Brassinosteroids in Cereals – Presence, Physiological Activity and Practical Aspects

  • Anna JaneczkoEmail author


Brassinosteroids (BRs) are plant steroid hormones that are characterised by a sterane skeleton of four rings with a number of functional groups attached (mainly hydroxyl). The first species from the Poaceae family in which BRs were found was rice (Oryza sativa L., cv. Arborio J1) – castasterone (13.6 pg g−1 F.W.) and dolichosterone (8.4 pg g−1 F.W.). BRs were also found in corn, wheat, rye, barley as well as Phalaris canariensis L. or ryegrass. There are significant differences between the different cereals in the types of BRs that are present and in their concentration. In agricultural and biological experiments whose aim was to clarify the role of these compounds in cereals, exogenous 28-homobrassinolide and 24-epibrassinolide and less often, brassinolide or other BRs were most commonly used. Recently, however, the number of articles in which BR-biosynthetic deficient mutants or BR-signalling mutants are being used in studies has increased. BR mutants of cereals include mutants of rice (i.e. d61), barley (i.e. uzu) and corn (Brd1). It is worth emphasising that in the case of cereal plants, studies on mutants have confirmed lot of the physiological functions of BRs that have previously been reported in works in which exogenous BR was applied. One can also mention the participation of BRs in regulating plant growth, CO2 assimilation, proline and sugar production, their protective effects on the PSII (under stress conditions) or their participation in a complicated network of connections with other plant hormones. In addition to being a good model for studies of the role of BRs in cereals, mutants of cereal crops can be used in agricultural practice, i.e. to create new dwarf cultivars. This chapter will review the knowledge about brassinosteroids in cereals – their presence, physiological activity and practical applications.


Antioxidants Brassinosteroid content Photosynthesis Plant stress response Plant growth and development Poaceae 



The work was supported by grant No. 2013/09/B/NZ9/01653 (National Science Centre – POLAND).


  1. Abe, H., Nakamura, K., Morishita, T., Uchiyama, M., Takatsuto, S., & Ikekawa, N. (1984). Endogenous brassinosteroids of the rice plant: Castasterone and dolichosterone. Agricultural and Biological Chemistry, 48, 1103–1104.Google Scholar
  2. Abe, H., Takatsuto, S., Nakayama, M., & Yokota, T. (1995). 28-homotyphasterol, a new natural brassinosteroid from rice (oryza sativa L.) Bran. Bioscience, Biotechnology, and Biochemistry, 59, 176–178.CrossRefGoogle Scholar
  3. Agami, R. A. (2013). Alleviating the adverse effects of NaCl stress in maize seedlings by pretreating seeds with salicylic acid and 24-epibrassinolide. South African Journal of Botany, 88, 171–177.CrossRefGoogle Scholar
  4. Ali, Q., Athar, H., & Ashraf, M. (2008). Modulation of growth, photosynthetic capacity and water relations in salt stressed wheat plants by exogenously applied 24-epibrassinolide. Plant Growth Regulation, 56, 107–116.CrossRefGoogle Scholar
  5. Antonchick, A. P., Schneider, B., Zhabinskii, V. N., Konstantinova, O. V., & Khripach, V. A. (2003). Biosynthesis of 2,3-epoxybrassinosteroids in seedlings of Secale cereale. Phytochemistry, 63, 771–776.PubMedCrossRefGoogle Scholar
  6. Antonchick, A., Svatos, A., Schneider, B., Konstantinova, O. V., Zhabinskii, V. N., & Khripach, V. A. (2005). 2,3-Epoxybrassinosteroids are intermediates in the biosynthesis of castasterone in seedlings of Secale cereale. Phytochemistry, 66, 65–72.PubMedCrossRefGoogle Scholar
  7. Anuradha, S., & Rao, S. S. R. (2003). Application of brassinosteroids to rice seeds (Oryza sativa L.) reduced the impact of salt stress on growth, prevented photosynthetic pigment loss and increased nitrate reductase activity. Plant Growth Regulation, 40, 29–32.CrossRefGoogle Scholar
  8. Arora, N., Bhardwaj, R., Sharma, P., & Arora, H. K. (2008). 28-Homobrassinolide alleviates oxidative stress in salt treated maize (Zea mays L.) plants. Brazilian Journal of Plant Physiology, 20, 153–157.CrossRefGoogle Scholar
  9. Asahina, M., Tamaki, Y., Sakamoto, T., Shibata, K., Nomura, T., & Yokota, T. (2014). Blue light-promoted rice leaf bending and unrolling are due to up-regulated brassinosteroid biosynthesis genes accompanied by accumulation of castasterone. Phytochemistry, 104, 21–29.PubMedCrossRefGoogle Scholar
  10. Bhardwaj, R., Arora, N., Sharma, P., & Arora, H. K. (2007). Effects of 28-homobrassinolide on seedling growth, lipid peroxidation and antioxidative enzyme activities under nickel stress in seedlings of Zea mays L. Asian Journal of Plant Sciences, 6, 765–772.CrossRefGoogle Scholar
  11. Braun, P., & Wild, A. (1984). The influence of brassinosteroid on growth and parameters of photosynthesis of wheat and mustard plants. Journal of Plant Physiology, 116, 189–196.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Clouse, S. D. (2011). Brassinosteroid signal transduction: From receptor kinase activation to transcriptional networks regulating plant development review. The Plant Cell, 23, 1219–1230.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Dockter, C., Gruszka, D., Braumann, I., Druka, A., Druka, I., Franckowiak, J., Gough, S. P., Janeczko, A., Kurowska, M., Lundqvist, J., Lundqvist, U., Marzec, M., Matyszczak, I., Müller, A. H., Oklešťková, J., Schulz, B., Zakhrabekova, S., & Hansson, M. (2014). Induced variations in brassinosteroid genes define barley height and sturdiness, and expand the “Green Revolution” genetic toolkit. Plant Physiology, 166, 1912–1927.PubMedPubMedCentralCrossRefGoogle Scholar
  14. El-Feky, S. S., & Abo-Hamad, S. A. (2014). Effect of exogenous application of brassinolide on growth and metabolic activity of wheat seedlings under normal and salt stress conditions. Annual Research & Review in Biology, 4, 3687–3698.CrossRefGoogle Scholar
  15. El-Khallal, S. M., Hathout, T. A., Ashour, A. R. A., & Kerrit, A. A. (2009). Brassinolide and salicylic acid induced growth, biochemical activities and productivity of maize plants grown under salt stress. Research Journal of Agriculture and Biological Sciences, 5, 380–390.Google Scholar
  16. Farooq, M., Wahid, A., Basra, S. M. A., & Islam-ud-Din, I. (2009). Improving water relations and gas exchange with brassinosteroids in rice under drought stress. Journal of Agronomy and Crop Science, 195, 262–269.CrossRefGoogle Scholar
  17. Farooq, M., Wahid, A., Lee, D.-J., & Aziz, T. (2010). Drought stress: Comparative time course action of the foliar applied glycinebetaine, salicylic acid, nitrous oxide, brassinosteroids and spermine in improving drought resistance of rice. Journal of Agronomy and Crop Science, 196, 336–345.CrossRefGoogle Scholar
  18. Filek, M., Rudolphi-Skórska, E., Sieprawska, A., Kvasnica, M., & Janeczko, A. (2017). Regulation of the membrane structure by brassinosteroids and progesterone in winter wheat seedlings exposed to low temperature. Steroids, 128, 37–45.PubMedCrossRefGoogle Scholar
  19. Fujii, S., & Saka, H. (2001). Distribution of assimilates to each organ in rice plants exposed to a low temperature at the ripening stage, and the effect of brassinolide on the distribution. Plant Production Science, 4, 136–144.CrossRefGoogle Scholar
  20. Fujioka, S., & Yokota, T. (1997). Biosynthesis and metabolism of brassinosteroids. Physiologia Plantarum, 100, 710–715.CrossRefGoogle Scholar
  21. Gamoh, K., Okamoto, N., Takatsuto, S., & Tejima, I. (1990). Determination of traces of natural brassinosteroids as dansylaminophenylboro-nates by liquid chromatography with fluorimetric detection. Analytica Chimica Acta, 228, 101–105.CrossRefGoogle Scholar
  22. Grove, M. D., Spencer, G. F., Rohwedder, W. K., Mandava, N., Worley, J. F., Warthen, J. D., Jr., Steffens, G. L., Flippen-Anderson, J. L., & Cook, J. C., Jr. (1979). Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature, 281, 216–217.CrossRefGoogle Scholar
  23. Gruszka, D., Szarejko, I., & Maluszynski, M. (2011a). New allele of HvBRI1 gene encoding brassinosteroid receptor in barley. Journal of Applied Genetics, 52, 257–268.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Gruszka, D., Szarejko, I., & Maluszynski, M. (2011b). Identification of barley DWARF gene involved in brassinosteroid synthesis. Plant Growth Regulation, 65, 343–358.CrossRefGoogle Scholar
  25. Gruszka, D., Gorniak, M., Glodowska, E., Wierus, E., Oklestkova, J., Janeczko, A., Maluszynski, M., & Szarejko, I. (2016a). A reverse-genetics mutational analysis of the barley HvDWARF gene results in identification of a series of alleles and mutants with short stature of various degree and disturbance in BR biosynthesis allowing a new insight into the process. International Journal of Molecular Sciences, 17, 600.PubMedCentralCrossRefGoogle Scholar
  26. Gruszka, D., Janeczko, A., Dziurka, M., Pociecha, E., Oklestkova, J., & Szarejko, I. (2016b). Barley brassinosteroid mutants provide an insight into phytohormonal homeostasis in plant reaction to drought stress. Frontiers in Plant Science, 7, 1824.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Hartwig, T., Chuck, G. S., Fujioka, S., Klempien, A., Weizbauer, R., Potluri, D. P. V., Choe, S., Johal, G. S., & Schulz, B. (2011). Brassinosteroid control of sex determination in maize. PNAS, 108, 19814–19819.PubMedCrossRefGoogle Scholar
  28. Hnilička, F., Hniličková, H., Martinková, J., & Bláha, L. (2007). The influence of drought and the application of 24-epibrassinolide on the formation of dry matter and yield in wheat. Cereal Research Communications, 35, 457–460.CrossRefGoogle Scholar
  29. Hnilička, F., Hniličková, H., & Bláha, L. (2008). The effect of 24-epibrassinolide on gases exchange of wheat. Italian Journal of Agronomy/Riv. Agronomy, (3 Suppl), 451–452.Google Scholar
  30. Hnilička, F., Hniličková, H., Martinková, J., Bláha, L., & Kadlec, P. (2009). Impact of 24-Epibrassinolide on chemical structure and energy content in wheat grain. Vagos, 83, 17–22.Google Scholar
  31. Holá, D., Rothova, O., Kočová, M., Kohout, L., & Kvasnica, M. (2010). The effect of brassinosteroids on the morphology, development and yield of field-grown maize. Plant Growth Regulation, 61, 29–43.CrossRefGoogle Scholar
  32. Honnerová, J., Rothová, O., Holá, D., Kočová, M., Kohout, L., & Kvasnica, M. (2010). The exogenous application of brassinosteroids to Zea mays (L.) stressed by long-term chilling does not affect the activities of photosystem 1 or 2. Journal of Plant Growth Regulation, 29, 500–505.CrossRefGoogle Scholar
  33. Horváth, I., Glatz, A., Nakamoto, H., Mishkind, M. L., Munnik, T., Saidi, Y., Goloubinoff, P., Harwood, J. L., & Vigh, L. (2012). Heat shock response in photosynthetic organisms: Membrane and lipid connections. Progress in Lipid Research, 51, 208–220.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Janeczko, A. (2016). Presence, transport and physiological activity of brassinosteroids in crop plants from Poaceae and Fabaceae family. 17 Monograph published by Institute of Plant Physiology Polish Academy of Sciences in Krakow (pp 1–75). Google Scholar
  35. Janeczko, A., & Swaczynová, J. (2010). Endogenous brassinosteroids in wheat treated with 24-epibrassinolide. Biologia Plantarum, 54, 477–482.CrossRefGoogle Scholar
  36. Janeczko, A., Biesaga-Kościelniak, J., Oklešťková, J., Filek, M., Dziurka, M., Szarek-Łukaszewska, G., & Kościelniak, J. (2010). Role of 24-epibrassinolide in wheat production: Physiological effects and uptake. Journal of Agronomy and Crop Science, 196, 311–321.Google Scholar
  37. Janeczko, A., Oklešťková, J., Pociecha, E., Kościelniak, J., & Mirek, M. (2011). Physiological effects and transport of 24-epibrassinolide in heat-stressed barley. Acta Physiologiae Plantarum, 33, 1249–1259.CrossRefGoogle Scholar
  38. Janeczko, A., Oklešťková, J., Siwek, A., Dziurka, M., Pociecha, E., Kocurek, M., & Novák, O. (2013). Endogenous progesterone and its cellular binding sites in wheat exposed to drought stress. The Journal of Steroid Biochemistry and Molecular Biology, 138, 384–394.PubMedCrossRefGoogle Scholar
  39. Janeczko, A., Oklestkova, J., Novak, O., Śniegowska-Świerk, K., Snaczke, Z., & Pociecha, E. (2015). Disturbances in production of progesterone and their implications in plant studies. Steroids, 96, 153–163.PubMedCrossRefGoogle Scholar
  40. Janeczko, A., Gruszka, D., Pociecha, E., Dziurka, M., Filek, M., Jurczyk, B., Kalaji, H. M., Kocurek, M., & Waligórski, P. (2016). Physiological and biochemical characterisation of watered and drought-stressed barley mutants in the HvDWARF gene encoding C6-oxidase involved in brassinosteroid biosynthesis. Plant Physiology and Biochemistry, 99, 126–141.PubMedCrossRefGoogle Scholar
  41. Janowiak, F., Luck, E., & Dörffling, K. (2003). Chilling tolerance of maize seedlings in the field during cold periods in spring is related to chilling-induced increase in abscisic acid level. Journal of Agronomy and Crop Science, 189, 156–161.CrossRefGoogle Scholar
  42. Joo, S. H., Jang, M. S., Kim, M. K., Lee, J. E., & Kim, S. K. (2015). Biosynthetic relationship between C28-brassinosteroids and C29-brassinosteroids in rice (Oryza sativa) seedlings. Phytochemistry, 111, 84–90.PubMedCrossRefGoogle Scholar
  43. Khripach, N. B. (2010). New practical aspects of brassinosteroids and results of their ten-year agricultural use in Russia and Belarus. In S. Hayat & A. Ahmad (Eds.), Brassinosteroids – Bioactivity and crop productivity (2010) (pp. 189–230). Dordrecht/Boston/London: Kluwer Academic Publishers.Google Scholar
  44. Kim, Y. S., Kim, T. W., & Kim, S. K. (2005). Brassinosteroids are inherently biosynthesized in the primary roots of maize, Zea mays L. Phytochemistry, 66, 1000–1006.PubMedCrossRefGoogle Scholar
  45. Krishna, P. (2003). Brassinosteroid-mediated stress responses. Journal of Plant Growth Regulation, 22, 289–297.PubMedCrossRefGoogle Scholar
  46. Kroutil, M., Hejtmánková, A., & Lachman, J. (2010). Effect of spring wheat (Triticum aestivum L.) treatment with brassinosteroids on the content of cadmium and lead in plant aerial biomass and grain. Plant, Soil and Environment, 56, 43–50.CrossRefGoogle Scholar
  47. Makarevitch, I., Thompson, A., Muehlbauer, G. J., & Springer, N. M. (2012). Brd1 gene in maize encodes a brassinosteroid C-6 oxidase. PLoS One, 7, e30798.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Mazorra, L. M., Núñez, M., Nápoles, M. C., Yoshida, S., Robaina, C., Coll, F., & Asami, T. (2004). Effects of structural analogs of brassinosteroids on the recovery of growth inhibition by a specific brassinosteriod biosynthesis inhibitor. Plant Growth Regulation, 44, 183–185.Google Scholar
  49. Morinaka, Y., Sakamoto, T., Inukai, Y., Agetsuma, M., Kitano, H., Ashikari, M., & Matsuoka, M. (2006). Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of rice. Plant Physiology, 141, 924–931.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Nishikawa, N., Toyama, S., Shida, A., & Futatsuya, F. (1994). The uptake and the transport of 14C-labeled epibrassinolide in intact seedlings of cucumber and wheat. Journal of Plant Research, 107, 125–130.CrossRefGoogle Scholar
  51. Nithila, S., Amutha, R., Muthulaksmi, S., Baby Rani, W., Indira, K., & Mareeswari, P. (2007). Influence of seed treatment on growth and yield of finger millet (Eleusine coracana L.). Research Journal of Agriculture and Biological Sciences, 3, 252–254.Google Scholar
  52. Núñez, M., Mazzafera, P., Mazorra, L. M., Siqueira, W. J., & Zullo, M. A. T. (2003). Influence of a brassinosteroid analogue on antioxidant enzymes in rice grown in culture medium with NaCl. Biologia Plantarum, 47, 67–70.CrossRefGoogle Scholar
  53. Park, K. H., Park, J. D., Hyun, K. H., Nakayama, M., & Yokota, T. (1994). Brassinosteroids and monoglycerides with brassinosteroidlike activity in immature seeds of Oryza sativa and Perilla frutescens and in cultured cells of Nicotiana tabacum. Bioscience, Biotechnology, and Biochemistry, 58, 2241–2243.CrossRefGoogle Scholar
  54. Pociecha, E., Dziurka, M., Oklestkova, J., & Janeczko, A. (2016). Brassinosteroids increase winter survival of winter rye (Secale cereale L.) by affecting photosynthetic capacity and carbohydrate metabolism during the cold acclimation process. Plant Growth Regulation, 80, 127–135.CrossRefGoogle Scholar
  55. Ramraj, V. M., Vyas, B. N., Godrej, N. B., Mistry, K. B., Swami, B. N., & Singh, N. (1997). Effects of 28-homobrassinolide on yields of wheat, rice, groundnut, mustard, potato and cotton. The Journal of Agricultural Science, 128, 405–413.CrossRefGoogle Scholar
  56. Rothová, O., Holá, D., Kočová, M., Tůmová, L., Hnilička, F., Hniličková, H., Kamlar, M., & Macek, T. (2014). 24-Epibrassinolide and 20-hydroxyecdysone affect photosynthesis differently in maize and spinach. Steroids, 85, 44–57.PubMedCrossRefPubMedCentralGoogle Scholar
  57. Sairam, R. K. (1994a). Effects of homobrassinolide application on plant metabolism and grain yield under irrigated and moisture-stress conditions of two wheat varieties. Plant Growth Regulation, 14, 173–181.CrossRefGoogle Scholar
  58. Sairam, R. K. (1994b). Effect of homobrassinolide application on metabolic activity and grain yield of wheat under normal and water-stress condition. Journal of Agronomy and Crop Science, 173, 11–16.CrossRefGoogle Scholar
  59. Saisho, D., Tanno, K., Chono, M., Honda, I., Kitano, H., & Takeda, K. (2004). Spontaneous brassinolide-insensitive barley mutants “uzu” adapted to East Asia. Breeding Science, 54, 409–416.CrossRefGoogle Scholar
  60. Schmidt, J., Spengler, B., Yokota, T., Nakayama, M., Takatsuto, S., Voigt, B., & Adam, G. (1995). Secasterone, the first naturally occurring 2,3-epoxybrassinosteroid from Secale cereale. Phytochemistry, 38, 1095–1097.CrossRefGoogle Scholar
  61. Shahbaz, M., & Ashraf, M. (2007). Influence of exogenous application of brassinosteroid on growth and mineral nutrients of wheat (Triticum aestivum L.) under saline conditions. Pakistan Journal of Botany, 39, 513–522.Google Scholar
  62. Shahbaz, M., Ashraf, M., & Athar, H. (2008). Does exogenous application of 24-epibrassinolide ameliorate salt induced growth inhibition in wheat (Triticum aestivum L.)? Plant Growth Regulation, 55, 51–64.CrossRefGoogle Scholar
  63. Sharma, I., Ching, E., Saini, S., Bhardwaj, R., & Pati, P. K. (2013). Exogenous application of brassinosteroid offers tolerance to salinity by altering stress responses in rice variety Pusa Basmati-1. Plant Physiology and Biochemistry, 69, 17–26.PubMedCrossRefPubMedCentralGoogle Scholar
  64. Sharma, P., Kumar, A., & Bhardwaj, R. (2016). Plant steroidal hormone epibrassinolide regulate – Heavy metal stress tolerance in Oryza sativa L. by modulating antioxidant defense expression. Environmental and Experimental Botany, 122, 1–9.CrossRefGoogle Scholar
  65. Shimada, K., Abe, H., Takatsuto, S., Nakayama, M., & Yokota, T. (1996). Identification of castasterone and teasterone from seeds of canary grass (Phalaris canariensis). Recent Research and Development in Chemistry and Pharmaceutical Sciences, 1, 1–5.Google Scholar
  66. Singh, I., Kumar, U., Singh, S. K., Gupta, C., Singh, M., & Kushwaha, S. R. (2012). Physiological and biochemical effect of 24-epibrassinoslide on cold tolerance in maize seedlings. Physiology and Molecular Biology of Plants, 18, 229–236.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Sun, S., Chen, D., Li, X., Qiao, S., Shi, C., Li, C., Shen, H., & Wang, X. (2015). Brassinosteroid signaling regulates leaf erectness in Oryza sativa via the control of a specific U-type cyclin and cell proliferation. Developmental Cell, 34, 220–228.PubMedCrossRefGoogle Scholar
  68. Suzuki, Y., Yamaguchi, I., Yokota, T., & Takahashi, N. (1986). Identification of castasterone, typhasterol and teasterone from the pollen of Zea mays. Agricultural and Biological Chemistry, 50, 3133–3138.Google Scholar
  69. Symons, G. M., Davies, C., Shavrukov, Y., Dry, I. B., Reid, J. B., & Thomas, M. R. (2006). Grapes on steroids. Brassinosteroids are involved in grape berry ripening. Plant Physiology, 140, 150–158.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Taylor, P. E., Spuck, K., Smith, P. M., Sasse, J. M., Yokota, T., Griffiths, P. G., & Cameron, D. W. (1993). Detection of brassinosteroids in pollen of Lolium perenne L. by immunocytochemistry. Planta, 189, 91–100.Google Scholar
  71. Thussagunpanit, J., Jutamanee, K., Sonjaroon, W., Kaveeta, L., Chai-arree, W., Pankean, P., & Suksamrarn, A. (2015a). Effects of brassinosteroid and brassinosteroid mimic on photosynthetic efficiency and rice yield under heat stress. Photosynthetica, 53, 312–320.CrossRefGoogle Scholar
  72. Thussagunpanit, J., Jutamanee, K., Kaveeta, L., Chai-arree, W., Pankean, P., Homvisasevongsa, S., & Suksamrarn, A. (2015b). Comparative effects of brassinosteroid and brassinosteroid mimic on improving photosynthesis, lipid peroxidation and rice seed set under heat stress. Journal of Plant Growth Regulation, 34, 320–331.CrossRefGoogle Scholar
  73. Tofighi, C., Khavari-Nejad, R. A., Najafi, F., Razavi, K., & Rejali, F. (2017). Brassinosteroid (BR) and arbuscular mycorrhizal (AM) fungi alleviate salinity in wheat. Journal of Plant Nutrition, 40, 1091–1098.CrossRefGoogle Scholar
  74. Tong, H., Xiao, Y., Liu, D., Gao, S., Liu, L., Yin, Y., Jin, Y., Qian, Q., & Chu, C. (2014). Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice. Plant Cell, 26, 4376–4393.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Wang, H., Feng, T., Peng, X., Yan, M., Zhou, P., & Tang, X. (2009). Ameliorative effects of brassinosteroid on excess manganese-induced oxidative stress in Zea mays L. leaves. Agricultural Sciences in China, 8, 1063–1074.CrossRefGoogle Scholar
  76. Wu, C., Trieu, A., Radhakrishnan, P., Kwok, S. F., Harris, S., Zhang, K., Wang, J., Wan, J., Zhai, H., Takatsuto, S., Matsumoto, S., Fujioka, S., Feldmann, K. A., & Pennell, R. I. (2008). Brassinosteroids regulate grain filling in rice. Plant Cell, 20, 2130–2145.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Xia, X.-J., Zhou, Y.-H., Shi, K., Zhou, J., Foyer, C. H., & Yu, J.-Q. (2015). Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. Journal of Experimental Botany, 66, 2839–2856.PubMedCrossRefGoogle Scholar
  78. Xu, R. J., He, Y. J., Wang, Y. Q., & Zhao, Y. J. (1994). Preliminary study of brassinosterone binding sites from mung bean epicotyls. Acta Phytophysiologica Sinica, 20, 298–302.Google Scholar
  79. Yamamuro, C., Ihara, Y., Wu, X., Noguchi, T., Fujioka, S., Takatsuto, S., Ashikari, M., Kitano, H., & Matsuoka, M. (2000). Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell, 12, 1591–1606.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Yang, G., Nakamura, H., Ichikawa, H., Kitano, H., & Komatsu, S. (2006). OsBLE3, a brassinolide-enhanced gene, is involved in the growth of rice. Phytochemistry, 67, 1442–1454.PubMedCrossRefGoogle Scholar
  81. Yang, C.-J., Zhang, C., Lu, Y.-N., Jin, J.-Q., & Wang, X.-L. (2011). The mechanisms of brassinosteroids’ action: From signal transduction to plant development. Molecular Plant, 4, 588–600.PubMedCrossRefGoogle Scholar
  82. Yokota, T., Higuchi, K., Kosaka, Y., & Takahashi, N. (1992). Transport and metabolism of brassinosteroids in rice. In C. M. Karssen, L. C. van Loon, & D. Vreugdenhil (Eds.), Progress in plant growth regulation (pp. 298–305). The Netherlands: Kluwer Academic Publishers.CrossRefGoogle Scholar
  83. Yokota, T., Nakayama, M., Wakisaka, T., Schmidt, J., & Adam, G. (1994). 3-Dehydroteasterone, a 3,6-diketobrassinosteroid as a possible biosynthetic intermediate of brassinolide from wheat grain. Bioscience, Biotechnology, and Biochemistry, 58, 1183–1185.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Polish Academy of SciencesThe Franciszek Górski Institute of Plant PhysiologyKrakowPoland

Personalised recommendations