. H., & Yu, J. Q. (2006). Pesticides-induced depression of photosynthesis was alleviated by 24-epibrassinolide pre-treatment in Cucumis sativus L. Pesticide Biochemistry and Physiology, 86, 42–48.CrossRefGoogle Scholar
  153. Xia, X. J., Huang, L. F., Zhou, Y. H., Mao, W. H., Shi, K., Wu, J. X., Asami, T., Chen, Z., & Yu, J. Q. (2009). Brassinosteroids promote photosynthesis and growth by enhancing activation of Rubisco and expression of photosynthetic genes in Cucumis sativus. Planta, 230, 1185–1196.PubMedCrossRefGoogle Scholar
  154. Yang, J. Y., Zheng, W., Tian, Y., Wu, Y., & Zhou, D. W. (2011). Effects of various mixed salt-alkaline stresses on growth, photosynthesis, and photosynthetic pigment concentrations of Medicago ruthenica seedlings. Photosynthetica, 49, 275–284.CrossRefGoogle Scholar
  155. Yin, Y., Vafeados, D., Tao, Y., Yoshida, S., Asami, T., & Chory, J. (2005). A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis. Cell, 120, 249–259.PubMedCrossRefGoogle Scholar
  156. Yu, J. Q., Huang, L. F., Hu, W. H., Zhou, Y. H., Mao, W. H., Ye, S. F., & Nogués, S. (2004). A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. Journal of Experimental Botany, 55, 1135–1143.PubMedCrossRefGoogle Scholar
  157. Yuan, L., Shu, S., Sun, J., Guo, S., & Tezuka, T. (2012). Effects of 24-epibrassinolide on the photosynthetic characteristics, antioxidant system, and chloroplast ultrastructure in Cucumis sativus L. under Ca(NO3)2 stress. Photosynthesis Research, 112, 205–214.PubMedCrossRefPubMedCentralGoogle Scholar
  158. Yuan, G. F., Jia, C. G., Li, Z., Sun, B., Zhang, L. P., Liu, N., & Wang, Q. M. (2010). Effect of brassinosteroids on drought resistance and abscisic acid concentration in tomato under water stress. Scientia Horticulturae, 126(2), 103–108.Google Scholar
  159. Yusuf, M., Fariduddin, Q., Ahmad, I., & Ahmad, A. (2014). Brassinosteroid-mediated evaluation of antioxidant system and nitrogen metabolism in two contrasting cultivars of Vigna radiata under different levels of nickel. Physiology and Molecular Biology of Plants, 20, 449–460.PubMedPubMedCentralCrossRefGoogle Scholar
  160. Zayed, A. M., & Terry, N. (2003). Chromium in the environment: Factors affecting biological remediation. Plant and Soil, 249, 139–156.CrossRefGoogle Scholar
  161. Zhang, J. H., Huang, W. D., Liu, Y. P., & PAN, Q. H. (2005). Effects of temperature acclimation pretreatment on the ultrastructure of mesophyll cells in young grape plants (Vitis vinifera l. cv. jingxiu) under cross-temperature stresses. Journal of Integrative Plant Biology, 47, 959–970.CrossRefGoogle Scholar
  162. Zhang, M., Zhai, Z., Tian, X., Duan, L., & Li, Z. (2008). Brassinolide alleviated the adverse effect of water deficits on photosynthesis and the antioxidant of soybean (Glycine max L.). Plant Growth Regulation, 56, 257–264.CrossRefGoogle Scholar
  163. Zhang, M. K., Liu, Z. Y., & Wang, H. (2010). Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice. Communications in Soil Science and Plant Analysis, 41, 820–831.CrossRefGoogle Scholar
  164. Zhu, J. K. (2001). Cell signaling under salt, water and cold stresses. Current Opinion in Plant Biology, 4, 401–406.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Husna Siddiqui
    • 1
  • Fareen Sami
    • 1
  • Mohammad Faizan
    • 1
  • Ahmad Faraz
    • 1
  • Shamsul Hayat
    • 1
  1. 1.Plant Physiology Section, Department of BotanyAligarh Muslim UniversityAligarhIndia

Personalised recommendations