Advertisement

Brassinosteroids and Senescence

  • Serap Sağlam ÇağEmail author
Chapter

Abstract

Leaf senescence is a genetically controlled process which can cause nutrients to transport through the newly developed young parts from old organs. Senescence process is effected by developmental and environmental signals and ultimately it is reprogrammed metabolically. It has been known that senescence process was effected by plant hormones. The senescence includes changes of their photosynthetic apparatus. Yellowing of cotyledones and leaves is clear that chlorophyll breakdown has served as the primary parameter for the measurement of senescence. It has been known that ethylene, ABA and brassinosteroids promote senescence but auxins, cytokinins and gibberellins are retardants of senescence. However, the correlation between hormones is very effective in the senescence process. The part of investigations on senescence has been included external application of a substance before the onset of senescence are in plants. The findings of these applications are still being discussed. In this chapter, the effect of brassinosteroids on senescence is discussed.

Keywords

Brassinosteroids Senescence Cotyledon Plant Hormones Auxin 

Notes

Acknowledgements

I am grateful to Istanbul University’s Scientific Research Project Unit (BAP), which supports my projects when I approach the mysterious world of brassinosteroids during my senescence studies.

My studies on this subject is supported by BAP, Istanbul University’s Scientific Research Project Unit, with the projects. I would like to thank Shamsul Hayat for offering to contribute to the creation of this book. Also, I apologize in advance of all the scientists working on brassinosteroids and senescence that I have inadvertently made mistakes during writing the chapter. I would also like to thank Serhat Başkan for helping with the English text.

References

  1. Altman, A., & Wareing, P. F. (1975). The effect of IAA on sugar accumulation and basipetal transport of C14 labelled assimilates in relation to root formation in Phaseolus vulgaris cuttings. Physiologia Plantarum, 33, 32–38.CrossRefGoogle Scholar
  2. Bajguz, A., & Hayat, S. (2009). Effect of brassinosteroids on plant responses to environmental stresses. Plant Phsiology and Biochemistry, 47, 1–8.CrossRefGoogle Scholar
  3. Bertoša, B., Kojić-Prodić, B., Wade, R. C., & Tomić, S. (2008). Mechanism of auxin interaction with auxin binding protein (ABP1): A molecular dynamics simulation study. Biophysical Journal, 94, 27–37.CrossRefGoogle Scholar
  4. Brault, M., & Maldiney, R. (1999). Mechanisms of cytokinin action. Plant Physiology and Biochemistry, 37, 403–412.CrossRefGoogle Scholar
  5. Buchanan-Wollaston, V. (1997). The molecular biology of leaf senescence. Journal of Experimental Botany, 48, 181–199.CrossRefGoogle Scholar
  6. Buchanan-Wollaston, V., Wellesbourne, H. R. I., & Warwick, U. K. (2003a). Senescence, leaves. In Encyclopedia of applied plant sciences (pp. 808–816). Amsterdam: Elsevier Academic Press.CrossRefGoogle Scholar
  7. Buchanan-Wollaston, V., Earl, S., Harrison, E., Mathas, E., Navabpour, S., Page, T., & Pink, D. (2003b). The molecular analysis of leaf senescence-a genomics approach. Plant Biotechnology Journal, 1, 3–22, issn 1467-7644.CrossRefGoogle Scholar
  8. Çağ, S., Cevahir, G., Ünal, M., Kaplan, E., Çıngıl, Ç., & Kösesakal, T. (2004). The Effect of Zn, Cu and Mn on senescence in excised cotyledons of Eruca sativa L. Fresenius Environmental Bulletin (FEB), 13, 733–739.Google Scholar
  9. Choe, S., Dilkes, B. P., Gregory, B. D., Ross, A. S., Yuan, H., Noguchı, T., Fujıoka, S., Takatsuto, S., Tanaka, A., Yoshıda, S., Tax, F. E., & Feldmann, K. A. (1999). The Arabidopsis dwarf1 mutant is defective in the conversion of 24-methylenecholesterol to campesterol in brassinosteroid biosynthesis. Plant Physiology, 119, 897–908.CrossRefGoogle Scholar
  10. Çıngıl-Barış, Ç., & Sağlam-Çağ, S. (2016). The effects of brassinosteroids on sequential leaf senescence occurring in Glycine max L. International Journal of Bio-Technology and Research (IJBTR), 6, 7–16.Google Scholar
  11. Clouse, S. D., & Sasse, J. M. (1998). Brassinosteroids: Essential regulators of plant growth and development. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 427–451.CrossRefGoogle Scholar
  12. Cutter, E. G. (1979). Plant anatomy (2nd ed., p. 156). London: Edward Arnold.Google Scholar
  13. Divi, U. D., Rahman, T., & Krishna, P. (2010). Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biology, 10, 151–165.CrossRefGoogle Scholar
  14. Even-Chen, Z., Atsom, D., & Itai, C. (1978). Hormonal aspects of senescence in detached tobacco leaves. Physiologia Plantarum, 44, 377–382.CrossRefGoogle Scholar
  15. Gan, S., & Amasino, R. M. (1997). Making sense of senescence: Molecular genetic regulation and manipulation of leaf senescence. Plant Physiology, 113, 313–319.CrossRefGoogle Scholar
  16. Guo, Y., Cai, Z., & Gan, S. (2004). Transcriptome of Arabidopsis leaf senescence. Plant, Cell & Environment, 27, 521–549.CrossRefGoogle Scholar
  17. He, Y., Xu, R., & Zhao, Y. (1996). Enhancement of senescence by epibrassinolide in leaves of mung bean seedling. Acta Phytophysiologica Sinica, 22, 58–62.Google Scholar
  18. He, Y., Tang, W., Swain, J., Green, A., Jack, T., & Gan, S. (2001). Networking senescence-regulating pathways by using Arabidopsis enhancer trap lines. Plant Physiology, 126, 707–716.CrossRefGoogle Scholar
  19. Hildebrand, F. (1882). Die Lebensdauer und vegatationsweise derpflanzen, ihre ursache und ihre entwieklung. Botanische Jahrbücher, 2, 51–135.Google Scholar
  20. Hörtensteiner, S., & Feller, U. (2002). Nitrogen metabolism and remobilization during senescence. Journal of Experimental Botany, 53, 927–937.CrossRefGoogle Scholar
  21. Jibran, R., Hunter, D. A., & Dijkwel, P. P. (2013). Hormonal regulation of leaf senescence through integration of developmental and stress signals. Plant Molecular Biology, 82, 547–561.CrossRefGoogle Scholar
  22. Kaplan-Dalyan, E., & Sağlam-Çağ, S. (2013). The effect of epibrassinolide on senescence in horizontal sunflower (Helianthus annuus L.) seedlings. IUFS Journal of Biology, 72, 33–44.Google Scholar
  23. Khripach, V. A., Zhabinskii, V. N., & Groot, A. D. (2000). Twenty years of Brassinosteroids: Steroidal plant hormones warrant better crops for the XXI century. Annals of Botany, 86, 441–447.CrossRefGoogle Scholar
  24. Li, J., Nagpal, P., Vitart, V., Mcmorris, T. C., & Chory, J. (1996). A role for brassinosteroids in light-dependent development of Arabidopsis. Science, 272, 398–401.CrossRefGoogle Scholar
  25. Mandava, N. B., Sasse, J. M., & Yopp, J. H. (1981). Brassinolide, a growth promoting steroidal lactone. II. Activity in selected gibberellin and cytokinin bioassays. Physiologia Plantarum, 53, 453–461.CrossRefGoogle Scholar
  26. Matile, P. (1992). Chloroplast senescence. In N. R. Baker & H. Thomas (Eds.), Crop photosynthesis: Spatial and temporal determinants (pp. 413–440). Amsterdam: Elsevier Science.CrossRefGoogle Scholar
  27. McCarthy, J. J., Canziani, O. F., Leary, N. A., Dokken, D. J., & White, K. S. (2001). Climate change: Impacts, adaptation, and vulnerability. New York: Cambridge University Press.Google Scholar
  28. McGoodwin, M. (2008). The physiology of higher plants an outline (p. 108). http://www.uwyo.edu/botany4400/ using the same textbook to present a quite different plant physiology course outline.
  29. Mencuccini, M., & Munné-Bosch, S. (2017). Physiological and biochemical processes related to ageing and senescence in plants, from part III – Senescence in plants (pp. 257–283). Cambridge: Cambridge University Press.Google Scholar
  30. Molisch, H. (1928). Die Lenensdaver der Pflanze (G. Fisher Verlag, E. H. Fulling, Englisth Trans.). Lanchester: Science Press.Google Scholar
  31. Munné-Bosch, S., & Alegre, L. (2002). Plant aging increases oxidative stress in chloroplasts. Planta, 214, 608–615.CrossRefGoogle Scholar
  32. Nemhauser, J. L., & Chory, J. (2004). BRing it on: New insights into the mechanism of brassinosteroid action. Journal of Experimental Botany, 55, 265–270.CrossRefGoogle Scholar
  33. Noodén, D., & Penney, J. P. (2001). Correlative controls of senescence and plant death in Arabidopsis thaliana (Brassicaceae). Journal of Experimental Botany, 52, 2151–2159.CrossRefGoogle Scholar
  34. Ramakrishna, B., & Rao, S. S. R. (2012). 24-Epibrassinolide alleviated zinc-induced oxidative stress in radish (Raphanus sativus L.) seedlings by enhancing antioxidative system. Plant Growth Regulation, 68, 249–259.CrossRefGoogle Scholar
  35. Rao, S. S. R., Vardhini, B. V., Sujatha, E., & Anuradha, S. (2002). Brassinosteroidsa new class of phytohormones. Current Science, 82, 1239–1245.Google Scholar
  36. Sağlam, S., & Okatan, Y. (1990). Investigations on sequential leaf senescence in some epigeal seedlings. In Botanik Bildirileri (pp. 249–257). Erzurum: Erzurum Atatürk Üniversitesi.Google Scholar
  37. Sağlam-Çağ, S. (2007). The effect of epibrassinolide on senescence in wheat leaves. Biotechnology & Biotechnolojical Equipment., 21, 63–65.CrossRefGoogle Scholar
  38. Sağlam-Çağ, S., & Okatan, Y. (2014). The effects of zinc (Zn) and C14-indoleacetic acid (IAA) on leaf senescence in Helianthus annuus L. International Journal of Plant Physiology and Biochemistry, 6, 28–33.CrossRefGoogle Scholar
  39. Savaldi-Goldstein, S., & Chory, J. (2006). Brassinosteroids. In L. Taiz & E. Zeiger (Eds.), Plant Physiology (4th ed., pp. 617–634). Sunderland: Sinauer Associates. isbn:0878938567.Google Scholar
  40. Srivastava, L. M. (2002). Plant growth and development. Hormones and environment. California: Academic, 0-12-660570-X.Google Scholar
  41. Takaki, K., & Kushizaki, M. (1970). Accumulation of free tryptophan and triptamin in zinc deficient maize seedlings. Plant & Cell Physiology, 11, 793–804.Google Scholar
  42. Thomas, H. (2003). Do green plant age, and if so, how? Topics in Current Genetics, 3, 145–171.CrossRefGoogle Scholar
  43. Thomas, H., & Stoddart, J. L. (1980). Leaf senescence. Annual Review of Plant Physiology, 31, 83–111.CrossRefGoogle Scholar
  44. Thompson, J. E., Hopkins, M. T., Taylor, C., & Wang, T. W. (2004). Regulation of senescence by eukaryotic translation initiation factor 5A: Implications for plant growth and development. Trends in Plant Science, 9, 174–179.CrossRefGoogle Scholar
  45. Troncoso-Ponce, M. A., Cao, X., Yang, Z., & Ohlrogge, J. B. (2013). Lipid turnover during senescence. Plant Science, 205-206, 13–19.CrossRefGoogle Scholar
  46. Van Lijsebettens, M., & Clarke, J. (1998). Leaf development in Arabidopsis. Plant Physiology and Biochemistry, 36, 47–60.CrossRefGoogle Scholar
  47. Wang, T. W., Lu, L., Wang, D., & Thompson, J. E. (2001). Isolation and characterization of senescence induced cDNAs encoding deoxyhypusine synthase and eucaryotic translation initiation factor 5A from tomato. The Journal of Biological Chemistry, 276, 17541–17549.CrossRefGoogle Scholar
  48. Wang, T. W., Lu, L., Zhang, C. G., Taylor, C. A., & Thompson, J. E. (2003). Pleiotropic effects of suppressing deoxyhypusine synthase expression in Arabidopsis thaliana. Plant Molecular Biology, 52, 1223–1235.CrossRefGoogle Scholar
  49. Wang, T. W., Zhang, C. G., Wu, W., Nowack, L. M., Madey, E., & Thompson, J. E. (2005). Antisense suppression of deoxyhypusine synthase in tomato delays fruit softening and alters growth and development. Plant Physiology, 138, 1372–1382.CrossRefGoogle Scholar
  50. Yun, H. R., Joo, S. H., Park, C. H., Kim, S. K., Chang, S. C., & Kim, S. Y. (2009). Effects of brassinolide and IAA on ethylene production and elongation in maize primary roots. Journal of Plant Biology, 52, 268–274.CrossRefGoogle Scholar
  51. Zhang, Q., Xia, C., Zhang, L., Dong, C., Liu, X., & Kong, X. (2018). Transcriptome analysis of a premature leaf senescence mutant of common wheat (Triticum aestivum L.). International Journal of Molecular Sciences, 19(782), 1–18.Google Scholar
  52. Zhao, Y. J., Xu, R. J., & Luo, W. H. (1990). Inhibitory effects of abscisic acid on epibrassinolide-induced senescence of detached cotyledons in cucumber seedlings. Chinese Science Bulletin, 35, 928–931.Google Scholar
  53. Zimmermann, P., & Zentgraf, U. (2005). The correlation between oxidative stress and leaf senescence during plant development. Cellular & Molecular Biology Letters, 10, 515–534. ISSN 1425-8153.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Faculty of Science, Division of Biology, Department of BotanyIstanbul UniversityIstanbulTurkey

Personalised recommendations