Advertisement

A Current Scenario on Role of Brassinosteroids in Plant Defense Triggered in Response to Biotic Challenges

  • Sukhmeen Kaur Kohli
  • Shagun Bali
  • Kanika Khanna
  • Palak Bakshi
  • Pooja Sharma
  • Anket Sharma
  • Vinod Verma
  • Puja Ohri
  • Bilal Ahmad Mir
  • Rupinder Kaur
  • Renu Bhardwaj
Chapter

Abstract

Various biotic stresses induced by microbes/pathogens affect growth, yield and production in plants. Plants sequester a broad spectrum of receptor armory to instigate innate immune approaches which are unbeatable by pathogens. Several phytohormones, interact in multifaceted interconnected signaling networks. Recent studies have elucidated direct or indirect regulation of plant defense responses by phytohormones. Brassinosteroids (BRs), a growth-promoting hormone is also an imperative plant defense regulator. They have been recently observed as a modulator of plant defense response to pathogen attack. They enhance plants resistance to a wide array of plant diseases. BRs increase the efficacy of Pathogen Assisted Molecular Patterns (PAMP) triggered immunity. They also mediate crosstalk between different defense-signaling cascades including phytohormones signaling, DELLA proteins, Pattern-Recognition Receptors Triggered Innate Immunity (PTI) and plant pathogen interaction. Furthermore, BRs also regulate sulfur metabolism and production of nitric oxide and consequently affect plants immune responses.

Keywords

Brassinosteroids DELLA proteins Nitric Oxides Pathogen Assisted Molecular Patterns Sulfur 

References

  1. Achard, P., Cheng, H., De Grauwe, L., Decat, J., Schoutteten, H., Moritz, T., Van Der Straeten, D., Peng, J., & Harberd, N. P. (2006). Integration of plant responses to environmentally activated phytohormonal signals. Science, 311, 91–94.PubMedCrossRefGoogle Scholar
  2. Ahmad, F., Singh, A., & Kamal, A. (2018). Crosstalk of brassinosteroids with other phytohormones under various abiotic stresses. Journal of Applied Biology & Biotechnology, 6, 56–62.Google Scholar
  3. Albrecht, C., Boutrot, F., Segonzac, C., Schwessinger, B., Gimenez-Ibanez, S., Chinchilla, D., Rathjen, J. P., de Vries, S. C., & Zipfel, C. (2012). Brassinosteroids inhibit pathogen-associated molecular pattern-triggered immune signaling independent of the receptor kinase BAK1. Proceedings of the National Academy of Sciences, 109, 303–308.CrossRefGoogle Scholar
  4. Ali, S. S., Kumar, G. S., Khan, M., & Doohan, F. M. (2013). Brassinosteroid enhances resistance to fusarium diseases of barley. Phytopathology, 103, 1260–1267.PubMedCrossRefGoogle Scholar
  5. Ali, S. S., Gunupuru, L. R., Kumar, G. S., Khan, M., Scofield, S., & Nicholson, P. (2014). Plant disease resistance is augmented in barley lines modified in the brassinosteroid receptor BRI1. BMC Plant Biology, 14, 1.CrossRefGoogle Scholar
  6. Alvey, L., & Harberd, N. P. (2005). DELLA proteins: Integrators of multiple plant growth regulatory inputs? Physiologia Plantarum, 123, 153–160.CrossRefGoogle Scholar
  7. Bajguz, A., & Hayat, S. (2009). Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiology and Biochemistry, 47, 1–8.PubMedGoogle Scholar
  8. Bar, M., Sharfman, M., Ron, M., & Avni, A. (2010). BAK1 is required for the attenuation of ethylene-inducing xylanase (Eix)-induced defense responses by the decoy receptor LeEix1. The Plant Journal, 63, 791–800.PubMedCrossRefGoogle Scholar
  9. Belkhadir, Y., Jaillais, Y., Epple, P., Balsemao-Pires, E., Dangl, J. L., & Chory, J. (2012). Brassinosteroids modulate the efficiency of plant immune responses to microbe-associated molecular patterns. Proceedings of the National Academy of Sciences, 109, 297–302.CrossRefGoogle Scholar
  10. Boller, T., & Felix, G. (2009). A renaissance of elicitors: Perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annual Review of Plant Biology, 60, 379–406.PubMedCrossRefGoogle Scholar
  11. Boudsocq, M., Willmann, M. R., McCormack, M., Lee, H., Shan, L., He, P., Bush, J., Cheng, S. H., & Sheen, J. (2010). Differential innate immune signaling via Ca2+ sensor protein kinases. Nature, 464, 418–422.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bove, J. M. (2006). Huanglongbing: A destructive, newly-emerging, century-old disease of citrus. Journal of Plant Pathology, 88, 7–37.Google Scholar
  13. Canales, E., Coll, Y., Hernández, I., Portieles, R., García, M. R., López, Y., Aranguren, M., Alonso, E., Delgado, R., Luis, M., & Batista, L. (2016). Candidatus Liberibacter asiaticus, causal agent of citrus Huanglongbing, is reduced by treatment with Brassinosteroids. PLoS One, 11, e0146223.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Chen, Y. L., Lee, C. Y., Cheng, K. T., Chang, W. H., Huang, R. N., & Nam, H. G. (2014). Quantitative peptidomics study reveals that a wound-induced peptide from PR-1 regulates immune signaling in tomato. Plant Cell, 26, 4135–4148.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Choudhary, S. P., Kanwar, M., Bhardwaj, R., Yu, J. Q., & Tran, L. S. P. (2012). Chromium stress mitigation by polyamine-brassinosteroid application involves phytohormonal and physiological strategies in Raphanus sativus L. PLoS One, 7, e33210.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Colebrook, E. H., Thomas, S. G., Phillips, A. L., & Hedden, P. (2014). The role of gibberellin signalling in plant responses to abiotic stress. Journal of Experimental Botany, 217, 67–75.Google Scholar
  17. Cui, J. X., Zhou, Y. H., Ding, J. G., Xia, X. J., Shi, K., Chen, S. C., Asami, T., Chen, Z., & Yu, J. Q. (2011). Role of nitric oxide in hydrogen peroxide dependent induction of abiotic stress tolerance by brassinosteroids in cucumber. Plant, Cell & Environment, 34, 347–358.CrossRefGoogle Scholar
  18. De Bruyne, L., Hofte, M., & De Vleesschauwer, D. (2014). Connecting growth and defense: The emerging roles of brassinosteroids and gibberellins in plant innate immunity. Molecular Plant, 7, 943–959.PubMedCrossRefPubMedCentralGoogle Scholar
  19. De Vleesschauwer, D., Van Buyten, E., Satoh, K., Balidion, J., Mauleon, R., Choi, I. R., Vera-Cruz, C., Kikuchi, S., & Höfte, M. (2012). Brassinosteroids antagonize gibberellin- and salicylate mediated root immunity in rice. Plant Physiology, 158, 1833–1846.PubMedPubMedCentralCrossRefGoogle Scholar
  20. De Vleesschauwer, D., Gheysen, G., & Hofte, M. (2013). Hormone defense networking in rice: Tales from a different world. Trends in Plant Science, 18, 555–565.PubMedCrossRefGoogle Scholar
  21. Denance, N., Sánchez-Vallet, A., Goffner, D., & Molina, A. (2013). Disease resistance or growth: The role of plant hormones in balancing immune responses and fitness costs. Frontiers in Plant Science, 24, 155.Google Scholar
  22. Deng, X. G., Zhu, T., Zou, L. J., Han, X. Y., Zhou, X., Xi, D. H., Zhang, D. W., & Lin, H. H. (2016). Orchestration of hydrogen peroxide and nitric oxide in brassinosteroid-mediated systemic virus resistance in Nicotiana benthamiana. The Plant Journal, 85, 478–493.PubMedCrossRefGoogle Scholar
  23. Divi, U. K., Rahman, T., & Krishna, P. (2010). Brassinosteroid mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biology, 10, 151.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Fridman, Y., & Savaldi-Goldstein, S. (2013). Brassinosteroids in growth control: How, when and where. Plant Science, 209, 24–31.PubMedCrossRefGoogle Scholar
  25. Friebe, A. (2006). Brassinosteroids in induced resistance and induction of tolerances to abiotic stress in plants. Ludwig-Erhard-Allee 2, 531 Bonn, Germany.Google Scholar
  26. Gao, X. H., Xiao, S. L., Yao, Q. F., Wang, Y. J., & Fu, X. D. (2011). An updated GA signaling ‘relief of repression’ regulatory model. Molecular Plant, 4, 601–606.PubMedCrossRefGoogle Scholar
  27. Gao, W., Long, L., Zhu, L. F., Xu, L., Gao, W. H., & Sun, L. Q. (2013). Proteomic and virus-induced gene silencing (VIGS) analyses reveal that gossypol, brassinosteroids, and jasmonic acid contribute to the resistance of cotton to Verticillium dahliae. Molecular & Cellular Proteomics, 12, 3690–3703.CrossRefGoogle Scholar
  28. Goddard, M. L., Mottier, N., Jeanneret-Gris, J., Christen, D., Tabacchi, R., & Abou-Mansour, E. (2014). Differential production of phytotoxins from Phomopsis sp. from grapevine plants showing esca symptoms. Journal Agriculture Food Chemistry, 62, 8602–8607.CrossRefGoogle Scholar
  29. Hao, J., Yin, Y., & Fei, S. Z. (2013). Brassinosteroid signaling network: Implications on yield and stress tolerance. Plant Cell Reports, 32, 1017–1030.PubMedCrossRefGoogle Scholar
  30. Hayat, S., Yadav, S., Ali, B., & Ahmad, A. (2010). Interactive effect of nitric oxide and brassinosteroids on photosynthesis and the antioxidant system of Lycopersicon esculentum. Russian Journal of Plant Physiology, 57, 212–221.CrossRefGoogle Scholar
  31. He, K., Gou, X., Yuan, T., Lin, H., Asami, T., Yoshida, S., Russell, S. D., & Li, J. (2007). BAK1 and BKK1 regulate brassinosteroid-dependent growth and brassinosteroid-independent cell-death pathways. Current Biology, 17, 1109–1115.PubMedCrossRefGoogle Scholar
  32. He, Y., Zhang, H., Sun, Z., Li, J., Hong, G., Zhu, Q., Zhou, X., MacFarlane, S., Yan, F., & Chen, J. (2017). Jasmonic acid-mediated defense suppresses brassinosteroid-mediated susceptibility to Rice black streaked dwarf virus infection in rice. The New Phytologist, 214, 388–399.PubMedCrossRefGoogle Scholar
  33. Huot, B., Yao, J., Montgomery, B. L., & He, S. Y. (2014). Growth–defense tradeoffs in plants: A balancing act to optimize fitness. Molecular Plant, 7, 1267–1287.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Jager, C. E., Symons, G. M., Ross, J. J., Smith, J. J., & Reid, J. B. (2005). The brassinosteroid growth response in pea is not mediated by changes in gibberellin content. Planta, 221, 141–148.PubMedCrossRefGoogle Scholar
  35. Jager, C. E., Symons, G. M., Ross, J. J., & Reid, J. B. (2008). Do brassinosteroids mediate the water stress response? Physiologia Plantarum, 133, 417–425.PubMedCrossRefGoogle Scholar
  36. Jaillais, Y., Belkhadir, Y., Balsemão-Pires, E., Dangl, J. L., & Chory, J. (2011). Extracellular leucine-rich repeats as a platform for receptor/coreceptor complex formation. Proceedings of the National Academy of Sciences, 108, 8503–8507.CrossRefGoogle Scholar
  37. Jiang, Y. P., Cheng, F., Zhou, Y. H., Xia, X. J., Mao, W. H., Shi, K., Chen, Z., & Yu, J. Q. (2012). Cellular glutathione redox homeostasis plays an important role in the brassinosteroid-induced increase in CO2 assimilation in Cucumis sativus. The New Phytologist, 194, 932–943.PubMedCrossRefGoogle Scholar
  38. Kadota, Y., Sklenar, J., Derbyshire, P., Stransfeld, L., Asai, S., Ntoukakis, V., Jones, J. D., Shirasu, K., Menke, F., Jones, A., & Zipfel, C. (2014). Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity. Molecular Cell, 54, 43–55.PubMedCrossRefGoogle Scholar
  39. Kaur, R., Ohri, P., & Bhardwaj, R. (2013). Effect of 28-homobrassinolide on susceptible and resistant cultivars of tomato after nematode inoculation. Plant Growth Regulation, 71, 199–205.CrossRefGoogle Scholar
  40. Kaur, R. A., Ohri, P. U., & Bhardwaj, R. E. (2014). Brassinosteroid-mediated changes in root-knot nematode susceptible and resistant tomato cultivars. International Journal of Pharma and Bio Sciences, 5, 1085–1093.Google Scholar
  41. Kim, T. W., & Wang, Z. Y. (2010). Brassinosteroid signal transduction from receptor kinases to transcription factors. Annual Review of Plant Biology, 61, 681–670.PubMedCrossRefGoogle Scholar
  42. Kim, T. W., Guan, S., Burlingame, A. L., & Wang, Z. Y. (2011). The CDG1 kinase mediates brassinosteroid signal transduction from BRI1 receptor kinase to BSU1 phosphatase and GSK3-like kinase BIN2. Molecular Cell, 43, 561–571.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Kopriva, S., Calderwood, A., Weckopp, S. C., & Koprivova, A. (2015). Plant sulfur and big data. Plant Science, 241, 1–10.PubMedCrossRefGoogle Scholar
  44. Kurepin, L. V., Joo, S. H., Kim, S. K., Pharis, R. P., & Back, T. G. (2012). Interaction of brassinosteroids with light quality and plant hormones in regulating shoot growth of young sunflower and Arabidopsis seedlings. Journal of Plant Growth Regulation, 31, 156–164.CrossRefGoogle Scholar
  45. Li, J. (2003). Brssinosteroids signal through two receptor-like kinases. Current Opinion in Plant Biology, 6, 494–499.PubMedCrossRefGoogle Scholar
  46. Li, Q. F., Wang, C., Jiang, L., Li, S., Sun, S. S. M., & He, J. X. (2012). An interaction between BZR1 and DELLAs mediates direct signalling crosstalk between brassinosteroids and gibberellins in Arabidopsis. Science Signaling, 5, ra72.PubMedGoogle Scholar
  47. Li, L., Li, M., Yu, L., Zhou, Z., Liang, X., Liu, Z., Cai, G., Gao, L., Zhang, X., Wang, Y., & Chen, S. (2014). The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity. Cell Host & Microbe, 15, 329–338.CrossRefGoogle Scholar
  48. Li, X., Zhang, L., Ahammed, G. J., Li, Z. X., Wei, J. P., Shen, C., Yan, P., Zhang, L. P., & Han, W. Y. (2017). Nitric oxide mediates brassinosteroid-induced flavonoid biosynthesis in Camellia sinensis L. Journal of Plant Physiology, 214, 145–151.PubMedCrossRefGoogle Scholar
  49. Lin, W., Lu, D., Gao, X., Jiang, S., Ma, X., Wang, Z., Mengiste, T., & He, P. (2013). Inverse modulation of plant immune and brassinosteroid signaling pathways by the receptor-like cytoplasmic kinase BIK1. Proceedings of the National Academy of Sciences, 110, 12114–12119.CrossRefGoogle Scholar
  50. Liu, R., Cao, P., Ren, A., Wang, S., Yang, T., Zhu, T., Shi, L., Zhu, J., Jiang, A. L., & Zhao, M. W. (2018). SA inhibits complex III activity to generate reactive oxygen species and thereby induces GA overproduction in Ganoderma lucidum. Redox Biology, 16, 388–400.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Lozano-Duran, R., & Zipfel, C. (2015). Trade-off between growth and immunity: Role of brassinosteroids. Trends in Plant Science, 20, 1360–1385.CrossRefGoogle Scholar
  52. Lozano-Duran, R., Macho, A. P., Boutrot, F., Segonzac, C., Somssich, I. E., & Zipfel, C. (2013). The transcriptional regulator BZR1medi ates trade-off between plant innate immunity and growth. eLife, 2, e00983.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Marcinkowska, E., & Wiedlocha, A. (2002). Steroid signal transduction activated at the cell membrane: From plants to animals. Acta Biochimica Polonica, 49, 735–745.PubMedGoogle Scholar
  54. Mora-García, S., Vert, G., Yin, Y., Caño-Delgado, A., Cheong, H., & Chory, J. (2004). Nuclear protein phosphatases with Kelch-repeat domains modulate the response to brassinosteroids in Arabidopsis. Genes & Development, 18, 448–460.CrossRefGoogle Scholar
  55. Nahar, K., Kyndt, T., Hause, B., Höfte, M., & Gheysen, G. (2013). Brassinosteroids suppress rice defense against root-knot nematodes through antagonism with the jasmonate pathway. Molecular Plant-Microbe Interactions, 26, 106–115.PubMedCrossRefGoogle Scholar
  56. Nakashita, H., Yasuda, M., Nitta, T., Asami, T., Fujioka, S., Arai, Y., Sekimata, K., Takatsuto, S., Yamaguchi, I., & Yoshida, S. (2003). Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. The Plant Journal, 33, 887–898.PubMedCrossRefGoogle Scholar
  57. Nazar, R., Umar, S., & Khan, N. A. (2014). Involvement of salicylic acid in sulfur induced salinity tolerance: A role of glutathione. Annual Research & Review in Biology, 4, 3875.CrossRefGoogle Scholar
  58. Noctor, G., Queval, G., Mhamdi, A., Chaouch, S., & Foyer, C. H. (2011). Glutathione. The Arabidopsis Book/American Society of Plant Biologists, 9, e0142.PubMedCentralPubMedGoogle Scholar
  59. Oikawa, T., Koshioka, M., Kojima, K., Yoshida, H., & Kawata, M. (2004). A role of OsGA20ox1, encoding an isoform of gibberellin 20-oxidase, for regulation of plant stature in rice. Plant Molecular Biology, 55, 687–700.PubMedCrossRefGoogle Scholar
  60. Pieterse, C. M. J., Van der Does, D., Zamioudis, C., Leon-Reyes, A., & Van Wees, S. C. M. (2012). Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology, 28, 489–521.PubMedCrossRefGoogle Scholar
  61. Ranf, S., Eschen-Lippold, L., Pecher, P., Lee, J., & Scheel, D. (2011). Interplay between calcium signalling and early signalling elements during defence responses to microbe- or damage-associated molecular patterns. The Plant Journal, 68, 100–113.PubMedCrossRefGoogle Scholar
  62. Ross, J. J., & Quittenden, L. J. (2016). Interactions between brassinosteroids and gibberellins: Synthesis or signaling? The Plant Cell, 28, 829–832.PubMedPubMedCentralGoogle Scholar
  63. Roth, U., Friebe, A., & Schnabl, H. (2000). Resistance induction in plants by a brassinosteroid-containing extract of Lychnis viscaria L. Zeitschrift für Naturforschung, 55, 552–559.CrossRefGoogle Scholar
  64. Sahni, S., Prasad, B. D., Liu, Q., Grbic, V., Sharpe, A., Singh, S. P., & Krishna, P. (2016). Overexpression of the brassinosteroid biosynthetic gene DWF4 in Brassica napus simultaneously increases seed yield and stress tolerance. Scientific Reports, 6, 28298.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Schulze, B., Mentzel, T., Jehle, A. K., Mueller, K., Beeler, S., Boller, T., Felix, G., & Chinchilla, D. (2010). Rapid heteromerization and phosphorylation of ligand-activated plant transmembrane receptors and their associated kinase BAK1. The Journal of Biological Chemistry, 285, 9444–9451.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Schwessinger, B., Roux, M., Kadota, Y., Ntoukakis, V., Sklenar, J., Jones, A., & Zipfel, C. (2011). Phosphorylation-dependent differential regulation of plant growth, cell death, and innate immunity by the regulatory receptor-like kinase BAK1. PLoS Genetics, 7, e1002046.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Segonzac, C., & Zipfel, C. (2011). Activation of plant pattern-recognition receptors by bacteria. Current Opinion in Microbiology, 14, 54–61.PubMedCrossRefGoogle Scholar
  68. Sharaf, A. E. M. M., Farghal, I. I., & Sofy, M. R. (2009). Role of gibberellic acid in abolishing the detrimental effects of Cd and Pb on broad bean and Lupin plants. Research Journal of Agriculture and Biological Sciences, 5, 668–673.Google Scholar
  69. Shi, H., Shen, Q., Qi, Y., Yan, H., Nie, H., Chen, Y., Zhao, T., Katagiri, F., & Tang, D. (2013). BR-signaling kinase1 physically associates with Flagellin Sensing 2 and regulates plant innate immunity in Arabidopsis. Plant Cell, 25, 1143–1157.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Shi, C., Qi, C., Ren, H., Huang, A., Hei, S., & She, X. (2015). Ethylene mediates brassinosteroid-induced stomatal closure via Gα protein-activated hydrogen peroxide and nitric oxide production in Arabidopsis. The Plant Journal, 82, 280–301.PubMedCrossRefGoogle Scholar
  71. Shiu, S. H., & Bleecker, A. B. (2001). Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proceedings of the National Academy of Sciences, 98, 10763–10768.CrossRefGoogle Scholar
  72. Sreeramulu, S., Mostizky, Y., Sunitha, S., Shani, E., Nahum, H., Salomon, D., Hayun, L. B., Gruetter, C., Rauh, D., Ori, N., & Sessa, G. (2013). BSKs are partially redundant positive regulators of brassinosteroid signaling in Arabidopsis. The Plant Journal, 74, 905–919.PubMedCrossRefGoogle Scholar
  73. Stewart Lilley, J. L., Gan, Y., Graham, I. A., & Nemhauser, J. L. (2013). The effects of DELLAs on growth change with developmental stage and brassinosteroid levels. The Plant Journal, 76, 165–173.PubMedGoogle Scholar
  74. Sun, T. P. (2010). Gibberellin-GID1-DELLA: A pivotal regulatory module for plant growth and development. Plant Physiology, 154, 567–570.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Szekeres, M., Nemeth, K., Koncz-Kalman, Z., Mathur, J., Kauschmann, A., Altmann, T., Redei, G. P., Nagy, F., Schell, J., & Koncz, C. (1996). Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell, 85, 171–182.PubMedCrossRefGoogle Scholar
  76. Tang, W., Kim, T. W., Oses-Prieto, J. A., Sun, Y., Deng, Z., Zhu, S., Wang, R., Burlingame, A. L., & Wang, Z. Y. (2008). BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science, 321, 557–560.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Tang, W., Yuan, M., Wang, R., Yang, Y., Wang, C., Oses-Prieto, J. A., Kim, T. W., Zhou, H. W., Deng, Z., Gampala, S. S., & Gendron, J. M. (2011). PP2A activates brassinosteroid-responsive gene expression and plant growth by dephosphorylating BZR1. Nature Cell Biology, 13, 124.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Tena, G., Boudsocq, M., & Sheen, J. (2011). Protein kinase signaling networks in plant innate immunity. Current Opinion in Plant Biology, 14, 519–529.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Tong, H., Xiao, Y., Liu, D., Gao, S., Liu, L., Yin, Y., Jin, Y., Qian, Q., & Chu, C. (2014). Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice. Plant Cell, 26, 4376–4393.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Tossi, V., Lamattina, L., & Cassia, R. (2013). Pharmacological and genetical evidence supporting nitric oxide requirement for 2, 4-epibrassinolide regulation of root architecture in Arabidopsis thaliana. Plant Signaling & Behavior, 8, e24712.CrossRefGoogle Scholar
  81. Unterholzner, S. J., Rozhon, W., Papacek, M., Ciomas, J., Lange, T., Kugler, K. G., Mayer, K. F., Sieberer, T., & Poppenberger, B. (2015). Brassinosteroids are master regulators of gibberellin biosynthesis in Arabidopsis. Plant Cell, 27, 2261–2272.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Vasyukova, N. J., Chalenko, G. I., Kaneva, I. M., & Khripach, V. A. (1994). Brassinosteroids and potato blight. Applied Biochemistry and Microbiology, 30, 464–470.Google Scholar
  83. Vert, G., & Chory, K. (2011). Crosstalk in cellular signaling: Background noise or the real thing? Developmental Cell, 21, 985–991.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Wang, Z. Y. (2012a). Brassinosteroids modulate plant immunity at multiple levels. Proceedings of the National Academy of Sciences, 109, 7–8.CrossRefGoogle Scholar
  85. Wang, Z. Y., Bai, M. Y., Oh, E., & Zhu, J. Y. (2012b). Brassinosteroid signaling network and regulation of photomorphogenesis. Annual Review of Genetics, 46, 701–724.PubMedCrossRefGoogle Scholar
  86. Xia, X. J., Wang, Y. J., Zhou, Y. H., Tao, Y., Mao, W. H., Shi, K., Asami, T., Chen, Z., & Yu, J. Q. (2009). Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiology, 150, 801–814.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Xu, H., Liu, Q., Yao, T., & Fu, X. (2014). Shedding light on integrative GA signaling. Current Opinion in Plant Biology, 21, 89–95.PubMedCrossRefGoogle Scholar
  88. Yan, H., Zhao, Y., Shi, H., Li, J., Wang, Y., & Tang, D. (2018). BRASSINOSTEROID-SIGNALING KINASE1 phosphorylates MAPKKK5 to regulate immunity in Arabidopsis. Plant Physiology.  https://doi.org/10.1104/pp.17.01757.
  89. Yang, D. H., Hettenhausen, C., Baldwin, I. T., & Wu, J. (2010). BAK1 regulates the accumulation of jasmonic acid and the levels of trypsin proteinase inhibitors in Nicotiana attenuata’s responses to herbivory. Journal of Experimental Botany, 62, 641–652.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Yang, D. H., Baldwin, I. T., & Wu, J. (2013). Silencing brassinosteroid receptor BRI1 impairs herbivory-elicited accumulation of Jasmonic acid-isoleucine and Diterpene glycosides, but not Jasmonic acid and trypsin proteinase inhibitors in Nicotiana attenuata. Journal of Integrative Plant Biology, 55, 514–526.PubMedCrossRefGoogle Scholar
  91. Yu, X., Li, L., Zola, J., Aluru, M., Ye, H., Foudree, A., Guo, H., Anderson, S., Aluru, S., Liu, P., & Rodermel, S. (2011). A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana. The Plant Journal, 65, 634–646.PubMedCrossRefGoogle Scholar
  92. Zagorchev, L., Seal, C. E., Kranner, I., & Odjakova, M. (2013). A central role for thiols in plant tolerance to abiotic stress. International Journal of Molecular Sciences, 14, 7405–7432.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Zhang, A., Zhang, J., Zhang, J., Ye, N., Zhang, H., Tan, M., & Jiang, M. (2010). Nitric oxide mediates brassinosteroid-induced ABA biosynthesis involved in oxidative stress tolerance in maize leaves. Plant & Cell Physiology, 52, 181–192.CrossRefGoogle Scholar
  94. Zhang, D., Ye, H., Guo, H., Johnson, A., Zhang, M., & Lin, H. H. (2014). Transcription factor HAT1 is phosphorylated by BIN2 kinase and mediates brassinosteroid repressed gene expression in Arabidopsis. The Plant Journal, 77, 59–70.PubMedCrossRefGoogle Scholar
  95. Zhang, D. W., Deng, X. G., Fu, F. Q., & Lin, H. H. (2015). Induction of plant virus defense response by brassinosteroids and brassinosteroid signaling in Arabidopsis thaliana. Planta, 241, 875–885.PubMedCrossRefGoogle Scholar
  96. Zhu, J. Y., Sae-Seaw, J., & Wang, Z. Y. (2013). Brassinosteroid signalling. Development, 140, 1615–1620.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Zhu, T., Deng, X. G., Tan, W. R., Zhou, X., Luo, S. S., Han, X. Y., Zhang, D. W., & Lin, H. H. (2016). Nitric oxide is involved in brassinosteroid-induced alternative respiratory pathway in Nicotiana benthamiana seedlings’ response to salt stress. Physiologia Plantarum, 156, 150–163.PubMedCrossRefGoogle Scholar
  98. Zou, L. J., Deng, X. G., Zhang, L. E., Zhu, T., Tan, W. R., Muhammad, A., Zhu, L. J., Zhang, C., Zhang, D. W., & Lin, H. H. (2018). Nitric oxide as a signaling molecule in brassinosteroid-mediated virus resistance to Cucumber mosaic virus in Arabidopsis thaliana. Physiologia Plantarum, 163, 196–210.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Sukhmeen Kaur Kohli
    • 1
  • Shagun Bali
    • 1
  • Kanika Khanna
    • 1
  • Palak Bakshi
    • 1
  • Pooja Sharma
    • 1
  • Anket Sharma
    • 2
  • Vinod Verma
    • 3
  • Puja Ohri
    • 4
  • Bilal Ahmad Mir
    • 5
  • Rupinder Kaur
    • 6
  • Renu Bhardwaj
    • 1
  1. 1.Department of Botanical and Environmental SciencesGuru Nanak Dev UniversityAmritsarIndia
  2. 2.State Key Laboratory of Subtropical SilvicultureZhejiang A&F UniversityHangzhouChina
  3. 3.Department of BotanyDAV UniversityJalandharIndia
  4. 4.Department of ZoologyGuru Nanak Dev UniversityAmritsarIndia
  5. 5.Department of Botany, School of Life Sciences, Satellite Campus KargilUniversity of KashmirSrinagarIndia
  6. 6.Department of BiotechnologyDAV CollegeAmritsarIndia

Personalised recommendations