Advertisement

The Brassinosteroids Family – Structural Diversity of Natural Compounds and Their Precursors

  • Marco Antonio Teixeira Zullo
  • Andrzej Bajguz
Chapter

Abstract

The members of the brassinosteroids family, defined as the 3-oxygenated (20β)-5α-cholestane-22α,23α-diols or their derived compounds isolated from plants, bearing additional alkyl or oxy substituents, are presented. Further, brassinosteroids are grouped into C27, C28, and C29 depending upon the number of carbons in their skeletons. Their structural variations occur due to the substitution in A and B-rings as well in the side chain. They occur in both free and conjugated forms to sugars, fatty and inorganic acids. Their presence in Algae, Bryophyta, Pteridophyta and Angiosperms indicates a ubiquitous distribution in the plant kingdom. The related brassinosteroids precursors, as well as their occurrence, are also presented. Brassinosteroids are considered as the 6th class of plant hormones which have been established after the discovery of brassinolide and other related compounds.

Keywords

Natural brassinosteroids Brassinosteroids precursors Brassinosteroids occurrence 

References

  1. Abe, H. (1991). Rice-lamina inclination, endogenous levels in plant tissues and accumulation during pollen development of brassinosteroids. In H. G. Cutler, T. Yokota, & G. Adam (Eds.), Brassinosteroids: Chemistry, bioactivity and applications (pp. 200–207). Washington: American Chemical Society.  https://doi.org/10.1021/bk-1991-0474.ch017.CrossRefGoogle Scholar
  2. Abe, H., Morishita, T., Uchiyama, M., Marumo, S., Munakata, K., Takatsuto, S., & Ikekawa, N. (1982). Identification of brassinolide-like substances in Chinese cabbage. Agricultural and Biological Chemistry, 46, 2609–2611.Google Scholar
  3. Abe, H., Morishita, T., Uchiyama, M., Takatsuto, S., Ikekawa, N., Ikeda, M., Sassa, T., Kitsuwa, T., & Marumo, S. (1983). Occurrence of three new brassinosteroids: Brassinone, (24S)-24-ethylbrassinone and 28-norbrassinolide, in higher plants. Experientia, 39, 351–353.CrossRefGoogle Scholar
  4. Abe, H., Morishita, T., Uchiyama, M., Takatsuto, S., & Ikekawa, N. (1984a). A new brassinolide-related steroid in the leaves of Thea sinensis. Agricultural and Biological Chemistry, 48, 2171–2172.Google Scholar
  5. Abe, H., Nakamura, K., Morishita, T., Uchiyama, M., Takatsuto, S., & Ikekawa, N. (1984b). Endogenous brassinosteroids of the rice plant: Castasterone and dolichosterone. Agricultural and Biological Chemistry, 48, 1103–1104.Google Scholar
  6. Abe, H., Honjo, C., Kyokawa, Y., Asakawa, S., Natsume, M., & Narushima, M. (1994). 3-Oxoteasterone and the epimerization of teasterone: Identification in lily anthers and Distylium racemosum leaves and its biotransformation into typhasterol. Bioscience, Biotechnology, and Biochemistry, 58, 986–989.CrossRefGoogle Scholar
  7. Abe, H., Takatsuto, S., Nakayama, M., & Yokota, T. (1995a). 28-Homotyphasterol, a new natural brassinosteroid from rice (Oryza sativa L.) bran. Bioscience, Biotechnology, and Biochemistry, 59, 176–178.CrossRefGoogle Scholar
  8. Abe, H., Takatsuto, S., Okuda, R., & Yokota, T. (1995b). Identification of castasterone, 6-deoxocastasterone, and typhasterol in the pollen of Robinia pseudo-acacia L. Bioscience, Biotechnology, and Biochemistry, 59, 309–310.CrossRefGoogle Scholar
  9. Antonchick, A. P., Schneider, B., Zhabinskii, V. N., Konstantinova, O. V., & Khripach, V. A. (2003). Biosynthesis of 2,3-epoxybrassinosteroids in seedlings of Secale cereale. Phytochemistry, 63, 771–776.PubMedCrossRefGoogle Scholar
  10. Antonchick, A., Svatos, A., Schneider, B., Konstantinova, O. V., Zhabinskii, V. N., & Khripach, V. A. (2005). 2,3-epoxybrassinosteroids are intermediates in the biosynthesis of castasterone in seedlings of Secale cereale. Phytochemistry, 66, 65–72.PubMedCrossRefGoogle Scholar
  11. Antonchick, A. P., Svatos, A., Konstantinova, O. V., Zhabinskii, V. N., Khripach, V. A., & Schneider, B. (2006). Reversible conversion in the brassinosteroid quartet castasterone, brassinolide and their 3β-epimers. Zeitschrift für Naturforschung. B, A Journal of Chemical Sciences, 61, 1039–1044.Google Scholar
  12. Aremu, A. O., Stirk, W. A., Kulkarni, M. G., Tarkowska, D., Tureckova, V., Gruz, J., Subrtova, M., Pencik, A., Novak, O., Dolezal, K., Strnad, M., & Van Staden, J. (2015). Evidence of phytohormones and phenolic acids variability in garden-waste-derived vermicompost leachate, a well-known plant growth stimulant. Plant Growth Regulation, 75, 483–492.CrossRefGoogle Scholar
  13. Arima, M., Yokota, T., & Takahashi, N. (1984). Identification and quantification of brassinolide-related steroids in the insect gall and healthy tissues of the chestnut plant. Phytochemistry, 23, 1587–1591.CrossRefGoogle Scholar
  14. Asahina, M., Tamaki, Y., Sakamoto, T., Shibata, K., Nomura, T., & Yokota, T. (2014). Blue light-promoted rice leaf bending and unrolling are due to up-regulated brassinosteroid biosynthesis genes accompanied by accumulation of castasterone. Phytochemistry, 104, 21–29.PubMedCrossRefGoogle Scholar
  15. Asakawa, S., Abe, H., Kyokawa, Y., Nakamura, S., & Natsume, M. (1994). Teasterone 3-myristate: A new-type of brassinosteroid derivative in Lilium longiflorum anthers. Bioscience, Biotechnology, and Biochemistry, 58, 219–220.PubMedCrossRefGoogle Scholar
  16. Asakawa, S., Abe, H., Nishikaa, N., Natsume, M., & Koshioka, M. (1996). Purification and identification of new acyl-conjugated teasterones in lily pollen. Bioscience, Biotechnology, and Biochemistry, 60, 1416–1420.CrossRefGoogle Scholar
  17. Baba, J., Yokota, T., & Takahashi, N. (1983). Brassinolide-related new bioactive steroids from Dolichos lablab seed. Agricultural and Biological Chemistry, 47, 659–661.Google Scholar
  18. Bajguz, A. (2009). Isolation and characterization of brassinosteroids from algal cultures of Chlorella vulgaris Beijerinck (Trebouxiophyceae). Journal of Plant Physiology, 166, 1946–1949.Google Scholar
  19. Bajguz, A., & Piotrowska-Niczyporuk, A. (2013). Synergistic effect of auxins and brassinosteroids on the growth and regulation of metabolite content in the green alga Chlorella vulgaris (Trebouxiophyceae). Plant Physiology and Biochemistry, 71, 290–297.Google Scholar
  20. Bajguz, A., & Piotrowska-Niczyporuk, A. (2014). Interactive effect of brassinosteroids and cytokinins on growth, chlorophyll, monosaccharide and protein content in the green alga Chlorella vulgaris (Trebouxiophyceae). Plant Physiology and Biochemistry, 80, 176–183.Google Scholar
  21. Bajguz, A., & Tretyn, A. (2003). The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry, 62, 1027–1046.PubMedCrossRefGoogle Scholar
  22. Bancos, S., Nomura, T., Sato, T., Molnar, G., Bishop, G. J., Koncz, C., Yokota, T., Nagy, F., & Szekeres, M. (2002). Regulation of transcript levels of the Arabidopsis cytochrome P450 genes involved in brassinosteroid biosynthesis. Plant Physiology, 130, 504–513.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Bancos, S., Szatmari, A.-M., Castle, J., Kozma-Bognar, L., Shibata, K., Yokota, T., Bishop, G. J., Nagy, F., & Szekeres, M. (2006). Diurnal regulation of the brassinosteroid-biosynthetic CPD gene in Arabidopsis. Plant Physiology, 141, 299–309.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Bardi, L., & Rosso, F. (2015). Extraction and characterization of brassinosteroids from residues of the biodiesel chain. Industrial Crops and Products, 75 (Part A), 24–28.CrossRefGoogle Scholar
  25. Benveniste, P. (2004). Biosynthesis and accumulation of sterols. Annual Review of Plant Biology, 55, 429–457.PubMedCrossRefGoogle Scholar
  26. Best, N. B., Hartwig, T., Budka, J., Fujioka, S., Johal, G., Schulz, B., & Dilkes, B. P. (2016). nana plant2 encodes a maize ortholog of the Arabidopsis brassinosteroid biosynthesis protein DWARF1, identifying developmental interactions between brassinosteroids and gibberellins. Plant Physiology, 171, 2633–2647.PubMedPubMedCentralGoogle Scholar
  27. Beste, L., Nahar, N., Dalman, K., Fujioka, S., Jonsson, L., Dutta, P. C., & Sitbon, F. (2011). Synthesis of hydroxylated sterols in transgenic Arabidopsis plants alters growth and steroid metabolism. Plant Physiology, 157, 426–440.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Bhardwaj, R., Kaur, S., Nagar, P. K., & Arora, H. K. (2007). Isolation and characterization of brassinosteroids from immature seeds of Camellia sinensis (O) Kuntze. Plant Growth Regulation, 53, 1–5.CrossRefGoogle Scholar
  29. Bishop, G. J., Nomura, T., Yokota, T., Harrison, K., Noguchi, T., Fujioka, S., Takatsuto, S., Jones, J. D. G., & Kamiya, Y. (1999). The tomato DWARF enzyme catalyses C-6 oxidation in brassinosteroid biosynthesis. Proceedings of the National Academy of Sciences, 96, 1761–1766.CrossRefGoogle Scholar
  30. Brosa, C., Capdevila, J. M., & Zamora, I. (1996). Brassinosteroids: A new way to define the structural requirements. Tetrahedron, 52, 2435–2448.CrossRefGoogle Scholar
  31. Carland, F., Fujioka, S., & Nelson, T. (2010). The sterol methyltransferases SMT1, SMT2, and SMT3 influence Arabidopsis development through nonbrassinosteroid products. Plant Physiology, 153, 741–756.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Chen, M., Wang, R., Zhu, Y., Liu, M., Zhu, F., Xiao, J., & Chen, X. (2018). 4-Mercaptophenylboronic acid-modified spirally-curved mesoporous silica nanofibers coupled with ultra performance liquid chromatography-mass spectrometry for determination of brassinosteroids in plants. Food Chemistry, 263, 51–58.PubMedCrossRefGoogle Scholar
  33. Choe, S., Fujioka, S., Noguchi, T., Takatsuto, S., Yoshida, S., & Feldmann, K. A. (2001). Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis. The Plant Journal, 26, 573–582.PubMedCrossRefGoogle Scholar
  34. Choe, S., Schmitz, R. J., Fujioka, S., Takatsuto, S., Lee, M. O., Yoshida, S., Feldmann, K. A., & Tax, F. E. (2002). Arabidopsis brassinosteroid-insensitive dwarf12 mutants are semidominant and defective in a glycogen synthase kinase 3β-like kinase. Plant Physiology, 130, 1506–1515.Google Scholar
  35. Choi, Y. H., Inoue, T., Fujioka, S., Saimoto, H., & Sakurai, A. (1993). Identification of brassinosteroid-like active substances in plant-cell cultures. Bioscience, Biotechnology, and Biochemistry, 57, 860–861.CrossRefGoogle Scholar
  36. Choi, Y. H., Fujioka, S., Harada, A., Yokota, T., Takatsuto, S., & Sakurai, A. (1996). A brassinolide biosynthetic pathway via 6-deoxocastasterone. Phytochemistry, 43, 593–596.CrossRefGoogle Scholar
  37. Choi, Y. H., Fujioka, S., Nomura, T., Harada, A., Yokota, T., Takatsuto, S., & Sakurai, A. (1997). An alternative brassinolide biosynthetic pathway via late C-6 oxidation. Phytochemistry, 44, 609–613.CrossRefGoogle Scholar
  38. Choi, S., Cho, Y. H., Kim, K., Matsui, M., Son, S. H., Kim, S. K., Fujioka, S., & Hwang, I. (2013). BAT1, a putative acyltransferase, modulates brassinosteroid levels in Arabidopsis. The Plant Journal, 73, 380–391.PubMedCrossRefGoogle Scholar
  39. Chung, H. Y., Fujioka, S., Choe, S., Lee, S., Lee, Y. H., Baek, N. I., & Chung, I. S. (2010). Simultaneous suppression of three genes related to brassinosteroid (BR) biosynthesis altered campesterol and BR contents, and led to a dwarf phenotype in Arabidopsis thaliana. Plant Cell Reports, 29, 397–402.PubMedCrossRefGoogle Scholar
  40. Deng, T., Wu, D., Duan, C., & Guan, Y. (2016). Ultrasensitive quantification of endogenous brassinosteroids in milligram fresh plant with a quaternary ammonium derivatization reagent by pipette-tip solid-phase extraction coupled with ultra-high-performance liquid chromatography tandem mass spectrometry. Journal of Chromatography. A, 1456, 105–112.PubMedCrossRefGoogle Scholar
  41. Dias, D. S., Ribeiro, L. M., Lopes, P. S. N., Munne-Bosch, S., & Garcia, Q. S. (2017). Hormonal profile and the role of cell expansion in the germination control of Cerrado biome palm seeds. Plant Physiology and Biochemistry, 118, 168–177.PubMedCrossRefGoogle Scholar
  42. Ding, J., Mao, L. J., Wang, S. T., Yuan, B. F., & Feng, Y. Q. (2013a). Determination of endogenous brassinosteroids in plant tissues using solid-phase extraction with double layered cartridge followed by high-performance liquid chromatography-tandem mass spectrometry. Phytochemical Analysis, 24, 386–394.PubMedCrossRefGoogle Scholar
  43. Ding, J., Mao, L. J., Yuan, B. F., & Feng, Y. Q. (2013b). A selective pretreatment method for determination of endogenous active brassinosteroids in plant tissues: Double layered solid phase extraction combined with boronate affinity polymer monolith microextraction. Plant Methods, 9, 13.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Ding, J., Jiang, L., & Feng, Y. (2014a). An automatic and sensitive method for determination of endogenous brassinosteroids in plant tissues by an online trapping-in situ derivatization-ultra performance liquid chromatography-tandem mass spectrometry system. Chinese Journal of Chromatography, 32, 1094–1103.PubMedCrossRefGoogle Scholar
  45. Ding, J., Wu, J. H., Liu, J. F., Yuan, B. F., & Feng, Y. Q. (2014b). Improved methodology for assaying brassinosteroids in plant tissues using magnetic hydrophilic material for both extraction and derivatization. Plant Methods, 10, 39.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Ding, J., Mao, L. J., Guo, N., Yu, L., & Feng, Y. Q. (2016). Determination of endogenous brassinosteroids using sequential magnetic solid phase extraction followed by in situ derivatization/desorption method coupled with liquid chromatography-tandem mass spectrometry. Journal of Chromatography. A, 1446, 103–113.PubMedCrossRefGoogle Scholar
  47. Dockter, C., Braumann, I., Gough, S. P., Lundqvist, J., Matyszczak, I., Muller, A. H., Zakhrabekova, S., Hansson, M., Gruszka, D., Kurowska, M., Marzec, M., Druka, A., Druka, I., Franckowiak, J., Janeczko, A., Lundqvist, U., Oklestkova, J., & Schulz, B. (2014). Induced variations in brassinosteroid genes define barley height and sturdiness, and expand the “green revolution” genetic toolkit. Plant Physiology, 166, 1912–1927.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Franke, K., Nasher, A. K., & Schmidt, J. (2004). Constituents of Jatropha unicostata. Biochemical Systematics and Ecology, 32, 219–220.CrossRefGoogle Scholar
  49. Friebe, A., Volz, A., Schmidt, J., Voigt, B., Adam, G., & Schnabl, H. (1999). 24-Epi-secasterone and 24-epi-castasterone from Lychnis viscaria seeds. Phytochemistry, 52, 1607–1610.CrossRefGoogle Scholar
  50. Fujioka, S. (1999). Natural occurrence of brassinosteroids in the plant kingdom. In A. Sakurai, T. Yokota, & S. D. Clouse (Eds.), Brassinosteroids – Steroidal plant hormones (pp. 21–45). Tokyo: Springer.Google Scholar
  51. Fujioka, S., & Sakurai, A. (1997). Brassinosteroids. Natural Product Reports, 14, 1–10.CrossRefGoogle Scholar
  52. Fujioka, S., Inoue, T., Takatsuto, S., Yanagisawa, T., Yokota, T., & Sakurai, A. (1995a). Biological activities of biosynthetically-related congeners of brassinolide. Bioscience, Biotechnology, and Biochemistry, 59, 1973–1975.CrossRefGoogle Scholar
  53. Fujioka, S., Inoue, T., Takatsuto, S., Yanagisawa, T., Yokota, T., & Sakurai, A. (1995b). Identification of a new brassinosteroid, cathasterone, in cultured cells of Catharanthus roseus as a biosynthetic precursor of teasterone. Bioscience, Biotechnology, and Biochemistry, 59, 1543–1547.CrossRefGoogle Scholar
  54. Fujioka, S., Choi, Y. H., Takatsuto, S., Yokota, T., Li, J. M., Chory, J., & Sakurai, A. (1996). Identification of castasterone, 6-deoxocastasterone, typhasterol and 6-deoxotyphasterol from the shoots of Arabidopsis thaliana. Plant & Cell Physiology, 37, 1201–1203.CrossRefGoogle Scholar
  55. Fujioka, S., Li, J. M., Choi, Y. H., Seto, H., Takatsuto, S., Noguchi, T., Watanabe, T., Kuriyama, H., Yokota, T., Chory, J., & Sakurai, A. (1997). The Arabidopsis deetiolated2 mutant is blocked early in brassinosteroid biosynthesis. Plant Cell, 9, 1951–1962.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Fujioka, S., Noguchi, T., Takatsuto, S., & Yoshida, S. (1998a). Activity of brassinosteroids in the dwarf rice lamina inclination bioassay. Phytochemistry, 49, 1841–1848.CrossRefGoogle Scholar
  57. Fujioka, S., Noguchi, T., Yokota, T., Takatsuto, S., & Yoshida, S. (1998b). Brassinosteroids in Arabidopsis thaliana. Phytochemistry, 48, 595–599.PubMedCrossRefGoogle Scholar
  58. Fujioka, S., Noguchi, T., Sekimoto, M., Takatsuto, S., & Yoshida, S. (2000a). 28-norcastasterone is biosynthesized from castasterone. Phytochemistry, 55, 97–101.PubMedCrossRefGoogle Scholar
  59. Fujioka, S., Noguchi, T., Watanabe, T., Takatsuto, S., & Yoshida, S. (2000b). Biosynthesis of brassinosteroids in cultured cells of Catharanthus roseus. Phytochemistry, 53, 549–553.PubMedCrossRefGoogle Scholar
  60. Fujioka, S., Takatsuto, S., & Yoshida, S. (2002). An early C-22 oxidation branch in the brassinosteroid biosynthetic pathway. Plant Physiology, 130, 930–939.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Fukuta, N., Fujioka, S., Takatsuto, S., Yoshida, S., Fukuta, Y., & Nakayama, M. (2004). ‘Rinrei’, a brassinosteroid-deficient dwarf mutant of faba bean (Vicia faba). Physiologia Plantarum, 121, 506–512.CrossRefGoogle Scholar
  62. Fung, S., & Siddall, J. B. (1980). Stereoselective synthesis of brassinolide: A plant growth promoting steroidal lactone. Journal of the American Chemical Society, 102, 6580–6581.CrossRefGoogle Scholar
  63. Georges, P., Sylvestre, M., Ruegger, H., & Bourgeois, P. (2006). Ketosteroids and hydroxyketosteroids, minor metabolites of sugarcane wax. Steroids, 71, 647–652.PubMedCrossRefGoogle Scholar
  64. Griffiths, P. G., Sasse, J. M., Yokota, T., & Cameron, D. W. (1995). 6-Deoxotyphasterol and 3-dehydro-6-deoxoteasterone, possible precursors to brassinosteroids in the pollen of Cupressus arizonica. Bioscience Biotechnology and Biochemistry, 59, 956–959.CrossRefGoogle Scholar
  65. Grove, M. D., Spencer, G. F., Rohwedder, W. K., Mandava, N., Worley, J. F., Warthen, J. D., Steffens, G. L., Flippenanderson, J. L., & Cook, J. C. (1979). Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature, 281, 216–217.CrossRefGoogle Scholar
  66. Gruszka, D., Szarejko, I., Janeczko, A., Dziurka, M., Pociecha, E., & Oklestkova, J. (2016). Barley brassinosteroid mutants provide an insight into phytohormonal homeostasis in plant reaction to drought stress. Frontiers in Plant Science, 7, 1824.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Guillen, M. D., & Manzanos, M. J. (2001). Some compounds detected for the first time in oak wood extracts by GC/MS. Sciences des Aliments, 21, 65–70.CrossRefGoogle Scholar
  68. Gupta, D., Bhardwaj, R., Nagar, P. K., & Kaur, S. (2004). Isolation and characterization of brassinosteroids from leaves of Camellia sinensis (L.) O. Kuntze. Plant Growth Regulation, 43, 97–100.CrossRefGoogle Scholar
  69. Habib, S. H., Ooi, S. E., Novak, O., Tarkowska, D., Rolcik, J., Dolezal, K., Syed-Alwee, S. S. R., Ho, C. L., & Namasivayam, P. (2012). Comparative mineral and hormonal analyses of wild type and TLS somaclonal variant derived from oil palm (Elaeis guineensis Jacq. var. tenera) tissue culture. Plant Growth Regulation, 68, 313–317.CrossRefGoogle Scholar
  70. Hai, T., Schneider, B., Porzel, A., & Adam, G. (1996). Metabolism of 24-epi-castasterone in cell suspension cultures of Lycopersicon esculentum. Phytochemistry, 41, 197–201.CrossRefGoogle Scholar
  71. Hartwig, T., Chuck, G. S., Fujioka, S., Klempien, A., Weizbauer, R., Potluri, D. P. V., Choe, S., Johal, G. S., & Schulz, B. (2011). Brassinosteroid control of sex determination in maize. Proceedings of the National Academy of Sciences, 108, 19814–19819.CrossRefGoogle Scholar
  72. He, J. X., Fujioka, S., Li, T. C., Kang, S. G., Seto, H., Takatsuto, S., Yoshida, S., & Jang, J. C. (2003). Sterols regulate development and gene expression in Arabidopsis. Plant Physiology, 131, 1258–1269.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Hou, S., Niu, H., Tao, Q., Wang, S., Gong, Z., Li, Z., Li, S., Weng, Y., Li, Z., Li, S., & Weng, Y. (2017). A mutant in the CsDET2 gene leads to a systemic brassinosteriod deficiency and super compact phenotype in cucumber (Cucumis sativus L.). Theoretical and Applied Genetics, 130, 1693–1703.PubMedCrossRefGoogle Scholar
  74. Huo, F., Wang, X., Han, Y., Bai, Y., Zhang, W., Yuan, H., & Liu, H. (2012). A new derivatization approach for the rapid and sensitive analysis of brassinosteroids by using ultra high performance liquid chromatography-electrospray ionization triple quadrupole mass spectrometry. Talanta, 99, 420–425.PubMedCrossRefGoogle Scholar
  75. Hwang, J. Y., Park, C. H., Namgung, H., & Kim, S. K. (2006). Identification of a new brassinosteroid, 23-dehydro-2-epicastasterone, from immature seeds of Phaseolus vulgaris. Journal of Plant Biology, 49, 409–412.CrossRefGoogle Scholar
  76. Hwang, J. Y., Park, C. H., & Kim, S. K. (2007). C-3 epimerization of 6-deoxocastasterone in Phaseolus vulgaris. Bulletin of the Korean Chemical Society, 28, 175–176.CrossRefGoogle Scholar
  77. Ikeda, M., Takatsuto, S., Sassa, T., Ikekawa, N., & Nukina, M. (1983). Identification of brassinolide and its analogs in chestnut gall tissue. Agricultural and Biological Chemistry, 47, 655–657.Google Scholar
  78. Ikekawa, N., & Takatsuto, S. (1984). Microanalysis of brassinosteroids in plants by gas chromatography/mass spectrometry. Journal of the Mass Spectrometry Society of Japan, 32, 55–70.CrossRefGoogle Scholar
  79. Ikekawa, N., Takatsuto, S., Kitsuwa, T., Saito, H., Morishita, T., & Abe, H. (1984). Analysis of natural brassinosteroids by gas chromatography and gas chromatography-mass spectrometry. Journal of Chromatography, 290, 289–302.CrossRefGoogle Scholar
  80. Ikekawa, N., Nishiyama, F., & Fujimoto, Y. (1988). Identification of 24-epibrassinolide in bee pollen of the broad bean, Vicia faba L. Chemical & Pharmaceutical Bulletin, 36, 405–407.CrossRefGoogle Scholar
  81. Ishiguro, M., Takatsuto, S., Morisaki, M., & Ikekawa, N. (1980). Synthesis of brassinolide, a steroidal lactone with plant-growth promoting activity. Journal of the Chemical Society, Chemical Communications, 20, 962–964.CrossRefGoogle Scholar
  82. Janeczko, A., & Swaczynova, J. (2010). Endogenous brassinosteroids in wheat treated with 24-epibrassinolide. Biologia Plantarum, 54, 477–482.CrossRefGoogle Scholar
  83. Jang, M. S., Han, K. S., & Kim, S. K. (2000). Identification of brassinosteroids and their biosynthetic precursors from seeds of pumpkin. Bulletin of the Korean Chemical Society, 21, 161–164.Google Scholar
  84. Joo, S. H., Kim, T. W., Son, S. H., Lee, W. S., Yokota, T., & Kim, S. K. (2012). Biosynthesis of a cholesterol-derived brassinosteroid, 28-norcastasterone, in Arabidopsis thaliana. Journal of Experimental Botany, 63, 1823–1833.PubMedCrossRefGoogle Scholar
  85. Joo, S. H., Jang, M. S., Kim, M. K., Lee, J. E., & Kim, S. K. (2015). Biosynthetic relationship between C28-brassinosteroids and C29-brassinosteroids in rice (Oryza sativa) seedlings. Phytochemistry, 111, 84–90.Google Scholar
  86. Kanwar, M. K., Bhardwaj, R., Arora, P., Chowdhary, S. P., Sharma, P., & Kumar, S. (2012). Plant steroid hormones produced under Ni stress are involved in the regulation of metal uptake and oxidative stress in Brassica juncea L. Chemosphere, 86, 41–49.PubMedCrossRefGoogle Scholar
  87. Kanwar, M. K., Bhardwaj, R., Chowdhary, S. P., Arora, P., Sharma, P., & Kumar, S. (2013). Isolation and characterization of 24-epibrassinolide from Brassica juncea L. and its effects on growth, Ni ion uptake, antioxidant defense of Brassica plants and in vitro cytotoxicity. Acta Physiologiae Plantarum, 35, 1351–1362.CrossRefGoogle Scholar
  88. Kanwar, M. K., Poonam, & Bhardwaj, R. (2015). Arsenic induced modulation of antioxidative defense system and brassinosteroids in Brassica juncea L. Ecotoxicology and Environmental Safety, 115C, 119–125.CrossRefGoogle Scholar
  89. Kasote, D. M., Ghosh, R., Kim, J., Bae, H., Chung, J. Y., & Bae, I. (2016). Multiple reaction monitoring mode based liquid chromatography-mass spectrometry method for simultaneous quantification of brassinolide and other plant hormones involved in abiotic stresses. International Journal of Analytical Chemistry, 2016, 7214087.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Katsumata, T., Hasegawa, A., Fujiwara, T., Komatsu, T., Notomi, M., Abe, H., Natsume, M., & Kawaide, H. (2008). Arabidopsis CYP85A2 catalyzes lactonization reactions in the biosynthesis of 2-deoxy-7-oxalactone brassinosteroids. Bioscience, Biotechnology, and Biochemistry, 72, 2110–2117.PubMedCrossRefGoogle Scholar
  91. Kim, S. K. (1991). Natural occurrences of brassinosteroids. In H. G. Cutler, T. Yokota, & G. Adam (Eds.), Brassinosteroids: Chemistry, bioactivity and appplications (pp. 26–35). Washington: American Chemical Society.CrossRefGoogle Scholar
  92. Kim, S. K., Yokota, T., & Takahashi, N. (1987). 25-Methyldolichosterone, a new brassinosteroid with a tertiary butyl group from immature seed of Phaseolus vulgaris. Agricultural and Biological Chemistry, 51, 2303–2305.Google Scholar
  93. Kim, S. K., Abe, H., Little, C. H. A., & Pharis, R. P. (1990). Identification of two brassinosteroids from the cambial region of Scots pine (Pinus silverstris) by gas chromatography-mass spectrometry, after detection using a dwarf rice lamina inclination bioassay. Plant Physiology, 94, 1709–1713.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Kim, T. W., Chang, S. C., Choo, J., Watanabe, T., Takatsuto, S., Takao, Y., Lee, J. S., Kim, S. Y., & Kim, S. K. (2000a). Brassinolide and [26,28-2H6]brassinolide are differently demethylated by loss of C-26 and C-28, respectively, in Marchantia polymorpha. Plant & Cell Physiology, 41, 1171–1174.CrossRefGoogle Scholar
  95. Kim, T. W., Han, K. S., Joo, S. H., Kang, M. W., & Kim, S. K. (2000b). Metabolism of brassinolide in suspension cultured cells of Phaseolus vulgaris. Bulletin of the Korean Chemical Society, 21, 1044–1046.Google Scholar
  96. Kim, T. W., Park, S. H., Han, K. S., Choo, J., Lee, J. S., Hwang, S., & Kim, S. K. (2000c). Occurrence of teasterone and typhasterol, and their enzymatic conversion in Phaseolus vulgaris. Bulletin of the Korean Chemical Society, 21, 373–374.Google Scholar
  97. Kim, Y. S., Sup, Y. H., Kim, T. W., Joo, S. H., & Kim, S. K. (2002). Identification of a brassinosteroid, castasterone from Marchantia polymorpha. Bulletin of the Korean Chemical Society, 23, 941–942.CrossRefGoogle Scholar
  98. Kim, G. T., Fujioka, S., Kozuka, T., Tax, F. E., Takatsuto, S., Yoshida, S., & Tsukaya, H. (2005a). CYP90C1 and CYP90D1 are involved in different steps in the brassinosteroid biosynthesis pathway in Arabidopsis thaliana. The Plant Journal, 41, 710–721.PubMedCrossRefGoogle Scholar
  99. Kim, Y. S., Kim, T. W., & Kim, S. K. (2005b). Brassinosteroids are inherently biosynthesized in the primary roots of maize, Zea mays L. Phytochemistry, 66, 1000–1006.  https://doi.org/10.1016/j.phytochem.2005.03.007.CrossRefPubMedGoogle Scholar
  100. Kim, H. B., Kwon, M., Ryu, H., Fujioka, S., Takatsuto, S., Yoshida, S., An, C. S., Lee, I., Hwang, I., & Choe, S. (2006a). The regulation of DWARF4 expression is likely a critical mechanism in maintaining the homeostasis of bioactive brassinosteroids in Arabidopsis. Plant Physiology, 140, 548–557.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Kim, Y. S., Joo, S. H., Hwang, J. Y., Park, C. H., & Kim, S. K. (2006b). Characterization of C29-brassinosteroids and their biosynthetic precursors in immature seeds of Phaseolus vulgaris. Bulletin of the Korean Chemical Society, 27, 1117–1118.Google Scholar
  102. Kim, Y. S., Kim, T. W., Chang, S. C., Pharis, R. P., Lee, J. S., Han, T. J., Takatsuto, S., Cheong, H., & Kim, S. K. (2006c). Regulation of castasterone level in primary roots of maize, Zea mays. Physiologia Plantarum, 127, 28–37.CrossRefGoogle Scholar
  103. Kim, B. K., Fujioka, S., Takatsuto, S., Tsujimoto, M., & Choe, S. (2008). Castasterone is a likely end product of brassinosteroid biosynthetic pathway in rice. Biochemical and Biophysical Research Communications, 374, 614–619.PubMedCrossRefPubMedCentralGoogle Scholar
  104. Kim, M. K., Jang, M. S., Youn, J. H., Son, S. H., Lee, J. E., Kim, T. W., & Kim, S. K. (2015). Occurrence of phosphorylated castasterone in Arabidopsis thaliana and Lycopersicum esculentum. Physiologia Plantarum, 153, 58–67.PubMedCrossRefGoogle Scholar
  105. Koka, C. V., Cerny, R. E., Gardner, R. G., Noguchi, T., Fujioka, S., Takatsuto, S., Yoshida, S., & Clouse, S. D. (2000). A putative role for the tomato genes DUMPY and CURL-3 in brassinosteroid biosynthesis and response. Plant Physiology, 122, 85–98.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Konstantinova, O. V., Antonchick, A. P., Oldham, N. J., Zhabinskii, V. N., Khripach, V. A., & Schneider, B. (2001). Analysis of underivatized brassinosteroids by HPLC/APCI-MS. Occurrence of 3-epibrassinolide in Arabidopsis thaliana. Collection of Czechoslovak Chemical Communications, 66, 1729–1734.CrossRefGoogle Scholar
  107. Lee, H. K., Kwon, M., Jeon, J. H., Fujioka, S., Kim, H. B., Park, S. Y., …Choe, S. (2006). An Arabidopsis short root and dwarfism mutant defines a novel locus that mediates both cell division and elongation. Journal of Plant Biology, 49, 61–69.  https://doi.org/10.1007/BF03030789.CrossRefGoogle Scholar
  108. Lee, S. C., Hwang, J. Y., Joo, S. H., Son, S. H., Youn, J. H., & Kim, S. K. (2010). Biosynthesis and metabolism of dolichosterone in Arabidopsis thaliana. Bulletin of the Korean Chemical Society, 31, 3475–3478.CrossRefGoogle Scholar
  109. Lee, S. C., Joo, S. H., & Kim, S. K. (2011). Stereoisomers of castasterone, 3-epicastasterone and 2,3-diepicastasterone, in immature seeds of Phaseolus vulgaris. Journal of Plant Biology, 54, 10–14.CrossRefGoogle Scholar
  110. Li, H., Jiang, L., Youn, J. H., Sun, W., Cheng, Z., Jin, T., Ma, X., Guo, X., Wang, J., Zhang, X., Wu, F., Wu, C., Kim, S. K., & Wan, J. (2013). A comprehensive genetic study reveals a crucial role of CYP90D2/D2 in regulating plant architecture in rice (Oryza sativa). The New Phytologist, 200, 1076–1088.PubMedCrossRefGoogle Scholar
  111. Liu, J., Zhang, D., Sun, X., Ding, T., Lei, B., & Zhang, C. (2017). Structure-activity relationship of brassinosteroids and their agricultural practical usages. Steroids, 124, 1–17.PubMedCrossRefGoogle Scholar
  112. Lv, T., Zhao, X. E., Zhu, S., Ji, Z., Chen, G., Sun, Z., Song, C., You, J., & Suo, Y. (2014). Development of an efficient HPLC fluorescence detection method for brassinolide by ultrasonic-assisted dispersive liquid-liquid microextraction coupled with derivatization. Chromatographia, 77, 1653–1660.CrossRefGoogle Scholar
  113. Maeda, E. (1965). Rate of lamina inclination in excised rice leaves. Physiologia Plantarum, 18, 813–827.CrossRefGoogle Scholar
  114. Mandava, N. B. (1988). Plant growth-promoting brassinosteroids. Annual Review of Plant Physiology and Plant Molecular Biology, 39, 23–52.CrossRefGoogle Scholar
  115. Mitchell, J. W., & Gregory, L. E. (1972). Enhancement of overall plant growth, a new response to brassins. Nature: New Biology, 239, 253–254.Google Scholar
  116. Mitchell, J. W., & Whitehead, M. R. (1941). Responses of vegetative parts of plants following application of extract of pollen of Zea mays. Botanical Gazette, 102, 770–791.CrossRefGoogle Scholar
  117. Mitchell, J. W., Skraggs, D. P., & Anderson, W. P. (1951). Plant growth stimulating hormones in immature bean seeds. Science, 114, 159–161.PubMedCrossRefGoogle Scholar
  118. Mitchell, J. W., Mandava, N., Worley, J. F., Plimmer, J. R., & Smith, M. V. (1970). Brassins – a new family of plant hormones from rape pollen. Nature, 225, 1065–1066.PubMedCrossRefGoogle Scholar
  119. Mori, K. (1980). Synthesis of a brassinolide analog with high plant growth promoting activity. Agricultural and Biological Chemistry, 44, 1211–1212.Google Scholar
  120. Mori, K., & Takeuchi, T. (1988). Synthesis of 25-methyldolichosterone, 25-methyl-2,3-diepidolichosterone, 25-methylcastasterone and 25-methylbrassinolide. Liebigs Annalen der Chemie, 1988, 815–818.CrossRefGoogle Scholar
  121. Mori, K., Sakakibara, M., Ichikawa, Y., Ueda, H., Okada, K., Umemura, T., Yabuta, G., Kuwahara, S., Kondo, Minobe, M., & Sogabe, A. (1982). Synthesis of (22S,23S)-homobrassinolide and brassinolide from stigmasterol. Tetrahedron, 38, 2099–2109.CrossRefGoogle Scholar
  122. Mori, M., Nomura, T., Ooka, H., Ishizaka, M., Yokota, T., Sugimoto, K., Okabe, K., Kajiwara, H., Satoh, K., Yamamoto, K., Hirochika, H., & Kikuchi, S. (2002). Isolation and characterization of a rice dwarf mutant with a defect in brassinosteroid biosynthesis. Plant Physiology, 130, 1152–1161.PubMedPubMedCentralCrossRefGoogle Scholar
  123. Morishita, T., Abe, H., Uchiyama, M., Marumo, S., Takatsuto, S., & Ikekawa, N. (1983). Evidence for plant growth promoting brassinosteroids in leaves of Thea sinensis. Phytochemistry, 22, 1051–1053.CrossRefGoogle Scholar
  124. Motegi, C., Takatsuto, S., & Gamoh, K. (1994). Identification of brassinolide and castasterone in the pollen of orange (Citrus sinensis Osbeck) by high-performance liquid chromatography. Journal of Chromatography A, 658, 27–30.CrossRefGoogle Scholar
  125. Nakamura, M., Satoh, T., Tanaka, S. I., Mochizuki, N., Yokota, T., & Nagatani, A. (2005). Activation of the cytochrome P450 gene, CYP72C1, reduces the levels of active brassinosteroids in vivo. Journal of Experimental Botany, 56, 833–840.PubMedCrossRefPubMedCentralGoogle Scholar
  126. Nakamura, A., Fujioka, S., Sunohara, H., Kamiya, N., Hong, Z., Inukai, Y., Miura, K., Takatsuto, S., Yoshida, S., Ueguchi-Tanaka, M., Hasegawa, Y., Kitano, H., & Matsuoka, M. (2006). The role of OsBRI1 and its homologous genes, OsBRL1 and OsBRL3, in rice. Plant Physiology, 140, 580–590.PubMedPubMedCentralCrossRefGoogle Scholar
  127. Noguchi, T., Fujioka, S., Choe, S., Takatsuto, S., Yoshida, S., Yuan, H., Feldmann, K. A., & Tax, F. E. (1999). Brassinosteroid-insensitive dwarf mutants of Arabidopsis accumulate brassinosteroids. Plant Physiology, 121, 743–752.PubMedPubMedCentralCrossRefGoogle Scholar
  128. Noguchi, T., Fujioka, S., Choe, S., Takatsuto, S., Tax, F. E., Yoshida, S., & Feldmann, K. A. (2000). Biosynthetic pathways of brassinolide in Arabidopsis. Plant Physiology, 124, 201–209.  https://doi.org/10.1104/pp.124.1.201.CrossRefPubMedPubMedCentralGoogle Scholar
  129. Nomura, T., Nakayama, M., Reid, J. B., Takeuchi, Y., & Yokota, T. (1997). Blockage of brassinosteroid biosynthesis and sensitivity causes dwarfism in garden pea. Plant Physiology, 113, 31–37.PubMedPubMedCentralCrossRefGoogle Scholar
  130. Nomura, T., Sato, T., Bishop, G. J., Kamiya, Y., Takatsuto, S., & Yokota, T. (2001). Accumulation of 6-deoxocathasterone and 6-deoxocastasterone in Arabidopsis, pea and tomato is suggestive of common rate-limiting steps in brassinosteroid biosynthesis. Phytochemistry, 57, 171–178.PubMedCrossRefGoogle Scholar
  131. Nomura, T., Jager, C. E., Kitasaka, Y., Takeuchi, K., Fukami, M., Yoneyama, K., Matsushita, Y., Nyunoya, H., Takatsuto, S., Fujioka, S., Smith, J. J., Kerckhoffs, L. H. J., Reid, J. B., & Yokota, T. (2004). Brassinosteroid deficiency due to truncated steroid 5a-reductase causes dwarfism in the lk mutant of pea. Plant Physiology, 135, 2220–2229.PubMedPubMedCentralCrossRefGoogle Scholar
  132. Nomura, T., Kushiro, T., Yokota, T., Kamiya, Y., Bishop, G. J., & Yamaguchi, S. (2005). The last reaction producing brassinolide is catalyzed by cytochrome P-450s, CYP85A3 in tomato and CYP85A2 in Arabidopsis. The Journal of Biological Chemistry, 280, 17873–17879.PubMedCrossRefPubMedCentralGoogle Scholar
  133. Nomura, T., Ueno, M., Yamada, Y., Takatsuto, S., Takeuchi, Y., & Yokota, T. (2007). Roles of brassinosteroids and related mRNAs in pea seed growth and germination. Plant Physiology, 143, 1680–1688.PubMedPubMedCentralCrossRefGoogle Scholar
  134. Ohnishi, T., Nomura, T., Watanabe, B., Ohta, D., Yokota, T., Miyagawa, H., Sakata, K., & Mizutani, M. (2006a). Tomato cytochrome P450 CYP734A7 functions in brassinosteroid catabolism. Phytochemistry, 67, 1895–1906.PubMedCrossRefGoogle Scholar
  135. Ohnishi, T., Szatmari, A.-M., Watanabe, B., Fujita, S., Bancos, S., Koncz, C., Lafos, M., Shibata, K., Yokota, T., Sakata, K., Szekeres, M., & Mizutani, M. (2006b). C-23 hydroxylation by Arabidopsis CYP90C1 and CYP90D1 reveals a novel shortcut in brassinosteroid biosynthesis. Plant Cell, 18, 3275–3288.PubMedPubMedCentralCrossRefGoogle Scholar
  136. Ohnishi, T., Godza, B., Watanabe, B., Fujioka, S., Hategan, L., Ide, K., Shibata, K., Yokota, T., Szekeres, M., & Mizutani, M. (2012). CYP90A1/CPD, a brassinosteroid biosynthetic cytochrome P450 of Arabidopsis, catalyzes C-3 oxidation. The Journal of Biological Chemistry, 287, 31551–31560.PubMedPubMedCentralCrossRefGoogle Scholar
  137. Oikawa, A., Otsuka, T., Nakabayashi, R., Jikumaru, Y., Isuzugawa, K., Murayama, H., Saito, K., & Shiratake, K. (2015). Metabolic profiling of developing pear fruits reveals dynamic variation in primary and secondary metabolites, including plant hormones. PLoS One, 10, 0131408.Google Scholar
  138. Oklestkova, J., Tarkowska, D., Eyer, L., Elbert, T., Marek, A., Smrzova, Z., …Strnad, M. (2017). Immunoaffinity chromatography combined with tandem mass spectrometry: A new tool for the selective capture and analysis of brassinosteroid plant hormones. Talanta, 170, 432–440.  https://doi.org/10.1016/j.talanta.2017.04.044.CrossRefPubMedGoogle Scholar
  139. Pachthong, C., Supyen, D., Buddhasukh, D., & Jatisatienr, A. (2006). Isolation and characterization of brassinolide and castasterone in the pollen of pumpkin. Chiang Mai Journal of Science, 33, 95–101.Google Scholar
  140. Pachthong, C., Supyen, D., Buddhasukh, D., & Jatisatien, A. (2007). Isolation and characterization of brassinolide and castasterone from mature seeds of smooth loofah (Luffa cylindrica (L.) M.J. Roem). ACGC Chemical Research Communications, 21, 4–8.Google Scholar
  141. Pan, J., Hu, Y., Liang, T., & Li, G. (2012). Preparation of solid-phase microextraction fibers by in-mold coating strategy for derivatization analysis of 24-epibrassinolide in pollen samples. Journal of Chromatography. A, 1262, 49–55.PubMedCrossRefGoogle Scholar
  142. Pan, J., Huang, Y., Liu, L., Hu, Y., & Li, G. (2013). A novel fractionized sampling and stacking strategy for online hyphenation of solid-phase-based extraction to ultra-high performance liquid chromatography for ultrasensitive analysis. Journal of Chromatography. A, 1316, 29–36.PubMedCrossRefGoogle Scholar
  143. Park, K. H., Yokota, T., Sakurai, A., & Takahashi, N. (1987). Occurrence of castasterone, brassinolide and methyl 4-chloroindole-3-acetate in immature Vicia faba seeds. Agricultural and Biological Chemistry, 51, 3081–3086.Google Scholar
  144. Park, K. H., Saimoto, H., Nakagawa, S., Sakurai, A., Yokota, T., Takahashi, N., & Shono, K. (1989). Occurrence of brassinolide and castasterone in crown gall cells of Catharanthus roseus. Agricultural and Biological Chemistry, 53, 805–811.Google Scholar
  145. Park, K. H., Park, J. D., Hyun, K. H., Nakayama, M., & Yokota, T. (1994a). Brassinosteroids and monoglycerides in immature seeds of Cassia tora as the active principles in the rice lamina inclination bioassay. Bioscience, Biotechnology, and Biochemistry, 58, 1343–1344.CrossRefGoogle Scholar
  146. Park, K. H., Park, J. D., Hyun, K. H., Nakayama, M., & Yokota, T. (1994b). Brassinosteroids and monoglycerides with brassinosteroid like activity in immature seeds of Oryza sativa and Perilla frutescens and in cultured cells of Nicotiana tabacum. Bioscience, Biotechnology, and Biochemistry, 58, 2241–2243.CrossRefGoogle Scholar
  147. Park, C. H., Yokota, T., & Kim, S. K. (2009a). 2-Deoxy-25-methyldolichosterone and 3-epi-2-deoxy-25-methyldolichosterone in immature seeds of Phaseolus vulgaris. Bulletin of the Korean Chemical Society, 30, 2422–2424.CrossRefGoogle Scholar
  148. Park, C. H., Yokota, T., & Kim, S. K. (2009b). Characterization of 2-epicastasterone from immature seeds of Phaseolus vulgaris. Bulletin of the Korean Chemical Society, 30, 2193–2194.CrossRefGoogle Scholar
  149. Pereira-Netto, A. B., Roessner, U., Fujioka, S., Bacic, A., Asami, T., Yoshida, S., & Clouse, S. D. (2009). Shooting control by brassinosteroids: Metabolomic analysis and effect of brassinazole on Malus prunifolia, the Marubakaido apple rootstock. Tree Physiology, 29, 607–620.PubMedCrossRefGoogle Scholar
  150. Pinto, F. C., Ascenso, J. R., & Ferreira, M. J. U. (2002). A short side chain cycloartane and other triterpenes from Euphorbia tuckeyana. In A. P. Rauter, F. B. Palma, J. Justino, M. E. Araújo, & S. Pina dos Santos (Eds.), Natural products in the new millennium: prospects and industrial application (pp. 73–79).CrossRefGoogle Scholar
  151. Plattner, R. D., Taylor, S. L., & Grove, M. D. (1986). Detection of brassinolide and castasterone in Alnus glutinosa (European alder) pollen by mass spectrometry/mass spectrometry. Journal of Natural Products, 49, 540–545.CrossRefGoogle Scholar
  152. Pociecha, E., Dziurka, M., Oklestkova, J., & Janeczko, A. (2016). Brassinosteroids increase winter survival of winter rye (Secale cereale L.) by affecting photosynthetic capacity and carbohydrate metabolism during the cold acclimation process. Plant Growth Regulation, 80, 127–135.CrossRefGoogle Scholar
  153. Polko, J. K., Pierik, R., van Zanten, M., Tarkowska, D., Strnad, M., Voesenek, L. A. C. J., & Peeters, A. J. M. (2013). Ethylene promotes hyponastic growth through interaction with ROTUNDIFOLIA3/CYP90C1 in Arabidopsis. Journal of Experimental Botany, 64, 613–624.PubMedPubMedCentralCrossRefGoogle Scholar
  154. Poppenberger, B., Fujioka, S., Soeno, K., George, G. L., Vaistij, F. E., Hiranuma, S., Seto, H., Takatsuto, S., Adam, G., Yoshida, S., & Bowles, D. (2005). The UGT73C5 of Arabidopsis thaliana glucosylates brassinosteroids. Proceedings of the National Academy of Sciences, 102, 15253–15258.CrossRefGoogle Scholar
  155. Pradko, A. G., Litvinovskaya, R. P., Sauchuk, A. L., Drach, S. V., Baranovsky, A. V., Zhabinskii, V. N., Mirantsova, T. V., & Khripach, V. A. (2015). A new ELISA for quantification of brassinosteroids in plants. Steroids, 97, 78–86.PubMedCrossRefGoogle Scholar
  156. Qian, W., Wu, C., Fu, Y., Hu, G., He, Z., & Liu, W. (2017). Novel rice mutants overexpressing the brassinosteroid catabolic gene CYP734A4. Plant Molecular Biology, 93, 197–208.PubMedCrossRefPubMedCentralGoogle Scholar
  157. Ren, C. G., Chen, Y., & Dai, C. C. (2014). Cross-talk between calcium-calmodulin and brassinolide for fungal endophyte-induced volatile oil accumulation of Atractylodes lancea plantlets. Journal of Plant Growth Regulation, 33, 285–294.CrossRefGoogle Scholar
  158. Roh, H., Jeong, C. W., Fujioka, S., Kim, Y. K., Lee, S., Ahn, J. H., Choi, Y. D., & Lee, J. S. (2012). Genetic evidence for the reduction of brassinosteroid levels by a BAHD acyltransferase-like protein in Arabidopsis. Plant Physiology, 159, 696–709.PubMedPubMedCentralCrossRefGoogle Scholar
  159. Rouleau, M., Marsolais, F., Richard, M., Nicolle, L., Voigt, B., Adam, G., & Varin, L. (1999). Inactivation of brassinosteroid biological activity by a salicylate-inducible steroid sulfotransferase from Brassica napus. The Journal of Biological Chemistry, 274, 20925–20930.PubMedCrossRefGoogle Scholar
  160. Sakakibara, M., & Mori, K. (1982). Facile synthesis of (22R,23R)-homobrassinolide. Agricultural and Biological Chemistry, 46, 2769–2779.Google Scholar
  161. Sakakibara, M., Okada, K., Ichikawa, Y., & Mori, K. (1982). Synthesis of brassinolide, a plant-growth-promoting steroidal lactone. Heterocycles, 17, 301–304.CrossRefGoogle Scholar
  162. Sakamoto, T., Morinaka, Y., Ohnishi, T., Sunohara, H., Fujioka, S., Ueguchi-Tanaka, M., Mizutani, M., Sakata, K., Takatsuto, S., Yoshida, S., Tanaka, H., Kitano, H., & Matsuoka, M. (2006). Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nature Biotechnology, 24, 105–109.PubMedCrossRefPubMedCentralGoogle Scholar
  163. Sakamoto, T., Ohnishi, T., Fujioka, S., Watanabe, B., & Mizutani, M. (2012). Rice CYP90D2 and CYP90D3 catalyze C-23 hydroxylation of brassinosteroids in vitro. Plant Physiology and Biochemistry, 58, 220–226.PubMedCrossRefGoogle Scholar
  164. Sasse, J. M., Griffiths, P. G., Gaff, D. F., Yokota, T., & Cameron, D. W. (1998). Brassinosteroids of a ressurrection grass. In Abstracts of the 16th international conference on plant growth substances, Chiba, Japan (pp. 13–17).Google Scholar
  165. Schmidt, J., Yokota, T., Adam, G., & Takahashi, N. (1991). Castasterone and brassinolide in Raphanus sativus seeds. Phytochemistry, 30, 364–365.CrossRefGoogle Scholar
  166. Schmidt, J., Spengler, B., Yokota, T., & Adam, G. (1993a). The cooccurrence of 24-epi-castasterone and castasterone in seeds of Ornithopus sativus. Phytochemistry, 32, 1614–1615.CrossRefGoogle Scholar
  167. Schmidt, J., Tokota, T., Spengler, B., & Adam, G. (1993b). 28-Homoteasterone, a naturally occurring brassinosteroid from seeds of Raphanus sativus. Phytochemistry, 34, 391–392.CrossRefGoogle Scholar
  168. Schmidt, J., Kuhnt, C., & Adam, G. (1994). Brassinosteroids and sterols from seeds of Beta vulgaris. Phytochemistry, 36, 175–177.CrossRefGoogle Scholar
  169. Schmidt, J., Himmelreich, U., & Adam, G. (1995a). Brassinosteroids, sterols and lup-20(29)-en-2a,3b,28-triol from Rheum rhabarbarum. Phytochemistry, 40, 527–531.CrossRefGoogle Scholar
  170. Schmidt, J., Spengler, B., Yokota, T., Nakayama, M., Takatsuto, S., Voigt, B., & Adam, G. (1995b). Secasterone, the first naturally occurring 2,3-epoxybrassinosteroid from Secale cereale. Phytochemistry, 38, 1095–1097.CrossRefGoogle Scholar
  171. Schmidt, J., Voigt, B., & Adam, G. (1995c). 2-Deoxybrassinolide – a naturally occurring brassinosteroid from Apium graveolens. Phytochemistry, 40, 1041–1043.CrossRefGoogle Scholar
  172. Schmidt, J., Boehme, F., & Adam, G. (1996). 24-epibrassinolide from Gypsophila perfoliata. Zeitschrift fur Naturforschung C: Journal of Biosciences, 51, 897–899.CrossRefGoogle Scholar
  173. Schmidt, J., Altmann, T., & Adam, G. (1997). Brassinosteroids from seeds of Arabidopsis thaliana. Phytochemistry, 45, 1325–1327.PubMedCrossRefGoogle Scholar
  174. Schmidt, J., Porzel, A., & Adam, G. (1998). Brassinosteroids and a pregnane glucoside from Daucus carota. Phytochemical Analysis, 9, 14–20.CrossRefGoogle Scholar
  175. Schneider, J. A., Yoshihara, K., Nakanishi, K., & Kato, N. (1983). Typhasterol (2-deoxycastasterone) – a new plant growth regulator from cat-tail pollen. Tetrahedron Letters, 24, 3859–3860.CrossRefGoogle Scholar
  176. Schneider, K., Breuer, C., Kawamura, A., Jikumaru, Y., Hanada, A., Fujioka, S., Ichikawa, T., Kondou, Y., Matsui, M., Kamiya, Y., Yamaguchi, S., & Sugimoto, K. (2012). Arabidopsis PIZZA has the capacity to acylate brassinosteroids. PLoS One, 7, 46805.CrossRefGoogle Scholar
  177. Sekimoto, H., Hoshi, M., Nomura, T., & Yokota, T. (1997). Zinc deficiency affects the levels of endogenous gibberellins in Zea mays L. Plant & Cell Physiology, 38, 1087–1090.CrossRefGoogle Scholar
  178. Shahnejat-Bushehri, S., Tarkowska, D., Sakuraba, Y., & Balazadeh, S. (2016). Arabidopsis NAC transcription factor JUB1 regulates GA/BR metabolism and signalling. Nature Plants, 2, 16013.PubMedCrossRefGoogle Scholar
  179. Shim, J. H., Kim, I. S., Lee, K. B., Suh, Y. T., & Morgan, E. D. (1996). Determination of brassinolide by HPLC equipped with fluorescence detector in rice (Oriza sativa L.). Journal of the Korean Chemical Society, 39, 84–88.Google Scholar
  180. Shimada, K., Abe, H., Takatsuto, S., Nakayama, M., & Yokota, T. (1996). Identification of castasterone and teasterone from seeds of canary grass (Phalaris canariensis). Recent Research and Development in Chemistry and Pharmaceutical Sciences, 1, 1–5.Google Scholar
  181. Shimada, Y., Goda, H., Nakamura, A., Takatsuto, S., Fujioka, S., & Yoshida, S. (2003). Organ-specific expression of brassinosteroid-biosynthetic genes and distribution of endogenous brassinosteroids in Arabidopsis. Plant Physiology, 131, 287–297.PubMedPubMedCentralCrossRefGoogle Scholar
  182. Singh, A. P., Fridman, Y., Friedlander-Shani, L., Tarkowska, D., Strnad, M., & Savaldi-Goldstein, S. (2014). Activity of the brassinosteroid transcription factors BRASSINAZOLE RESISTANT1 and BRASSINOSTEROID INSENSITIVE1-ETHYL METHANESULFONATE-SUPPRESSOR1/BRASSINAZOLE RESISTANT2 blocks developmental reprogramming in response to low phosphate availability. Plant Physiology, 166, 678–688.PubMedPubMedCentralCrossRefGoogle Scholar
  183. Soeno, K., Asakawa, S., Natsume, M., & Abe, H. (2000a). Reversible conversion between teasterone and its ester conjugates in lily cell cultures. Journal of Pesticide Science, 25, 117–122.CrossRefGoogle Scholar
  184. Soeno, K., Kyokawa, Y., Natsume, M., & Abe, H. (2000b). Teasterone-3-O-β-D-glucopyranoside, a new conjugated brassinosteroid metabolite from lily cell suspension cultures and its identification in lily anthers. Bioscience, Biotechnology, and Biochemistry, 64, 702–709.Google Scholar
  185. Soeno, K., Fujioka, S., Hiranuma, S., Seto, H., & Yoshida, S. (2006). Metabolic conversion of castasterone and brassinolide into their glucosides in higher plants. Journal of Plant Growth Regulation, 25, 195–202.CrossRefGoogle Scholar
  186. Son, S. H., Youn, J. H., Kim, M. K., & Kim, S. K. (2013). C-26 demethylation of brassinosteroids in Arabidopsis thaliana. Bulletin of the Korean Chemical Society, 34, 259–262.CrossRefGoogle Scholar
  187. Sondhi, N., Bhardwaj, R., Kaur, S., Kumar, N., & Singh, B. (2008). Isolation of 24-epibrassinolide from leaves of Aegle marmelos and evaluation of its antigenotoxicity employing Allium cepa chromosomal aberration assay. Plant Growth Regulation, 54, 217–224.CrossRefGoogle Scholar
  188. Sondhi, N., Bhardwaj, R., Kaur, S., Chande, M., Kumar, N., & Singh, B. (2010). Inhibition of H2O2-induced DNA damage in single cell gel electrophoresis assay (comet assay) by castasterone isolated from leaves of Centella asiatica. Health, 2, 595–602.CrossRefGoogle Scholar
  189. Spengler, B., Schmidt, J., Voigt, B., & Adam, G. (1995). 6-Deoxo-28-norcastasterone and 6-deoxo-24-epicastasterone – 2 new brassinosteroids from Ornithopus sativus. Phytochemistry, 40, 907–910.CrossRefGoogle Scholar
  190. Stirk, W. A., Balint, P., Tarkowska, D., Novak, O., Strnad, M., Oerdoeg, V., & van Staden, J. (2013). Hormone profiles in microalgae: Gibberellins and brassinosteroids. Plant Physiology and Biochemistry, 70, 348–353.PubMedCrossRefGoogle Scholar
  191. Stirk, W. A., Balint, P., Tarkowska, D., Novak, O., Maroti, G., Ljung, K., Tureckova, V., Strnad, M., Oerdoeg, V., & van Staden, J. (2014a). Effect of light on growth and endogenous hormones in Chlorella minutissima (Trebouxiophyceae). Plant Physiology and Biochemistry, 79, 66–76.PubMedCrossRefGoogle Scholar
  192. Stirk, W. A., Tarkowska, D., Turecova, V., Strnad, M., & van Staden, J. (2014b). Abscisic acid, gibberellins and brassinosteroids in Kelpak®, a commercial seaweed extract made from Ecklonia maxima. Journal of Applied Phycology, 26, 561–567.Google Scholar
  193. Stirk, W. A., Balint, P., Tarkowska, D., Strnad, M., van Staden, J., & Ordog, V. (2018). Endogenous brassinosteroids in microalgae exposed to salt and low temperature stress. European Journal of Phycology, 53(3), 273–279.  https://doi.org/10.1080/09670262.2018.1441447.CrossRefGoogle Scholar
  194. Suzuki, Y., Yamaguchi, I., & Takahashi, N. (1985). Identification of castasterone and brassinone from immature seeds of Pharbitis purpurea. Agricultural and Biological Chemistry, 49, 49–54.Google Scholar
  195. Suzuki, Y., Yamaguchi, I., Yokota, T., & Takahashi, N. (1986). Identification of castasterone, typhasterol and teasterone from the pollen of Zea mays. Agricultural and Biological Chemistry, 50, 3133–3138.Google Scholar
  196. Suzuki, H., Fujioka, S., Takatsuto, S., Yokota, T., Murofushi, N., & Sakurai, A. (1993a). Biosynthesis of brassinolide from castasterone in cultured cells of Catharanthus roseus. Journal of Plant Growth Regulation, 12, 101–106.CrossRefGoogle Scholar
  197. Suzuki, H., Kim, S. K., Takahashi, N., & Yokota, T. (1993b). Metabolism of castasterone and brassinolide in mung bean explant. Phytochemistry, 33, 1361–1367.CrossRefGoogle Scholar
  198. Suzuki, H., Fujioka, S., Takatsuto, S., Yokota, T., Murofushi, N., & Sakurai, A. (1994a). Biosynthesis of brassinolide from teasterone via typhasterol and castasterone in cultured cells of Catharanthus roseus. Journal of Plant Growth Regulation, 13, 21–26.CrossRefGoogle Scholar
  199. Suzuki, H., Fujioka, S., Yokota, T., Murofushi, N., & Sakurai, A. (1994b). Identification of brassinolide, castasterone, typhasterol from the pollen of Lilium elegans. Bioscience, Biotechnology, and Biochemistry, 58, 2075–2076.CrossRefGoogle Scholar
  200. Suzuki, H., Inoue, T., Fujioka, S., Takatsuto, S., Yanagisawa, T., Yokota, T., Murofushi, N., & Sakurai, A. (1994c). Possible involvement of 3-dehydroteasterone in the conversion of teasterone to typhasterol in cultured cells of Catharanthus roseus. Bioscience, Biotechnology, and Biochemistry, 58, 1186–1188.CrossRefGoogle Scholar
  201. Suzuki, H., Fujioka, S., Takatsuto, S., Yokota, T., Murofushi, N., & Sakurai, A. (1995). Biosynthesis of brassinosteroids in seedlings of Catharanthus roseus, Nicotiana tabacum, and Oryza sativa. Bioscience, Biotechnology, and Biochemistry, 59, 168–172.CrossRefGoogle Scholar
  202. Suzuki, Y., Saso, K., Fujioka, S., Yoshida, S., Nitasaka, E., Nagata, S., Nagasawa, H., Takatsuto, S., & Yamaguchi, I. (2003). A dwarf mutant strain of Pharbitis nil, Uzukobito (kobito), has defective brassinosteroid biosynthesis. The Plant Journal, 36, 401–410.PubMedCrossRefGoogle Scholar
  203. Swaczynova, J., Novak, O., Hauserova, E., Fuksova, K., Sisa, M., Kohout, L., & Strnad, M. (2007). New techniques for the estimation of naturally occurring brassinosteroids. Journal of Plant Growth Regulation, 26, 1–14.CrossRefGoogle Scholar
  204. Takahashi, N., Yokota, T., Kin, S. (1988). Isolation of brassinosteroids from bean seeds, as plant growth regulators. Japanese Kokkai Tokkyo Koho JP63255297AGoogle Scholar
  205. Takahashi, N., Nakazawa, M., Shibata, K., Yokota, T., Ishikawa, A., Suzuki, K., Kawashima, M., Ichikawa, T., Shimada, H., & Matsui, M. (2005). shk1-D, a dwarf Arabidopsis mutant caused by activation of the CYP72C1 gene, has altered brassinosteroid levels. The Plant Journal, 42, 13–22.PubMedCrossRefGoogle Scholar
  206. Takatsuto, S. (1994). Brassinosteroids: Distribution in plants, bioassays and microanalysis by gas chromatography-mass spectrometry. Journal of Chromatography. A, 658, 3–15.CrossRefGoogle Scholar
  207. Takatsuto, S., & Makiuchi, K. (2000). Identification of castasterone and sterols in the seeds of Lagenaria siceraria. Journal of Japan Oil Chemists’ Society, 49, 169–171.CrossRefGoogle Scholar
  208. Takatsuto, S., Ying, B., Morisaki, M., & Ikekawa, N. (1981). Synthesis of 28-norbrassinolide. Chemical & Pharmaceutical Bulletin, 29, 903–905.CrossRefGoogle Scholar
  209. Takatsuto, S., Ying, B., Morisaki, M., & Ikekawa, N. (1982). Microanalysis of brassinolide and its analogs by gas chromatography and gas chromatography-mass spectrometry. Journal of Chromatography, 239, 233–241.CrossRefGoogle Scholar
  210. Takatsuto, S., Yazawa, N., Ikekawa, N., Morishita, T., & Abe, H. (1983a). Synthesis of (24R)-28-homobrassinolide analogs and structure-activity relationships of brassinosteroids in the rice-lamina inclination test. Phytochemistry, 22, 1393–1397.Google Scholar
  211. Takatsuto, S., Yazawa, N., Ikekawa, N., Takematsu, T., Takeuchi, Y., & Koguchi, M. (1983b). Structure-activity relationship of brassinosteroids. Phytochemistry, 22, 2437–2441.CrossRefGoogle Scholar
  212. Takatsuto, S., Ikekawa, N., Morishita, T., & Abe, H. (1987). Structure-activity relationship of brassinosteroids with respect to the A/B-ring functional groups. Chemical & Pharmaceutical Bulletin, 35, 211–216.CrossRefGoogle Scholar
  213. Takatsuto, S., Yokota, T., Omote, K., Gamoh, K., & Takahashi, N. (1989). Identification of brassinolide, castasterone and norcastasterone (brassinone) in sunflower (Helianthus annuus L.) pollen. Agricultural and Biological Chemistry, 53, 2177–2180.Google Scholar
  214. Takatsuto, S., Abe, H., & Gamoh, K. (1990a). Evidence for brassinosteroids in strobilus of Equisetum arvense L. Agricultural and Biological Chemistry, 54, 1057–1059.CrossRefGoogle Scholar
  215. Takatsuto, S., Omote, K., Gamoh, K., & Ishibashi, M. (1990b). Identification of brassinolide and castasterone in buckwheat (Fagopyrum esculentum Moench) pollen. Agricultural and Biological Chemistry, 54, 757–762.Google Scholar
  216. Takatsuto, S., Abe, H., Shimada, K., Nakayama, M., & Yokota, T. (1996a). Identification of teasterone and 4-desmethylsterols in the seeds of Ginkgo biloba L. Journal of Japan Oil Chemists’ Society, 45, 1349–1351.CrossRefGoogle Scholar
  217. Takatsuto, S., Abe, H., Yokota, T., Shimada, K., & Gamoh, K. (1996b). Identification of castasterone and teasterone in seeds of Cannabis sativa L. Journal of Japan Oil Chemists’ Society, 45, 871–873.CrossRefGoogle Scholar
  218. Takatsuto, S., Tsunokawa, E., Noguchi, T., & Fujioka, S. (1999). Identification of sterols and castasterone in the seeds of Amaranthus inamoenus. Journal of Japan Oil Chemists’ Society, 48, 347–349.CrossRefGoogle Scholar
  219. Tamiru, M., Takagi, H., Abe, A., Yokota, T., Kanzaki, H., Okamoto, H., Saitoh, H., Takahashi, H., Fujisaki, K., Oikawa, K., Uemura, A., Natsume, S., Jikumaru, Y., Matsuura, H., Umemura, K., Terry, M. J., & Terauchi, R. (2016). A chloroplast-localized protein LESION AND LAMINA BENDING affects defence and growth responses in rice. The New Phytologist, 210, 1282–1297.PubMedCrossRefGoogle Scholar
  220. Tanabe, S., Ashikari, M., Fujioka, S., Takatsuto, S., Yoshida, S., Yano, M., Yoshimura, A., Kitano, H., Matsuoka, M., Fujisawa, Y., Kato, H., & Iwasaki, Y. (2005). A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell, 17, 776–790.PubMedPubMedCentralCrossRefGoogle Scholar
  221. Taylor, P. E., Spuck, K., Smith, P. M., Sasse, J. M., Yokota, T., Griffiths, P. G., & Cameron, D. W. (1993). Detection of brassinosteroids in pollen of Lolium perenne L. by immunocytochemistry. Planta, 189, 91–100.Google Scholar
  222. Thompson, M. J., Mandava, N., Flippen-Anderson, J. L., Worley, J. F., Dutky, S. R., Robbins, W. E., & Lusby, W. (1979). Synthesis of brassino steroids: New plant-growth-promoting steroids. The Journal of Organic Chemistry, 44, 5002–5004.Google Scholar
  223. Thompson, M. J., Mandava, N. B., Meudt, W. J., Lusby, W. R., & Spaulding, D. W. (1981). Synthesis and biological activity of brassinolide and its 22β,23β-isomer: Novel plant growth-promoting steroids. Steroids, 38, 567–580.Google Scholar
  224. Thompson, M. J., Meudt, W. J., Mandava, N. B., Dutky, S. R., Lusby, W. R., & Spaulding, D. W. (1982). Synthesis of brassinosteroids and relationship of structure to plant growth-promoting effects. Steroids, 39, 89–105.PubMedCrossRefGoogle Scholar
  225. Turk, E. M., Fujioka, S., Seto, H., Shimada, Y., Takatsuto, S., Yoshida, S., Denzel, M. A., Torres, Q. I., & Neff, M. M. (2003). CYP72B1 inactivates brassinosteroid hormones: An intersection between photomorphogenesis and plant steroid signal transduction. Plant Physiology, 133, 1643–1653.PubMedPubMedCentralCrossRefGoogle Scholar
  226. Turk, E. M., Fujioka, S., Seto, H., Shimada, Y., Takatsuto, S., Yoshida, S., Wang, H. C., Torres, Q. I., Ward, J. M., Murthy, G., Zhang, J. Y., Walker, J. C., & Neff, M. M. (2005). BAS1 and SOB7 act redundantly to modulate Arabidopsis photomorphogenesis via unique brassinosteroid inactivation mechanisms. The Plant Journal, 42, 23–34.PubMedCrossRefGoogle Scholar
  227. Van Meulebroek, L., Vanden Bussche, J., Steppe, K., & Vanhaecke, L. (2012). Ultra-high performance liquid chromatography coupled to high resolution orbitrap mass spectrometry for metabolomic profiling of the endogenous phytohormonal status of the tomato plant. Journal of Chromatography. A, 1260, 67–80.PubMedCrossRefGoogle Scholar
  228. Verhoef, N., Yokota, T., Shibata, K., de Boer, G. J., Gerats, T., Vandenbussche, M., Koes, R., & Souer, E. (2013). Brassinosteroid biosynthesis and signalling in Petunia hybrida. Journal of Experimental Botany, 64, 2435–2448.PubMedPubMedCentralCrossRefGoogle Scholar
  229. Villiers, F., Jourdain, A., Bastien, O., Leonhardt, N., Fujioka, S., Tichtincky, G., Parcy, F., Bourguignon, J., & Hugouvieux, V. (2012). Evidence for functional interaction between brassinosteroids and cadmium response in Arabidopsis thaliana. Journal of Experimental Botany, 63, 1185–1200.PubMedCrossRefGoogle Scholar
  230. Vriet, C., Russinova, E., & Reuzeau, C. (2013). From squalene to brassinolide: The steroid metabolic and signaling pathways across the plant kingdom. Molecular Plant, 6, 1738–1757.PubMedCrossRefGoogle Scholar
  231. Wada, K., Marumo, S., Ikekawa, N., Morisaki, M., & Mori, K. (1981). Brassinolide and homobrassinolide promotion of lamina inclination of rice seedlings. Plant & Cell Physiology, 22, 323–325.  https://doi.org/10.1093/oxfordjournals.pcp.a076173.CrossRefGoogle Scholar
  232. Wada, K., Marumo, S., Mori, K., Takatsuto, S., Morisaki, M., & Ikekawa, N. (1983). The rice lamina inclination-promoting activity of synthetic brassinolide analogues with a modified side chain. Agricultural and Biological Chemistry, 47, 1139–1141.Google Scholar
  233. Wang, M. Y., & Lu, D. Z. (2008). Determination of brassinolide in Areca catechu pollen by HPLC. Anhui Nongye Kexue. Journal of Anhui Agricultural Sciences, 36, 1305–1306.Google Scholar
  234. Wang, L., Duan, C., Wu, D., & Guan, Y. (2014). Quantification of endogenous brassinosteroids in sub-gram plant tissues by in-line matrix solid-phase dispersion-tandem solid phase extraction coupled with high performance liquid chromatography-tandem mass spectrometry. Journal of Chromatography. A, 1359, 44–51.PubMedCrossRefGoogle Scholar
  235. Wang, Q., Cai, W. J., Yu, L., Ding, J., & Feng, Y. Q. (2017). Comprehensive profiling of phytohormones in honey by sequential liquid-liquid extraction coupled with liquid chromatography-mass spectrometry. Journal of Agricultural and Food Chemistry, 65, 575–585.PubMedCrossRefGoogle Scholar
  236. Watanabe, T., Yokota, T., Shibata, K., Nomura, T., Seto, H., & Takatsuto, S. (2000). Cryptolide, a new brassinolide catabolite with a 23-oxo group from Japanese cedar pollen/anther and its synthesis. Journal of Chemical Research, Synopses, 2000, 18–19. Miniprint 215–236.CrossRefGoogle Scholar
  237. Watanabe, T., Noguchi, T., Yokota, T., Shibata, K., Koshino, H., Seto, H., Kim, S. K., & Takatsuto, S. (2001). Synthesis and biological activity of 26-norbrassinolide, 26-norcastasterone and 26-nor-6-deoxocastasterone. Phytochemistry, 58, 343–349.PubMedCrossRefGoogle Scholar
  238. Wu, C. Y., Trieu, A., Radhakrishnan, P., Kwok, S. F., Harris, S., Zhang, K., Wang, J., Wan, J., Zhai, H., Takatsuto, S., Matsumoto, S., Fujioka, S., Feldmann, K. A., & Pennell, R. I. (2008). Brassinosteroids regulate grain filling in rice. Plant Cell, 20, 2130–2145.PubMedPubMedCentralCrossRefGoogle Scholar
  239. Wu, Q., Wu, D., Shen, Z., Duan, C., & Guan, Y. (2013). Quantification of endogenous brassinosteroids in plant by on-line two-dimensional microscale solid phase extraction-on column derivatization coupled with high performance liquid chromatography-tandem mass spectrometry. Journal of Chromatography. A, 1297, 56–63.PubMedCrossRefGoogle Scholar
  240. Xin, P., Yan, J., Fan, J., Chu, J., & Yan, C. (2013). An improved simplified high-sensitivity quantification method for determining brassinosteroids in different tissues of rice and Arabidopsis. Plant Physiology, 162, 2056–2066.PubMedPubMedCentralCrossRefGoogle Scholar
  241. Xin, P., Li, B., Fang, S., Yan, C., Chu, J., Yan, J., Fan, J., Tian, H., Shi, Y., & Tian, W. (2016). A comprehensive and effective mass spectrometry-based screening strategy for discovery and identification of new brassinosteroids from rice tissues. Frontiers in Plant Science, 7, 1786.PubMedPubMedCentralCrossRefGoogle Scholar
  242. Xu, F., Zhang, H., Zhang, C. J., Xi, Z. M., & Zhang, Z. W. (2015). Brassinosteroids are involved in controlling sugar unloading in Vitis vinifera ‘cabernet sauvignon’ berries during veraison. Plant Physiology and Biochemistry, 94, 197–208.PubMedCrossRefGoogle Scholar
  243. Xu, Z., Lei, P., Feng, X., Li, S., & Xu, H. (2016). Analysis of the metabolic pathways affected by poly (γ-glutamic acid) in Arabidopsis thaliana based on genechip microarray. Journal of Agricultural and Food Chemistry, 64, 6257–6266.PubMedCrossRefGoogle Scholar
  244. Yamamoto, R., Fujioka, S., Demura, T., Takatsuto, S., Yoshida, S., & Fukuda, H. (2001). Brassinosteroid levels increase drastically prior to morphogenesis of tracheary elements. Plant Physiology, 125, 556–563.PubMedPubMedCentralCrossRefGoogle Scholar
  245. Yamamoto, R., Fujioka, S., Iwamoto, K., Demura, T., Takatsuto, S., Yoshida, S., & Fukuda, H. (2007). Co-regulation of brassinosteroid biosynthesis-related genes during xylem cell differentiation. Plant & Cell Physiology, 48, 74–83.CrossRefGoogle Scholar
  246. Yasuta, E., Terahata, T., Nakayama, M., Abe, H., Takatsuto, S., & Yokota, T. (1995). Free and conjugated brassinosteroids in the pollen and anthers of Erythronium japonicum decne. Bioscience, Biotechnology, and Biochemistry, 59, 2156–2158.CrossRefGoogle Scholar
  247. Yokota, T., & Takahashi, N. (1988). Isolation of brassinosteroids as plant growth regulators from kidney beans. Japanese Kokai Tokkyo Koho JP 63216896 A.Google Scholar
  248. Yokota, T., Arima, M., & Takahashi, N. (1982a). Castasterone, a new phytosterol with plant-hormone potency, from chestnut insect gall. Tetrahedron Letters, 23, 1275–1278.CrossRefGoogle Scholar
  249. Yokota, T., Baba, J., & Takahashi, N. (1982b). A new steroidal lactone with plant growth-regulatory activity from Dolichos lablab seed. Tetrahedron Letters, 23, 4965–4966.CrossRefGoogle Scholar
  250. Yokota, T., Arima, M., Takahashi, N., Takatsuto, S., Ikekawa, N., & Takematsu, T. (1983a). 2-Deoxycastasterone, a new brassinolide-related bioactive steroid from Pinus pollen. Agricultural and Biological Chemistry, 47, 2419–2420.Google Scholar
  251. Yokota, T., Baba, J., & Takahashi, N. (1983b). Brassinolide-related bioactive sterols in Dolichos lablab: Brassinolide, castasterone and a new analog, homodolicholide. Agricultural and Biological Chemistry, 47, 1409–1411.Google Scholar
  252. Yokota, T., Morita, M., & Takahashi, N. (1983c). 6-Deoxocastasterone and 6-deoxodolichosterone – putative precursors for brassinolide-related steroids from Phaseolus vulgaris. Agricultural and Biological Chemistry, 47, 2149–2151.Google Scholar
  253. Yokota, T., Baba, J., Koba, S., & Takahashi, N. (1984). Purification and separation of eight steroidal plant-growth regulators from Dolichos lablab seed. Agricultural and Biological Chemistry, 48, 2529–2534.Google Scholar
  254. Yokota, T., Arima, M., Takahashi, N., & Crozier, A. (1985). Steroidal plant-growth regulators, castasterone and typhasterol (2-deoxycastasterone) from the shoots of sitka spruce (Picea sitchensis). Phytochemistry, 24, 1333–1335.CrossRefGoogle Scholar
  255. Yokota, T., Kim, S., Kosaka, Y., Ogino, Y., & Takahashi, N. (1987a). Conjugation of brassinosteroids. In K. Schreiber, H. Schütte, & G. Sembdner (Eds.), Conjugated Plant Hormones. Structure, metabolism and function (pp. 288–296). Berlin: VEB Deutscher Verlag der Wissenschaften.Google Scholar
  256. Yokota, T., Kim, S. K., Fukui, Y., Takahashi, N., Takeuchi, Y., & Takematsu, T. (1987b). Brassinosteroids and sterols from a green alga, Hydrodictyon reticulatum: Configuration at C-24. Phytochemistry, 26, 503–506.CrossRefGoogle Scholar
  257. Yokota, T., Koba, S., Kim, S. K., Takatsuto, S., Ikekawa, N., Sakakibara, M., Okada, K., Mori, K., & Takahashi, N. (1987c). Diverse structural variations of the brassinosteroids in Phaseolus vulgaris seed. Agricultural and Biological Chemistry, 51, 1625–1631.CrossRefGoogle Scholar
  258. Yokota, T., Ogino, Y., Takahashi, N., Saimoto, H., Fujioka, S., & Sakurai, A. (1990a). Brassinolide is biosynthesized from castasterone in Catharanthus roseus crown gall cells. Agricultural and Biological Chemistry, 54, 1107–1108.Google Scholar
  259. Yokota, T., Watanabe, S., Ogino, Y., Yamaguchi, I., & Takahashi, N. (1990b). Radioimmunoassay for brassinosteroids and its use for comparative analysis of brassinosteroids in stems and seeds of Phaseolus vulgaris. Journal of Plant Growth Regulation, 9, 151–159.CrossRefGoogle Scholar
  260. Yokota, T., Ogino, Y., Suzuki, H., Takahashi, N., Saimoto, H., Fujioka, S., & Sakurai, A. (1991). Metabolism and biosynthesis of brassinosteroids. In H. G. Cutler, T. Yokota, & G. Adam (Eds.), Brassinosteroids: Chemistry (pp. 86–96). Washington: Bioactivity and Applications. American Chemical Society.CrossRefGoogle Scholar
  261. Yokota, T., Nakayama, M., Wakisaka, T., Schmidt, J., & Adam, G. (1994). 3-Dehydroteasterone, a 3,6-diketobrassinosteroid as a possible biosynthetic intermediate of brassinolide from wheat grain. Bioscience, Biotechnology, and Biochemistry, 58, 1183–1185.CrossRefGoogle Scholar
  262. Yokota, T., Matsuoka, T., Koarai, T., & Nakayama, M. (1996). 2-Deoxybrassinolide, a brassinosteroid from Pisum sativum seed. Phytochemistry, 42, 509–511.CrossRefGoogle Scholar
  263. Yokota, T., Nomura, T., & Nakayama, M. (1997). Identification of brassinosteroids that appear to be derived from campesterol and cholesterol in tomato shoots. Plant & Cell Physiology, 38, 1291–1294.CrossRefGoogle Scholar
  264. Yokota, T., Higuchi, K., Takahashi, N., Kamuro, Y., Watanabe, T., & Takatsuto, S. (1998). Identification of brassinosteroids with epimerized substituents and/or the 23-oxo group in pollen and anthers of Japanese cedar. Bioscience, Biotechnology, and Biochemistry, 62, 526–531.PubMedCrossRefGoogle Scholar
  265. Yokota, T., Sato, T., Takeuchi, Y., Nomura, T., Uno, K., Watanabe, T., & Takatsuto, S. (2001). Roots and shoots of tomato produce 6-deoxo-28-norcathasterone, 6-deoxo-28-nortyphasterol and 6-deoxo-28-norcastasterone, possible precursors of 28-norcastasterone. Phytochemistry, 58, 233–238.PubMedCrossRefGoogle Scholar
  266. Yokota, T., Ohnishi, T., Shibata, K., Asahina, M., Nomura, T., Fujita, T., Ishizaki, K., & Kohchi, T. (2017). Occurrence of brassinosteroids in non-flowering land plants, liverwort, moss, lycophyte and fern. Phytochemistry, 136, 46–55.PubMedCrossRefGoogle Scholar
  267. Yoshihara, K., & Katou, N. (1985). A new steroid having plant growth control activity from Typha latifolia pollen. Japanese Kokai Tokkyo Koho JP 60011498 A.Google Scholar
  268. Youn, J. H., Kim, M. K., Son, S. H., Lee, J. E., Jang, M. S., Kim, E. J., Kim, T. W., & Kim, S. K. (2016). ARF7 increases the endogenous contents of castasterone through suppression of BAS1 expression in Arabidopsis thaliana. Phytochemistry, 122, 34–44.PubMedCrossRefGoogle Scholar
  269. Yu, L., Ding, J., Wang, Y. L., Liu, P., & Feng, Y. Q. (2016). 4-Phenylaminomethyl-benzeneboric acid modified tip extraction for determination of brassinosteroids in plant tissues by stable isotope labeling-liquid chromatography-mass spectrometry. Analytical Chemistry, 88, 1286–1293.PubMedCrossRefGoogle Scholar
  270. Yu, L., Ye, T., Bai, Y. L., Cai, W. J., Ding, J., Yuan, B. F., & Feng, Y. Q. (2017). Profiling of potential brassinosteroids in different tissues of rape flower by stable isotope labeling-liquid chromatography/mass spectrometry analysis. Analytica Chimica Acta, 1037, 55–62.  https://doi.org/10.1016/j.aca.2017.08.038.CrossRefPubMedGoogle Scholar
  271. Zaki, K., Schmidt, J., Hammouda, F. M., & Adam, G. (1993). Steroidal constituents from pollen grains of Phoenix dactylifera. Planta Med (Supplement Issue), 59, A613–A613.CrossRefGoogle Scholar
  272. Zhang, Z., Zhang, Y., Tan, W., Li, G., & Hu, Y. (2010). Preparation of styrene-co-4-vinylpyridine magnetic polymer beads by microwave irradiation for analysis of trace 24-epibrassinolide in plant samples using high performance liquid chromatography. Journal of Chromatography. A, 1217, 6455–6461.PubMedCrossRefGoogle Scholar
  273. Zhu, W., Wang, H., Fujioka, S., Zhou, T., Tian, H., Tian, W., & Wang, X. (2013). Homeostasis of brassinosteroids regulated by DRL1, a putative acyltransferase in Arabidopsis. Molecular Plant, 6, 546–558.PubMedCrossRefPubMedCentralGoogle Scholar
  274. Zullo, M. A. T. (2018). Brassinosteroids and related compounds. Beau Bassin: Lambert Academic Publishing.Google Scholar
  275. Zullo, M. A. T., & Adam, G. (2002). Brassinosteroid phytohormones: Structure, bioactivity and applications. Brazilian Journal of Plant Physiology, 14, 143–181.CrossRefGoogle Scholar
  276. Zullo, M. A. T., & Kohout, L. (2004). Semisystematic nomenclature of brassinosteroids. Plant Growth Regulation, 42, 15–28.CrossRefGoogle Scholar
  277. Zullo, M. A. T., Kohout, L., & de Azevedo, M. D. B. M. (2003). Some notes on the terminology of brassinosteroids. Plant Growth Regulation, 39, 1–11.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Laboratory of PhytochemistryAgronomic Institute (IAC)CampinasBrazil
  2. 2.Department of Plant Biochemistry and Toxicology, Institute of Biology, Faculty of Biology and ChemistryUniversity of BialystokBialystokPoland

Personalised recommendations