Advertisement

Brassinosteroids in Microalgae: Application for Growth Improvement and Protection Against Abiotic Stresses

  • Andrzej BajguzEmail author
Chapter

Abstract

Brassinosteroids have been found in a broad spectrum of microalgae, their biological activities correspond to the function in higher plants. Studies on the endogenous brassinosteroids suggest that the operation of the early and late C6-oxidation pathways, lead to brassinolide existence in algae. The growth and development of algae under the influence of brassinosteroids are unusually dynamic, despite the application of micromolar concentrations. These compounds regulate every aspect of algal life, from formation during development via stimulation of metabolite synthesis to abiotic stress responses, such as heavy metal action, salt and thermal stress. The relationship between brassinosteroids and the other well-known plant hormones has been explored. This chapter summarizes the studies of brassinosteroids on algal cultures in the last three decades.

Keywords

Activity Anti-stress Protection Biosynthesis Distribution 

Notes

Acknowledgements

Author is grateful to Adam Bajguz for an excellent assisting during the text edition in LaTeX.

References

  1. Bajguz, A. (2000a). Blockade of heavy metals accumulation in Chlorella vulgaris cells by 24-epibrassinolide. Plant Physiology and Biochemistry, 38, 797–801.CrossRefGoogle Scholar
  2. Bajguz, A. (2000b). Effect of brassinosteroids on nucleic acids and protein content in cultured cells of Chlorella vulgaris. Plant Physiology and Biochemistry, 38, 209–215.CrossRefGoogle Scholar
  3. Bajguz, A. (2002). Brassinosteroids and lead as stimulators of phytochelatins synthesis in Chlorella vulgaris. Journal of Plant Physiology, 159, 321–324.CrossRefGoogle Scholar
  4. Bajguz, A. (2009a). Brassinosteroid enhanced the level of abscisic acid in Chlorella vulgaris subjected to short-term heat stress. Journal of Plant Physiology, 166, 882–886.CrossRefGoogle Scholar
  5. Bajguz, A. (2009b). Isolation and characterization of brassinosteroids from algal cultures of Chlorella vulgaris Beijerinck (Trebouxiophyceae). Journal of Plant Physiology, 166, 1946–1949.Google Scholar
  6. Bajguz, A. (2010). An enhancing effect of exogenous brassinolide on the growth and antioxidant activity in Chlorella vulgaris cultures under heavy metals stress. Environmental and Experimental Botany, 68, 175–179.CrossRefGoogle Scholar
  7. Bajguz, A. (2011). Suppression of Chlorella vulgaris growth by cadmium, lead, and copper stress and its restoration by endogenous brassinolide. Archives of Environmental Contamination and Toxicology, 60, 406–416.CrossRefGoogle Scholar
  8. Bajguz, A., & Asami, T. (2004). Effects of brassinazole, an inhibitor of brassinosteroid biosynthesis, on light- and dark-grown Chlorella vulgaris. Planta, 218, 869–877.CrossRefGoogle Scholar
  9. Bajguz, A., & Czerpak, R. (1996). Effect of brassinosteroids on growth and proton extrusion in the alga Chlorella vulgaris Beijerinck (Chlorophyceae). Journal of Plant Growth Regulation, 15, 153–156.Google Scholar
  10. Bajguz, A., & Czerpak, R. (1998). Physiological and biochemical role of brassinosteroids and their structure-activity relationship in the green alga Chlorella vulgaris Beijerinck (Chlorophyceae). Journal of Plant Growth Regulation, 17, 131–139.Google Scholar
  11. Bajguz, A., & Hayat, S. (2009). Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiology and Biochemistry, 47, 1–8.CrossRefGoogle Scholar
  12. Bajguz, A., & Piotrowska-Niczyporuk, A. (2013). Synergistic effect of auxins and brassinosteroids on the growth and regulation of metabolite content in the green alga Chlorella vulgaris (Trebouxiophyceae). Plant Physiology and Biochemistry, 71, 290–297.Google Scholar
  13. Bajguz, A., & Piotrowska-Niczyporuk, A. (2014). Interactive effect of brassinosteroids and cytokinins on growth, chlorophyll, monosaccharide and protein content in the green alga Chlorella vulgaris (Trebouxiophyceae). Plant Physiology and Biochemistry, 80, 176–183.Google Scholar
  14. Bajguz, A., & Tretyn, A. (2003). The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry, 62, 1027–1046.CrossRefGoogle Scholar
  15. Borowitzka, M. A., Beardall, J., & Raven, J. A. (Eds.). (2016). The physiology of microalgae. Cham: Springer International Publishing.  https://doi.org/10.1007/978-3-319-24945-2.CrossRefGoogle Scholar
  16. Buchanan, B. B., Gruissem, W., & Jones, R. L. (2005). Biochemistry & molecular biology of plants (2nd ed.). Hoboken: Wiley.Google Scholar
  17. Choudhary, S. P., Yu, J. Q., Yamaguchi-Shinozaki, K., Shinozaki, K., & Tran, L. S. P. (2012). Benefits of brassinosteroid crosstalk. Trends in Plant Science, 17, 594–605.  https://doi.org/10.1016/j.tplants.2012.05.012.
  18. Chung, Y., & Choe, S. (2013). The regulation of brassinosteroid biosynthesis in Arabidopsis. Critical Reviews in Plant Sciences, 32, 396–410.CrossRefGoogle Scholar
  19. Davies, P. J. (Ed.). (2010). Plant hormones. Dordrecht: Springer Netherlands.  https://doi.org/10.1007/978-1-4020-2686-7.CrossRefGoogle Scholar
  20. Fradique, M., Batista, A. P., Nunes, M. C., Gouveia, L., Bandarra, N. M., & Raymundo, A. (2010). Incorporation of Chlorella vulgaris and Spirulina maxima biomass in pasta products. Part 1: Preparation and evaluation. Journal of Science and Food Agriculture, 90, 1656–1664.Google Scholar
  21. Gallego-Bartolome, J., Minguet, E. G., Grau-Enguix, F., Abbas, M., Locascio, A., Thomas, S. G., Alabadi, D., & Blazquez, M. A. (2012). Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in Arabidopsis. Proceedings of the National Academy of Sciences, 109, 13446–13451.CrossRefGoogle Scholar
  22. Gao, Z., Meng, C., Gao, H., Zhang, X., Xu, D., Su, Y., Wang, Y., Zhao, Y., & Ye, N. (2013). Analysis of mRNA expression profiles of carotenogenesis and astaxanthin production of Haematococcus pluvialis under exogenous 24-epibrassinolide (EBR). Biological Research, 46, 201–206.CrossRefGoogle Scholar
  23. Grove, M. D., Spencer, G. F., Rohwedder, W. K., Mandava, N., Worley, J. F., Warthen, J. D., Steffens, G. L., Flippen-Anderson, J. L., & Cook, J. C. (1979). Brassinolide, a plant growth- promoting steroid isolated from Brassica napus pollen. Nature, 281, 216–217.CrossRefGoogle Scholar
  24. Hardtke, C. S., Dorcey, E., Osmont, K. S., & Sibout, R. (2007). Phytohormone collaboration: zooming in on auxin–brassinosteroid interactions. Trends in Cell Biology, 17, 485–492.CrossRefGoogle Scholar
  25. Hofmann, N. R. (2015). Taking hormone crosstalk to a new level: Brassinosteroids regulate gibberellin biosynthesis. Plant Cell, 27, 2081–2081.CrossRefGoogle Scholar
  26. Kanwar, M. K., Bajguz, A., Zhou, J., & Bhardwaj, R. (2017). Analysis of brassinosteroids in plants. Journal of Plant Growth Regulation, 36, 1002–1030.CrossRefGoogle Scholar
  27. Kozlova, T. A., Hardy, B. P., Krishna, P., & Levin, D. B. (2017). Effect of phytohormones on growth and accumulation of pigments and fatty acids in the microalgae Scenedesmus quadricauda. Algal Research, 27, 325–334.CrossRefGoogle Scholar
  28. Liang, S., Liu, X., Chen, F., & Chen, Z. (2004). Current microalgal health food R & D activities in China. In P. O. Ang (Ed.), Asian Pacific Phycology in the 21st Century: Prospects and Challenges (pp. 45–48). Dordrecht: Springer Netherlands.CrossRefGoogle Scholar
  29. Lichtenthaler, H. (1999). The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 47–65.Google Scholar
  30. Liu, J., Qiu, W., & Xia, D. (2018). Brassinosteroid improves lipid productivity and stress tolerance of Chlorella cells induced by high temperature. Journal of Applied Phycology, 30, 253–260.Google Scholar
  31. Lu, Y., & Xu, J. (2015). Phytohormones in microalgae: a new opportunity for microalgal biotechnology? Trends in Plant Science, 20, 273–282.CrossRefGoogle Scholar
  32. Marumo, S., Hattori, H., Abe, H., Nonoyama, Y., & Munakata, K. (1968). The presence of novel plant growth regulators in leaves of Distylium racemosum Sieb et Zucc. Agricultural and Biological Chemistry, 32, 528–529.CrossRefGoogle Scholar
  33. Mitchell, J. W., Mandava, N., Worley, J. F., Plimmer, J. R., & Smith, M. V. (1970). Brassins - a new family of plant hormones from rape pollen. Nature, 225, 1065–1066.CrossRefGoogle Scholar
  34. Panis, G., & Carreon, J. R. (2016). Commercial astaxanthin production derived by green alga Haematococcus pluvialis: A microalgae process model and a techno-economic assessment all through production line. Algal Research, 18, 175–190.Google Scholar
  35. Rajewska, I., Talarek, M., & Bajguz, A. (2016). Brassinosteroids and response of plants to heavy metals action. Frontiers in Plant Science, 7, 629.CrossRefGoogle Scholar
  36. Safi, C., Zebib, B., Merah, O., Pontalier, P. Y., & Vaca-Garcia, C. (2014). Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renewable and Sustainable Energy Reviews, 35, 265–278.CrossRefGoogle Scholar
  37. Sahoo, D., & Seckbach, J. (2015). The Algae World. Dordrecht: Springer.CrossRefGoogle Scholar
  38. Shah, M. M. R., Liang, Y., Cheng, J. J., & Daroch, M. (2016). Astaxanthin-producing green microalga Haematococcus pluvialis: From single cell to high value commercial products. Frontiers in Plant Science, 7, 531.PubMedPubMedCentralGoogle Scholar
  39. Singh, R., Parihar, P., Singh, M., Bajguz, A., Kumar, J., Singh, S., Singh, V. P., & Prasad, S. M. (2017). Uncovering potential applications of cyanobacteria and algal metabolites in biology, agriculture and medicine: Current status and future prospects. Frontiers in Microbiology, 8, 515.CrossRefGoogle Scholar
  40. Sivakumar, G., Xu, J., Thompson, R. W., Yang, Y., Randol-Smith, P., & Weathers, P. J. (2012). Integrated green algal technology for bioremediation and biofuel. Bioresource Technology, 107, 1–9.CrossRefGoogle Scholar
  41. Stirk, W. A., & Staden, J. V. (2014). Plant growth regulators in seaweeds. In Advances in botanical research (pp. 125–159). London: Elsevier.Google Scholar
  42. Stirk, W., Novák, O., Strnad, M., & van Staden, J. (2003). Cytokinins in macroalgae. Plant Growth Regulation, 41, 13–24.CrossRefGoogle Scholar
  43. Stirk, W., Bálint, P., Tarkowská, D., Novák, O., Strnad, M., Ördög, V., & van Staden, J. (2013a). Hormone profiles in microalgae: gibberellins and brassinosteroids. Plant Physiology and Biochemistry, 70, 348–353.CrossRefGoogle Scholar
  44. Stirk, W. A., Ordög, V., Novák, O., Rolcik, J., Strnad, M., Bálint, P., & van Staden, J. (2013b). Auxin and cytokinin relationships in 24 microalgal strains. Journal of Phycology, 49, 459–467.CrossRefGoogle Scholar
  45. Stirk, W., Bálint, P., Tarkowská, D., Novák, O., Maróti, G., Ljung, K., Turecková, V., Strnad, M., Ordög, V., & van Staden, J. (2014a). Effect of light on growth and endogenous hormones in Chlorella minutissima (Trebouxiophyceae). Plant Physiology and Biochemistry, 79, 66–76.CrossRefGoogle Scholar
  46. Stirk, W. A., Tarkowská, D., Turecová, V., Strnad, M., & van Staden, J. (2014b). Abscisic acid, gibberellins and brassinosteroids in Kelpak®, a commercial seaweed extract made from Ecklonia maxima. Journal of Applied Phycology, 26, 561–567.Google Scholar
  47. Stirk, W. A., Bálint, P., Tarkowská, D., Strnad, M., van Staden, J., & Ördög, V. (2018). Endogenous brassinosteroids in microalgae exposed to salt and low temperature stress. European Journal of Phycology, 53, 273–279.CrossRefGoogle Scholar
  48. Talarek-Karwel, M., Bajguz, A., Piotrowska-Niczyporuk, A., & Rajewska, I. (2018). The effect of 24-epibrassinolide on the green alga Acutodesmus obliquus (Chlorophyceae). Plant Physiology and Biochemistry, 124, 175–183.Google Scholar
  49. Tarakhovskaya, E. R., Maslov, Y. I., & Shishova, M. F. (2007). Phytohormones in algae. Russian Journal of Plant Physiology, 54, 163–170.CrossRefGoogle Scholar
  50. Tarkowská, D., & Strnad, M. (2017). Protocol for extraction and isolation of brassinosteroids from plant tissues. In Methods in Molecular Biology (pp. 1–7). New York: Springer.Google Scholar
  51. Tarkowská, D., Novák, O., Oklestkova, J., & Strnad, M. (2016). The determination of 22 natural brassinosteroids in a minute sample of plant tissue by UHPLC–ESI–MS/MS. Analytical and Bioanalytical Chemistry, 408, 6799–6812.CrossRefGoogle Scholar
  52. Tate, J. J., Gutierrez-Wing, M. T., Rusch, K. A., & Benton, M. G. (2013). The effects of plant growth substances and mixed cultures on growth and metabolite production of green algae Chlorella sp.: A Review. Journal of Plant Growth Regulation, 32, 417–428.Google Scholar
  53. Tian, H., Lv, B., Ding, T., Bai, M., & Ding, Z. (2018). Auxin-BR interaction regulates plant growth and development. Frontiers in Plant Science, 8, 2256.CrossRefGoogle Scholar
  54. Tran, L. S. P., & Pal, S. (eds) (2014). Phytohormones: A window to metabolism. Signaling and biotechnological applications. New York: Springer.  https://doi.org/10.1007/978-1-4939-0491-4.
  55. Tsavkelova, E. A., Klimova, S. Y., Cherdyntseva, T. A., & Netrusov, A. I. (2006). Hormones and hormone like substances of microorganisms: A review. Applied Biochemistry and Microbiology, 42, 229–235.CrossRefGoogle Scholar
  56. Wells, M. L., Potin, P., Craigie, J. S., Raven, J. A., Merchant, S. S., Helliwell, K. E., Smith, A. G., Camire, M. E., & Brawley, S. H. (2017). Algae as nutritional and functional food sources: revisiting our understanding. Journal of Applied Phycology, 29, 949–982.CrossRefGoogle Scholar
  57. Yokota, T., Arima, M., & Takahashi, N. (1982). Castasterone, a new phytosterol with plant hormone potency, from chestnut insect gall. Tetrahedron Letters, 23, 1275–1278.CrossRefGoogle Scholar
  58. Yokota, T., Kim, S. K., Fukui, Y., Takahashi, N., Takeuchi, Y., & Takematsu, T. (1987). Brassinosteroids and sterols from a green alga, Hydrodictyon reticulatum: Configuration at C-24. Phytochemistry, 26, 503–506.CrossRefGoogle Scholar
  59. Youn, J. H., Kim, T. W., Joo, S. H., Son, S. H., Roh, J., Kim, S., Kim, T. W., & Kim, S. K. (2018). Function and molecular regulation of DWARF1 as a C-24 reductase in brassinosteroid biosynthesis in Arabidopsis. Journal of Experimental Botany, 69, 1873–1886.Google Scholar
  60. Zeraatkar, A. K., Ahmadzadeh, H., Talebi, A. F., Moheimani, N. R., & McHenry, M. P. (2016). Potential use of algae for heavy metal bioremediation, a critical review. Journal of Environmental Management, 181, 817–831.CrossRefGoogle Scholar
  61. Zhao, B., & Li, J. (2012). Regulation of brassinosteroid biosynthesis and inactivation. Journal of Integrative Plant Biology, 54, 746–759.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Plant Biochemistry and Toxicology, Institute of Biology, Faculty of Biology and ChemistryUniversity of BialystokBialystokPoland

Personalised recommendations