Role of Brassinosteroids in the Plant Response to Drought: Do We Know Anything for Certain?

  • Dana HolaEmail author


Brassinosteroids (BRs) are considered to be major players in the plant response to unfavourable conditions. They have been reported to alleviate stress symptoms and to enhance plant tolerance to various abiotic and biotic stressors including drought. However, our current knowledge of the role of BRs in the plant drought response should perhaps be limited only to the statement that the treatment of plants with BRs can mitigate the negative effects of this stress factor. No clear conclusions on the role of these phytohormones in the plant drought response should be inferred from the currently available data, because the results of BR/drought studies often differ quite substantially. This chapter attempts to provide a critical evaluation of the information available on this topic, i.e., data obtained either from plants treated with exogenously applied BRs or mutants in BR biosynthesis/perception. The existing studies are considered from several viewpoints regarding important aspects of their experimental design and attention is also drawn to some of their shortcomings. The question of whether BRs truly function as specific regulators of drought-induced response or whether the observed effects of BRs on drought-stressed plants are of a more general character remains unanswered.


Brassinosteroids Drought Stress Exogenous application Mutants Gene expression Photosynthesis Cell damage and protection Plant morphology Design of experiments 


  1. Ahmed, A. H. H., Darwish, E., & Alobaidy, M. G. (2017). Impact of putrescine and 24-epibrassinolide on growth, yield and chemical constituents of cotton (Gossypium barbadense L.) plant grown under drought stress conditions. Asian Journal of Plant Sciences, 16, 9–23.CrossRefGoogle Scholar
  2. Alyemeni, M. N., & Al-Quwaiz, S. M. (2014). Effect of 28-homobrassinolide on the drought induced changes in the seeds of Vigna radiata. Legume Research, 37, 515–519.CrossRefGoogle Scholar
  3. Ambrosone, A., Costa, A., Martinelli, R., Massarreli, I., De Simone, V., Grillo, S., & Leone, A. (2011). Differential gene regulation in potato cells and plants upon abrupt or gradual exposure to water stress. Acta Physiologiae Plantarum, 33, 1157–1171.CrossRefGoogle Scholar
  4. Ambrosone, A., Batelli, G., Bostan, H., D’Agostino, N., Chiusano, M. L., Perrotta, G., Leone, A., Grillo, S., & Costa, A. (2017). Distinct gene networks drive differential response to abrupt or gradual water deficit in potato. Gene, 597, 30–39.PubMedCrossRefGoogle Scholar
  5. Anjum, S. A., Wang, L. C., Farooq, M., Hussain, M., Xue, L. L., & Zou, C. M. (2011). Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. Journal of Agronomy and Crop Science, 197, 177–185.CrossRefGoogle Scholar
  6. Badhan, S., Kole, P., Ball, A., & Mantri, N. (2018). RNA sequencing of leaf tissues from two contrasting chickpea genotypes reveals mechanisms for drought tolerance. Plant Physiology and Biochemistry, 129, 295–304.PubMedCrossRefGoogle Scholar
  7. Bai, Z. Y., Wang, T., Wu, Y. H., Wang, K., Liang, Q. Y., Pan, Y. Z., Jiang, B. B., Zhang, L., Liu, G. L., Jia, Y., & Liu, Q. L. (2017). Whole-transcriptome sequence analysis of differentially expressed genes in Phormium tenax under drought stress. Scientific Reports, 7, 41700.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Balaraju, P., Ayodhya Ramulu, C., Venkateshwarlu, M., & Ugandhar, T. (2015). Influence of PEG imposed water stress and exogenous application of brassinosteroids on metabolites in radish. Asian Journal of Science and Technology, 6, 951–955.Google Scholar
  9. Behnamnia, M. (2015). Protective roles of brassinolide on tomato seedlings under drought stress. International Journal of Agriculture and Crop Sciences, 8, 455–462.Google Scholar
  10. Behnamnia, M., Kalantari, K. M., & Rezanejad, F. (2009a). Exogenous application of brassinosteroid alleviates drought-induced oxidative stress in Lycopersicon esculentum L. General and Applied Plant Physiology, 35, 22–34.Google Scholar
  11. Behnamnia, M., Kalantari, K. M., & Ziaie, J. (2009b). The effects of brassinosteroid on the induction of biochemical changes in Lycopersicon esculentum under drought stress. Turkish Journal of Botany, 33, 417–428.Google Scholar
  12. Cartagena, J. A., Seki, M., Tanaka, M., Yamauchi, T., Sato, S., Hirakawa, H., & Tsuge, T. (2015). Gene expression profiles in Jatropha under drought stress and during recovery. Plant Molecular Biology Reporter, 33, 1075–1087.CrossRefGoogle Scholar
  13. Castorina, G., Persico, M., Zilio, M., Sangiorgio, S., Carabelli, L., & Consonni, G. (2018). The maize lilliputian1 (lil1) gene, encoding a brassinosteroid cytochrome P450 C-6 oxidase, is involved in plant growth and drought response. Annals of Botany, 122, 227–238.PubMedCrossRefGoogle Scholar
  14. Chandrasekaran, P., Sivakumar, R., Nandhitha, G. K., Vishnuveni, M., Boominathan, P., & Senthilkumar, M. (2017). Impact of PPFM and PGRs on seed germination, stress tolerant index and catalase activity in tomato (Solanum lycopersicum L.) under drought. International Journal of Current Microbiology and Applied Sciences, 6, 540–549.CrossRefGoogle Scholar
  15. Chen, Z., Wang, Z., Yang, Y., Li, M., & Zu, B. (2018). Abscisic acid and brassinolide combined application synergistically enhances drought tolerance and photosynthesis of tall fescue under water stress. Scientia Horticulturae, 228, 1–9.CrossRefGoogle Scholar
  16. Dash, P. K., Cao, Y., Jailani, A. K., Gupta, P., Venglat, P., Xiang, D., Rai, R., Sharma, R., Thirunavukkarasu, N., Abdin, M. Z., Yadava, D. K., Singh, N. K., Singh, J., Selvaraj, G., Deyholos, M., Kumar, P. A., & Datla, R. (2014). Genome-wide analysis of drought induced gene expression changes in flax Linum usitatissimum. GM Crops and Food, 5, 106–119.PubMedCrossRefGoogle Scholar
  17. Deng, X. G., Zhu, T., Zhang, D. W., & Lin, H. H. (2015). The alternative respiratory pathway is involved in brassinosteroid-induced environmental stress tolerance in Nicotiana benthamiana. Journal of Experimental Botany, 66, 6219–6232.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Dhayal, S. S., Bagdi, D. L., Kakralya, B. L., Saharawat, Y. S., & Jat, M. L. (2012). Brassinolide induced modulation of physiology, growth and yield of wheat (Triticum aestivum L.) under water stress condition. Crop Research, 44, 14–19.Google Scholar
  19. Doležalová, J., Koudela, M., Augustinová, L., & Dubsky, M. (2016a). Brassinosteroide analogue effect on lettuce grown at different moisture levels. Journal of Applied Horticultre, 18, 183–186.Google Scholar
  20. Doležalová, J., Koudela, M., Sus, J., & Ptáček, V. (2016b). Effect of synthetic brassinolide on the yield of onion grown at two irrigation levels. Scientia Horticulturae, 202, 125–132.CrossRefGoogle Scholar
  21. Duan, F., Ding, J., Lee, D., Lu, X., Feng, Y., & Song, W. (2017). Overexpression of SoCYP85A1, a spinach cytochrome p450 gene in transgenic tobacco enhances root development and drought stress tolerance. Frontiers in Plant Science, 8, 1909.PubMedPubMedCentralCrossRefGoogle Scholar
  22. El-Khallal, S. M. (2002). The influence of some phyto-growth regulators on the activity of antioxidant system in maize plant under water stressed conditions. Bulletin of the Faculty of Science Assiut University, 31, 183–197.Google Scholar
  23. El-Khallal, S. M., & Nafie, F. M. (2000). Alleviation of drought damage for two cultivars of wheat seedlings by application of growth regulators brassinolide and uniconazole. Egypt Journal of Physiological Sciences, 24, 297–317.Google Scholar
  24. Eskandari, M. (2011). The effect of 28-Homobrassinolid in reducing the effects of drought in savory herbs. International Journal of Plant Physiology and Biochemistry, 3, 183–187.Google Scholar
  25. Fang, Y., & Xiong, L. (2015). General mechanisms of drought response and their application in drought resistance improvement of plants. Cellular and Molecular Life Sciences, 72, 673–689.PubMedCrossRefGoogle Scholar
  26. Fariduddin, Q., Khanam, S., Hasan, S. A., Ali, B., Hayat, S., & Ahmad, A. (2009). Effect of 28-homobrassinolide on the drought stress-induced changes in photosynthesis and antioxidant system of Brassica juncea L. Acta Physiologiae Plantarum, 31, 889–897.CrossRefGoogle Scholar
  27. Farooq, M., Wahid, A., Basra, S. M. A., & Islam-ud-din, I. (2009). Improving water relations and gas exchange with brassinosteroids in rice under drought stress. Journal of Agronomy and Crop Science, 195, 262–269.CrossRefGoogle Scholar
  28. Farooq, M., Wahid, A., Lee, D. J., Cheema, S. A., & Aziz, T. (2010). Comparative time course action of the foliar applied glycinebetaine, salicylic acid, nitrous oxide, brassinosteroids and spermine in improving drought resistance of rice. Journal of Agronomy and Crop Science, 196, 336–345.CrossRefGoogle Scholar
  29. Fedina, E., Yarin, A., & Mukhitova, F. (2017). Brassinosteroid-induced changes of lipid composition in leaves of Pisum sativum L. during senescence. Steroids, 117, 25–28.PubMedCrossRefGoogle Scholar
  30. Feng, Y., Yin, Y., & Fei, S. (2015). Down-regulation of BdBRI1, a putative brassinosteroid receptor gene produces a dwarf phenotype with enhanced drought tolerance in Brachypodium distachyon. Plant Science, 234, 163–173.PubMedCrossRefGoogle Scholar
  31. Filová, A. (2014). The responses of Helianthus annuus L. to foliar application of 28-homobrassinolide. Research Journal of Agriculture Science, 46, 226–235.Google Scholar
  32. Flexas, J., & Medrano, H. (2016). Photosynthetic response of C3 plants to drought. In A. Hemantaranjan (Ed.), Environmental physiology (pp. 231–308). Jodhpur: Scientific Publishers.Google Scholar
  33. García, A., Rodríguez, T., Héctor, E., & Núñez, M. (2005). Efecto del análogo de brasinoesteroide MH-5 en el crecimiento in vitro del arroz (Oryza sativa L.) en condiciones de déficit hídrico. Cultivos Tropicos, 26, 89–93.Google Scholar
  34. Ghasempour, H. R., Anderson, E. M., Gianello, R. D., & Gaff, D. F. (1998). Growth inhibitor effects on protoplasmic drought tolerance and protein synthesis in leaf cells of the resurrection grass, Sporobolus stapfianus. Plant Growth Regulation, 24, 179–183.CrossRefGoogle Scholar
  35. Gill, M. B., Cai, K. F., Zhang, G., & Zeng, F. (2017). Brassinolide alleviates the drought-induced adverse effects in barley by modulation of enzymatic antioxidants and ultrastructure. Plant Growth Regulation, 82, 447–455.CrossRefGoogle Scholar
  36. Gomes, M. M. A., Netto, A. T., Campostrini, E., Bressan-Smith, R., Zullo, M. A. T., Ferraz, T. M., Siqueira, L. N., Leal, N. R., & Núñez-Vázquez, M. (2013). Brassinosteroid analogue affects the senescence in two papaya genotypes submitted to drought stress. Theoretical and Experimental Plant Physiology, 25, 186–195.Google Scholar
  37. Gruszka, D., Janeczko, A., Dziurka, M., Pociecha, E., & Fodor, J. (2018). Non-enzymatic antioxidant accumulations in BR-deficient and BR-insensitive barley mutants under control and drought conditions. Physiologia Plantarum, 163, 155–169.PubMedCrossRefGoogle Scholar
  38. Gruszka, D., Janeczko, A., Dziurka, M., Pociecha, E., Oklestkova, J., & Szarerjko, I. (2016). Barley brassinosteroid mutants provide an insight into phytohormonal homeostasis in plant reactions to drought stress. Frontiers in Plant Science, 7, 1824.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Gursude, A., Mandavia, C. K., Mandavia, M. K., Raval, L., & Bangar, S. (2014). Influence of brassinosteroids and gibberellic acid on biochemical parameters of chickpea (Cicer arietinum L.) under water stress. Indian Journal of Agricultural Biochemistry, 27, 227–230.Google Scholar
  40. Haider, M. S., Zhang, C., Kurjogi, M. M., Pervaiz, T., Zheng, T., Zhangg, C., Lide, C., Shangguan, L., & Fang, J. (2017). Insights into grapevine defense response against drought, as revealed by biochemical, physiological and RNA-Seq analysis. Scientific Reports, 7, 13134.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Han, Y. J., Kim, Y. S., Hwang, O. J., Roh, J., Ganguly, K., Kim, S. K., Hwan, I., & Kim, J. L. (2017). Overexpression of Arabidopsis thaliana brassinosteroid-related acyltransferase 1 gene induces brassinosteroid-deficient phenotypes in creeping bentgrass. PLoS One, 12, 0187378.Google Scholar
  42. Hashemi, N. B., Sadeghipour, O., & Asl, A. R. (2015). The study effect of brassinosteroid application on yield and yield components of cowpea (Vigna unguiculata) under water stress conditions. International Journal of Biology Pharmacy and Allied Science, 4, 593–605.Google Scholar
  43. Hemmati, K., Ebadi, A., Khomari, S., & Sedghi, M. (2018). Influence of ascorbic acid and 24-epibrassinolide on physiological characteristics of pot marigold under water-stress condition. Journal of Plant Interactions, 13, 364–372.CrossRefGoogle Scholar
  44. Hnilička, F., Bláha, L., & Kadlec, P. (2008a). Influence of application of 24-epibrassinolide during seed wheat development at the stress conditions. Italian Journal of Agronomy, 3, 449–450.Google Scholar
  45. Hnilička, F., Hniličková, H., & Bláha, L. (2008b). The effect of 24-epibrassinolide on gases exchange in wheat. Italian Journal of Agronomy, 3, 451–452.Google Scholar
  46. Hnilička, F., Hniličková, H., & Bláha, L. (2008c). The influence of the application of 24-epibrassinolide on the formation of dry matter and yield in wheat. Italian Journal of Agronomy, 3, 453–454.Google Scholar
  47. Hnilicka, F., Hniličková, H., Martínková, J., & Ladislav, B. (2007). The influence of drought and the application of 24-epibrassinolide on the formation of dry matter and yield in wheat. Cereal Research Communications, 35, 457–460.CrossRefGoogle Scholar
  48. Hnilicka, F., Hniličková, H., Martínková, J., Ladislav, B., & Kadlec, P. (2009). Impact of 24-epibrassinolide on chemical structure and energy content in wheat grain. Lietuvos Žemės Ukio Universitetas Mokslo Darbai, 83, 17–22.Google Scholar
  49. Hnilička, F., Koudela, M., Martínková, J., Hniličková, H., & Hejnak, V. (2010). Effect of water deficit and application of 24-epibrassinolide on gas exchange in cauliflower plants. Scientia Agriculturae Bohemica, 41, 15–20.Google Scholar
  50. Holá, D. (2011). Brassinosteroids and photosynthesis. In S. Hayat & A. Ahmad (Eds.), Brassinosteroids: A class of plant hormone (pp. 143–192). Dordrecht/Heidelberg/London/New York: Springer.CrossRefGoogle Scholar
  51. Hu, W. H., Yan, X. H., Xiao, Y. A., Zeng, J. J., Qi, H. J., & Ogweno, J. O. (2013). 24-Epibrassinosteroid alleviate drought-induced inhibition of photosynthesis in Capsicum annuum. Scientia Horticulturae, 150, 232–237.CrossRefGoogle Scholar
  52. Jäger, C. E., Symons, G. M., Ross, J. J., & Reid, J. B. (2008). Do brassinosteroids mediate the water stress response? Physiologia Plantarum, 133, 417–425.PubMedCrossRefGoogle Scholar
  53. Janeczko, A. (2011). The significance of ethanol as a hormone solvent in experiments on the physiological activity of brassinosteroids. In S. Hayat & A. Ahmad (Eds.), Brassinosteroids: A class of plant hormone (pp. 361–374). Dordrecht/Heidelberg/London/New York: Springer.CrossRefGoogle Scholar
  54. Janeczko, A., & Swaczynová, J. (2010). Endogenous brassinosteroids in wheat treated with 24-epibrassinolide. Biologia Plantarum, 54, 477–482.CrossRefGoogle Scholar
  55. Janeczko, A., Biesaga-Kościelniak, J., Oklešťková, J., Filek, M., Dziurka, M., Szarek-Łukaszewska, G., & Kościelniak, J. (2010). Role of 24-epibrassinolide in wheat production: Physiological effects and uptake. Journal of Agronomy and Crop Science, 196, 311–321.Google Scholar
  56. Janeczko, A., Biesaga-Kościelniak, J., Dziurka, M., Oklestkova, J., Kocurek, M., Szarek-Lukaszewska, G., & Janeczko, Z. (2011a). Response of polish cultivars of soybean (Glycine max (L.) Merr.) to brassinosteroid application. Acta Scientiarum Polonorum Agriculture, 10, 33–50.Google Scholar
  57. Janeczko, A., Oklešťková, J., Pociecha, E., Kościelniak, J., & Mirek, M. (2011b). Physiological effects and transport of 24-epibrassinolide in heat-stressed barley. Acta Physiologiae Plantarum, 33, 1249–1259.CrossRefGoogle Scholar
  58. Janeczko, A., Gruszka, D., Pociecha, E., Dziurka, M., Filek, M., Jurczyk, B., Kalaji, H. M., Kocurek, M., & Waligórski, P. (2016). Physiological and biochemical characterisation of watered and drought-stressed barley mutants in the HvDWARF gene encoding C6-oxidase involved in brassinosteroid biosynthesis. Plant Physiology and Biochemistry, 99, 126–141.PubMedCrossRefGoogle Scholar
  59. Jangid, K. K., & Dwivedi, P. (2017). Physiological and biochemical changes by nitric oxide and brassinosteroid in tomato (Lycopersicon esculentum Mill.) under drought stress. Acta Physiol Plant, 39, 73.CrossRefGoogle Scholar
  60. Janiak, A., Kwasniewski, M., Sowa, M., Gajek, K., Żmuda, K., Kościelniak, J., & Szarejko, I. (2018). No time to waste: Transcriptome study reveals that drought tolerance in barley may be attributed to stressed-like expression patterns that exist before the occurrence of stress. Frontiers in Plant Science, 8, 2112.CrossRefGoogle Scholar
  61. Kagale, S., Divi, U. K., Krochko, J. E., Keller, W. A., & Krishna, P. (2007). Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta, 225, 353–364.PubMedCrossRefGoogle Scholar
  62. Khamsuk, O., Sonjaroon, W., Suwanwong, S., Jutamanee, K., & Suksamrarn, A. (2018). Effects of 24-epibrassinolide and the synthetic brassinosteroid mimic on chili pepper under drought. Acta Physiologiae Plantarum, 40, 106.CrossRefGoogle Scholar
  63. Kim, B. K., Fujioka, S., Takatsuto, S., Tsujimoto, M., & Choe, S. (2008). Castasterone is a likely end product of brassinosteroid biosynthetic pathway in rice. Biochemical and Biophysical Research Communications, 374, 614–619.PubMedCrossRefPubMedCentralGoogle Scholar
  64. Kočová, M., Rothová, O., Holá, D., Kvasnica, M., & Kohout, L. (2010). The effects of brassinosteroids on photosynthetic parameters in leaves of two field-grown maize inbred lines and their F1 hybrid. Biologia Plantarum, 54, 785–788.CrossRefGoogle Scholar
  65. Koh, S., Lee, S. C., Kim, M. K., Koh, J. H., Lee, S., An, G., Choe, S., & Kim, S. R. (2007). T-DNA tagged knockout mutation of rice OsGSK1, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses. Plant Molecular Biology, 65, 453–466.PubMedCrossRefPubMedCentralGoogle Scholar
  66. Kumar, A. A. A., Surendar, K. K., & Jalaluddin, S. M. (2017). Mitigation of drought through physiological modification in ragi under rainfed conditions. International Journal of Current Microbiology and Applied Sciences, 6, 1864–1869.CrossRefGoogle Scholar
  67. Kumar, M. S. S., Mawlong, I., Ali, K., & Tyagi, A. (2018). Regulation of phytosterol biosynthetic pathway during drought stress in rice. Plant Physiology and Biochemistry, 129, 11–22.PubMedCrossRefGoogle Scholar
  68. Kumawat, B. L., Sharma, D. D., & Jat, S. C. (1997). Effect of brassinosteroid on yield and yield attributing characters under water deficit stress conditions in mustard (Brassica juncea (L.) Czern and Coss.). Annales Biologiques, 13, 91–93.Google Scholar
  69. Kuneš, I., Baláš, M., Linda, R., Gallo, J., & Nováková, O. (2016). Effects of brassinosteroid application on seed germination of Norway spruce, Scots pine, Douglas fir and English oak. IForest, 10, 121–127.CrossRefGoogle Scholar
  70. Lal, S., Bagdi, D. L., Kakralya, B. L., Jat, M. L., & Sharma, P. C. (2013). Role of brassinolide in alleviating the adverse effect of drought stress on physiology, growth and yield of green gram (Vigna radiata L.) genotypes. Legume Research, 36, 359–363.Google Scholar
  71. Latha, P., & Vardhini, B. V. (2016). Effect of brassinolide on the growth of mustard crops grown in semi-arid tropics of Nizambad. International Journal of Plant and Soil Science, 9, 1–5.CrossRefGoogle Scholar
  72. Le, D. T., Nishiyama, R., Watanabe, Y., Tanaka, M., Seki, M., Ham, L. H., Yamaguchi-Shinozaki, K., Shinozaki, K., & Tran, P. L. S. (2012). Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptomic analysis. PLoS One, 7, 49522.CrossRefGoogle Scholar
  73. Lee, J., Shim, D., Moon, S., Kim, H., Bae, W., Kim, K., Kim, Y. H., Rhee, S. K., Hong, C. P., Hong, S. Y., Lee, Y. J., Sung, J., & Ryu, H. (2018). Genome-wide transcriptomic analysis of BR-deficient Micro-Tom reveals correlations between drought stress tolerance and brassinosteroid signaling in tomato. Plant Physiology and Biochemistry, 127, 553–560.PubMedCrossRefGoogle Scholar
  74. Li, K. R., & Feng, C. H. (2011). Effects of brassinolide on drought resistance of Xanthoceras sorbifolia seedlings under water stress. Acta Physiologiae Plantarum, 33, 1293–1300.CrossRefGoogle Scholar
  75. Li, K. R., Wang, H. H., Han, G., Wang, Q. J., & Fan, J. (2008). Effects of brassinolide on the survival, growth and drought resistance of Robinia pseudoacacia seedlings under water-stress. New Forests, 35, 255–266.CrossRefGoogle Scholar
  76. Li, L., & van Staden, J. (1998a). Effect of plant growth regulators on the antioxidant system in callus of two maize cultivars subjected to water stress. Plant Growth Regulation, 24, 55–66.CrossRefGoogle Scholar
  77. Li, L., & van Staden, J. (1998b). Effects of plant growth regulators on drought resistance of two maize cultivars. South African Journal of Botany, 64, 116–120.CrossRefGoogle Scholar
  78. Li, L., van Staden, J., & Jäger, A. K. (1998). Effects of plant growth regulators on the antioxidant system in seedlings of two maize cultivars subjected to water stress. Plant Growth Regulation, 25, 81–87.CrossRefGoogle Scholar
  79. Li, X. J., Chen, X. J., Guo, X., Yin, L. L., Ahammed, G. J., Xu, C. J., Chen, K. S., Liu, C. C., Xia, X. J., Shi, K., Zhou, J., Zhou, Y. H., & Yu, J. Q. (2016). DWARF overexpression induces alteration in phytohormone homeostasis, development, architecture and carotenoid accumulation in tomato. Plant Biotechnology Journal, 14, 1021–1033.PubMedCrossRefGoogle Scholar
  80. Li, Y. H., Liu, Y. J., Xu, X. L., Jin, M., An, L. Z., & Zhang, H. (2012). Effect of 24-epibrassinolide on drought stress-induced changes in Chorispora bungeana. Biologia Plantarum, 56, 192–196.CrossRefGoogle Scholar
  81. Liu, J., Guo, C., Chen, Z. L., He, J. D., & Zou, Y. N. (2016). Mycorrhizal inoculation modulates root morphology and root phytohormone responses in trifoliate orange under drought stress. Emirates Journal of Food Agriculture, 28, 251–256.CrossRefGoogle Scholar
  82. Lima, J. V., & Lobato, A. K. S. (2017). Brassinosteroids improve photosystem II efficiency, gas exchange, antioxidant enzymes and growth of cowpea plants exposed to water deficit. Physiology and Molecular Biology of Plants, 23, 59–72.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Mahesh, K., Balaraju, P., Ramakrishna, B., & Rao, S. S. R. (2013). Effect of brassinosteroids on germination and seedling growth of radish (Raphanus sativus L.) under PEG-6000 induced water stress. Amer Journal of Plant Science, 4, 2305–2313.CrossRefGoogle Scholar
  84. Mazorra, L. M., & Núñez, M. (2003). Influencia de análogos de brasinoesteroides en la respuesta de plantas de tomate a diferentes estrés ambientales. Cultivos Tropicos, 24, 35–40.Google Scholar
  85. Mousavi, A. E., Manochehri Kalantari, K., & Jafari, S. R. (2009). Change of some osmolytes accumulation in water-stressed colza (Brassica napus L.) as affected by 24-epibrassinolide. Iranian Journal of Science and Technology Transactions A, 33, A1.Google Scholar
  86. Nishikawa, N., Toyama, S., Shida, A., & Futatsuya, F. (1994). The uptake and the transport of 14C-labeled epibrassinolide in intact seedlings of cucumber and wheat. Journal of Plant Research, 107, 125–130.CrossRefGoogle Scholar
  87. Nolan, T., Chen, J., & Yen, Y. (2017). Cross-talk of brassinosteroid signaling in controlling growth and stress responses. The Biochemical Journal, 474, 2641–2661.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Northey, J. G. B., Liang, S., Jamshed, M., Deb, S., Foo, E., Rerd, J. B., McCourt, P., & Samuel, M. A. (2016). Farnesylation mediates brassinosteroid biosynthesis to regulate abscisic acid responses. Nature Plants, 2, 16114.PubMedCrossRefGoogle Scholar
  89. Oliver, M. J., Jain, R., Balbuena, T. S., Agrawal, G., Gasulla, F., & Thelen, J. J. (2011). Proteome analysis of leaves of the dessication-tolerant grass, Sporobolus stapfianus, in response to dehydration. Phytochemistry, 72, 1273–1284.PubMedCrossRefGoogle Scholar
  90. Peleg, Z., Reguera, M., Tumimbang, E., Walia, H., & Blumwald, E. (2011). Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress. Plant Biotechnology Journal, 9, 747–758.PubMedCrossRefGoogle Scholar
  91. Poorter, H., Bühler, J., van Dusschoten, D., Climent, J., & Postma, J. A. (2012a). Pot size matters: A meta-analysis of the effects of rooting volume on plant growth. Functional Plant Biology, 39, 839–850.CrossRefGoogle Scholar
  92. Poorter, H., Fiorani, F., Stitt, M., Schurr, U., Finck, A., Gibon, Y., Usadel, B., Munns, R., Atkin, O.K., Tardieu, F¸ Pons, T.L. 2012b. The art of growing plants for experimental purposes: A practical guide for the plant biologist. Functional Plant Biology 39: 821–838.CrossRefGoogle Scholar
  93. Prusakova, L. D., Chizhova, S. I., Ageeva, L. F., Golantseva, E. N., & Yakovlev, A. F. (2000). Effect of epibrassinolide and Ekost on the drought resistance and productivity of spring wheat. Agrokhimija, 2000, 50–54.Google Scholar
  94. Pustovoitova, T. N., Zhdanova, N. E., & Zholkevich, V. N. (2001). Epibrassinolide increases plant drought resistence. Doklady. Biochemistry and Biophysics, 376, 36–38.PubMedCrossRefGoogle Scholar
  95. Rajasekaran, L. R., & Blake, T. J. (1999). New plant growth regulators protect photosynthesis and enhance growth under drought of jack pine seedlings. Journal of Plant Growth Regulation, 18, 175–181.PubMedCrossRefGoogle Scholar
  96. Redjala, T., Zelko, I., Sterckeman, T., Legué, V., & Lux, A. (2011). Relationship between root structure and root cadmium uptake in maize. Environmental and Experimental Botany, 71, 241–248.CrossRefGoogle Scholar
  97. Rivero, R. M., Gimeno, J., van Deynze, A., Walia, H., & Blumwald, E. (2010). Enhanced cytokinin synthesis in tobacco plants expressing P SARK ::IPT prevents the degradation of photosynthetic protein complexes during drought. Plant & Cell Physiology, 51, 1929–1941.CrossRefGoogle Scholar
  98. Rothová, O., Holá, D., Kočová, M., Tůmová, L., Hnilička, F., Hniličková, H., Kamlar, M., & Macek, T. (2014). 24-Epibrassinolide and 20-hydroxyecdysone affect photosynthesis differently in maize and spinach. Steroids, 85, 44–57.PubMedCrossRefPubMedCentralGoogle Scholar
  99. Sağlam-Çağ, S. (2007). The effect of epibrassinolide on senescence in wheat leaves. Biotechnology and Biotechnological Equipment, 21, 63–65.CrossRefGoogle Scholar
  100. Sahni, S., Prasad, B. D., Liu, Q., Grbic, V., Sharpe, A., Singh, S. P., & Krishna, P. (2016). Overexpression of the brassinosteroid biosynthetic gene DWF4 in Brassica napus simultaneously increases seed yield and stress tolerance. Scientific Reports, 6, 28298.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Sairam, R. K. (1994a). Effect of homobrassinolide application on metabolic activity and grain yield of wheat under normal and water-stress condition. Journal of Agronomy and Crop Science, 173, 11–16.CrossRefGoogle Scholar
  102. Sairam, R. K. (1994b). Effect of homobrassinolide application on plant metabolism and grain yield under irrigated and moisture stress condition of two wheat varieties. Plant Growth Regulation, 14, 173–181.CrossRefGoogle Scholar
  103. Sairam, R. K., Shukla, D. S., & Deshmuk, P. S. (1996). Effect of homobrassinolide seed treatment on germination, α-amylase activity and yield of wheat under moisture stress conditions. Indian Journal of Plant Physiology, 1, 141–144.Google Scholar
  104. Savaliya, D. D., Mandavia, C. K., & Mandavia, M. K. (2013). Role of brassinolide on enzyme activities in groundnut under water deficit stress. Indian Journal of Agricultural Biochemistry, 26, 92–96.Google Scholar
  105. Schilling, G., Schiller, C., & Otto, S. (1991). Influence of brassinosteroids on organ relations and enzyme activities of sugar-beet plants. In H. G. Cutler, T. Yokota, & G. Adam (Eds.), Brassinosteroids: Chemistry, bioactivity and applications (pp. 208–219). Washington, DC: American Chemical Society.CrossRefGoogle Scholar
  106. Sedghi, M., Sharifi, R. S., Pirzad, A. R., & Amanpour-Balaneji, B. (2012). Phytohormonal regulation of antioxidant systems in petals of drought stressed pot marigold (Calendula officinalis L.). Journal of Agriculture, Science and Technology, 14, 869–878.Google Scholar
  107. Shahana, T., Rao, P. A., Ram, S. S., & Sujhata, E. (2015). Mitigation of drought stress by 24-epibrassinolide and 28-homobrassinolide in pigeon pea seedlings. International Journal of Multidisciplinary and Current Research, 3, 904–911.Google Scholar
  108. Shakirova, F., Allagulova, C., Maslennikova, D., Fedorova, K., Yuldashev, R., Lubyanova, A., Bezrukova, M., & Avalbaev, A. (2016). Involvement of dehydrins in 24-epibrassinolide-induced protection of wheat plants against drought stress. Plant Physiology and Biochemistry, 108, 539–548.PubMedCrossRefGoogle Scholar
  109. Shamloo-Dashtpagerdi, R., Razi, H., & Ebrahimie, E. (2015). Mining expressed sequence tags of rapeseed (Brassica napus L.) to predict the drought responsive regulatory network. Physiology and Molecular Biology of Plants, 21, 329–340.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Singh, J., Nakamura, S., & Ota, Y. (1993). Effect of epibrassinolide on gram (Cicer arietinum) plants grown under water stress in the juvenile stage. Indian Journal of Agricultural Sciences, 63, 395–397.Google Scholar
  111. Sivakumar, R., Nandhitha, G. K., Chandrasekaran, P., Boominathan, P., & Senthilkumar, M. (2017). Impact of pink pigmented facultative methylotroph and PGRs on water status, photosynthesis, proline and NR activity in tomato under drought. International Journal of Current Microbiology and Applied Sciences, 6, 1640–1651.CrossRefGoogle Scholar
  112. Skirycz, A., & Inzé, D. (2010). More from less: Plant growth under limited water. Current Opinion in Plant Biology, 21, 197–203.Google Scholar
  113. Song, W. J., Zhou, W. J., Jin, Z. L., Zhang, D., Yoneyama, K., Takeuchi, V., & Joel, D. M. (2006). Growth regulators restore germination of Orobanche seeds that are conditioned under water stress and suboptimal temperature. Australian Journal of Agricultural Research, 57, 1195–1201.CrossRefGoogle Scholar
  114. Symons, G. M., & Reid, J. B. (2004). Brassinosteroids do not undergo long-distance transport in pea. Implications for the regulation of endogenous brassinosteroid levels. Plant Physiology, 135, 2196–2206.PubMedPubMedCentralCrossRefGoogle Scholar
  115. Symons, G. M., Ross, J. J., Jager, C. E., & Reid, J. B. (2008). Brassinosteroid transport. Journal of Experimental Botany, 59, 17–24.PubMedCrossRefGoogle Scholar
  116. Talaat, N. B., & Shawky, B. T. (2016). Dual application of 24-epibrassinolide and spermine confers drought stress tolerance in maize (Zea mays L.) by modulating polyamine and protein metabolism. Journal of Plant Growth Regulation, 35, 518–533.CrossRefGoogle Scholar
  117. Talaat, N. B., Shawky, B. T., & Ibrahim, A. S. (2015). Alleviation of drought-induced oxidative stress in maize (Zea mays L.) plants by dual application of 24-epibrassinolide and spermine. Environmental and Experimental Botany, 113, 47–58.CrossRefGoogle Scholar
  118. Tang, S., Li, L., Wang, Y., Chen, Q., Zhang, W., Jia, G., Zhi, H., Zhao, B., & Diao, X. (2017). Genotype-specific physiological and transcriptomic responses to drought stress in Setaria italica (an emerging model for Panicoidae grasses). Scientific Reports, 7, 10009.PubMedPubMedCentralCrossRefGoogle Scholar
  119. Tůmová, L., Tarkowská, D., Řehořová, K., Marková, H., Kočová, M., Rothová, O., Čečetka, P., & Holá, D. (2018). Drought-tolerant and drought-sensitive genotypes of maize (Zea mays L.) differ in contents of endogenous brassinosteroids and their drought-induced changes. PLoS ONE, 13, 0197870.CrossRefGoogle Scholar
  120. Upreti, K. K., & Murti, G. S. R. (2004). Effects of brassinosteroids on growth, nodulation, phytohormone content and nitrogenase activity in French bean under water stress. Biologia Plantarum, 48, 407–411.CrossRefGoogle Scholar
  121. Vardhini, B. V., & Rao, S. S. R. (2003). Amelioration of osmotic stress by brassinosteroids on seed germination and seedling growth of three varieties of sorghum. Plant Growth Regulation, 41, 25–31.CrossRefGoogle Scholar
  122. Vardhini, B. V., & Rao, S. S. R. (2005). Influence of brassinosteroids on germination and seedling growth of sorghum under water stress. Indian Journal of Plant Physiology, 10, 381–384.Google Scholar
  123. Vardhini, B. V., Sujatha, E., & Rao, S. S. R. (2011). Brassinosteroids: Alleviation of water stress in certain enzymes of sorghum seedlings. Journal of Phytology, 3, 38–43.Google Scholar
  124. Verma, J., Kakralya, B. L., & Jakhar, M. L. (2012). Effect of brassinolide on physiological aspects of chick pea (Cicer arietinum L.) under drought conditions. Journal of Plant Science and Research, 28, 151–155.Google Scholar
  125. Verslues, P. E., Agarwal, M., Katiyar-Agarwal, S., Zhu, J., & Zhu, J. K. (2006). Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. The Plant Journal, 45, 523–539.PubMedCrossRefGoogle Scholar
  126. Wang, Z., Zheng, P., Meng, J., & Xi, Z. (2015). Effect of exogenous 24-epibrassinolide on chlorophyll fluorescence, leaf surface morphology and cellular ultrastructure of grape seedlings (Vitis vinifera L.) under water stress. Acta Physiologiae Plantarum, 37, 1729.CrossRefGoogle Scholar
  127. Wei, L. J., Deng, X. G., Zhu, T., Zheng, T., Li, P. X., Wu, J. Q., Zhang, D. W., & Li, H. H. (2015). Ethylene is involved in brassinosteroids induced alternative respiratory pathway in cucumber (Cucumis sativus L.) seedlings response to abiotic stress. Frontiers in Plant Science, 6, 982.PubMedPubMedCentralGoogle Scholar
  128. Xiong, J. L., Kong, H. Y., Akram, N. A., Bai, X., Ashraf, M., Tan, R. Y., Zhu, H., Siddique, K. H. M., Xiong, Y. C., & Turner, N. C. (2016). 24-epibrassinolide increases growth, grain yield and β-ODAP production in seeds of well-watered and moderately waterstressed grass pea. Plant Growth Regulation, 78, 217–231.CrossRefGoogle Scholar
  129. Xu, H. L., Shida, A., Futatsuya, F., & Kumura, A. (1994a). Effects of epibrassinolide and abscisic acid on Sorghum plants growing under soil water deficit. 1. Effects on growth and survival. Japanese Journal of Crop Science, 63, 671–675.CrossRefGoogle Scholar
  130. Xu, H. L., Shida, A., Futatsuya, F., & Kumura, A. (1994b). Effects of epibrassinolide and abscisic acid on Sorghum plants growing under soil water deficit. 2. Physiological basis for drought resistance induced by exogenous epibrassinolide and abscisic acid. Japanese Journal of Crop Science, 63, 676–681.CrossRefGoogle Scholar
  131. Younesian, A., Norouzi, H. A., & Gholipoor, M. (2017a). Alleviation of drought stress effects on red bean by ultrasonication and foliar application of 24-epi-brassinolid. International Journal of Plant Production, 11, 505–513.Google Scholar
  132. Younesian, A., Norouzi, H. A., Gholipoor, M., & Soltani, A. (2017b). Consequences of ultrasonic waves radiation and 24-epi-brassinolid foliar application for reduction of water deficit stress on qualitative properties of red beans (Akhtar). Journal of Research in Ecology, 5, 686–699.Google Scholar
  133. Yuan, G. F., Jia, C. G., Li, Z., Sun, B., Zhang, L. P., Liu, N., & Wang, G. M. (2010). Effect of brassinosteroids on drought resistance and abscisic acid concentration in tomato under water stress. Scientia Horticulturae, 126, 103–108.CrossRefGoogle Scholar
  134. Zafari, M., & Ebadi, A. (2016). Effects of water stress and brassinosteroids (24-epibrassinolide) on changes of some amino acids and pigments in safflower (Cartamus tinctorius L.). Journal of Current Research Science, S(1), 711–715.Google Scholar
  135. Zhang, A., Zhang, J., Zhang, J., Ye, N., Zhang, H., Tan, M., & Jiang, M. (2011). Nitric oxide mediates brassinosteroid-induced ABA biosynthesis involved in oxidative stress tolerance in maize leaves. Plant & Cell Physiology, 52, 181–192.CrossRefGoogle Scholar
  136. Zhang, M., Zhai, Z., Tian, X., Duan, L., & Li, Z. (2008). Brassinolide alleviated the adverse effect of water deficits on photosynthesis and the antioxidant of soybean (Glycine max L.). Plant Growth Regulation, 56, 257–264.CrossRefGoogle Scholar
  137. Zhao, G., Hu, H., Zhang, P., Su, X., & Zhao, H. (2017). Effects of 24-epibrassinolide on photosynthesis and Rubisco activase gene expression in Triticum aestivum L. seedlings under a combination of drought and heat stress. Plant Growth Regulation, 81, 377–384.CrossRefGoogle Scholar
  138. Zhou, X., Zhang, N., Yang, J., & Si, H. (2016). Functional analysis of potato CPD gene: A rate-limiting enzyme in brassinosteroid biosynthesis under polyethylene glycol-induced osmotic stress. Crop Science, 56, 2675–2687.CrossRefGoogle Scholar
  139. Zhu, J., Lu, P., Jiang, Y., Wang, M., & Zhang, L. (2014). Effects of brassinosteroid on antioxidant system in Salvia miltiorrhiza under drought stress. Journal of Research Agriculture and Animal Science, 2, 1–6.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Genetics and Microbiology, Faculty of ScienceCharles UniversityPragueCzech Republic

Personalised recommendations