Advertisement

Modeling of the Dipole Radiation in an Anisotropic Microcavity

  • Chang-Ki Moon
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Light emission from organic materials has been an important research topic during the last few decades because of its scientific and technological importance, particularly due to the success of organic light emitting diodes (OLEDs).

References

  1. 1.
    Furno M, Meerheim R, Hofmann S, Lüssem B, Leo K (2012) Efficiency and rate of spontaneous emission in organic electroluminescent devices. Phys Rev B 85(11):115205.  https://doi.org/10.1103/physrevb.85.115205ADSCrossRefGoogle Scholar
  2. 2.
    Chance R, Prock A, Silbey R (1978) Molecular fluorescence and energy transfer near interfaces. Adv Chem Phys 37:65Google Scholar
  3. 3.
    Barnes W (1998) Fluorescence near interfaces: the role of photonic mode density. J Modern Optics 45:661–699ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Neyts KA (1998) Simulation of light emission from thin-film microcavities. JOSA A 15:962–971ADSCrossRefGoogle Scholar
  5. 5.
    Wasey J, Safonov A, Samuel I, Barnes W (2000) Effects of dipole orientation and birefringence on the optical emission from thin films. Optics Commun 183:109–121ADSCrossRefGoogle Scholar
  6. 6.
    Wasey JAE, Safonov A, Samuel IDW, Barnes WL (2001) Efficiency of radiative emission from thin films of a light-emitting conjugated polymer. Phys Re B 64(20):205201.  https://doi.org/10.1103/physrevb.64.205201ADSCrossRefGoogle Scholar
  7. 7.
    Lin C-L, Cho T-Y, Chang C-H, Wu C-C (2006) Enhancing light outcoupling of organic light-emitting devices by locating emitters around the second antinode of the reflective metal electrode. Appl Phys Lett 88:081114ADSCrossRefGoogle Scholar
  8. 8.
    Lin C-L, Chang H-C, Tien K-C, Wu C-C (2007) Influences of resonant wavelengths on performances of microcavity organic light-emitting devices. Appl Phys Lett 90:071111ADSCrossRefGoogle Scholar
  9. 9.
    Kim, J-B, Lee J-H, Moon C-K Kim J-J (2014) Highly efficient inverted top emitting organic light emitting diodes using a transparent top electrode with color stability on viewing angle. Appl Phys Lett 104: 31–33ADSCrossRefGoogle Scholar
  10. 10.
    Bulović V et al (1998) Weak microcavity effects in organic light-emitting devices. Phys Rev B 58:3730ADSCrossRefGoogle Scholar
  11. 11.
    Wasey J, Safonov A, Samuel I, Barnes W (2000) Effects of dipole orientation and birefringence on the optical emission from thin films. Optics Commun 183:109–121ADSCrossRefGoogle Scholar
  12. 12.
    Kim SY et al (2013) Organic Light-Emitting diodes with 30% external quantum efficiency based on a horizontally oriented emitter. Adv Func Mater 23:3896–3900CrossRefGoogle Scholar
  13. 13.
    Shin H et al (2014) Blue phosphorescent organic light-emitting diodes using an exciplex forming co-host with the external quantum efficiency of theoretical limit. Adv Mater 26:4730–4734CrossRefGoogle Scholar
  14. 14.
    Lu M-H, Sturm J (2002) Optimization of external coupling and light emission in organic light-emitting devices: modeling and experiment. J Appl Phys 91:595–604ADSCrossRefGoogle Scholar
  15. 15.
    Smith LH, Wasey JA, Samuel ID, Barnes WL (2005) Light out-coupling efficiencies of organic light-emitting diode structures and the effect of photoluminescence quantum yield. Adv Func Mater 15:1839–1844CrossRefGoogle Scholar
  16. 16.
    Nowy S, Krummacher BC, Frischeisen J, Reinke NA, Brütting W (2008) Light extraction and optical loss mechanisms in organic light-emitting diodes: influence of the emitter quantum efficiency. J Appl Phys 104:123109ADSCrossRefGoogle Scholar
  17. 17.
    Meerheim R, Furno M, Hofmann S, Lüssem B, Leo K (2010) Quantification of energy loss mechanisms in organic light-emitting diodes. Appl Phys Lett 97:275CrossRefGoogle Scholar
  18. 18.
    Kim S-Y, Kim J-J (2010) Outcoupling efficiency of organic light emitting diodes and the effect of ITO thickness. Org Electron 11:1010–1015CrossRefGoogle Scholar
  19. 19.
    Lee J-H, Lee S, Kim J-B, Jang J, Kim J-J (2012) A high performance transparent inverted organic light emitting diode with 1, 4, 5, 8, 9, 11-hexaazatriphenylenehexacarbonitrile as an organic buffer layer. J Mater Chem 22:15262–15266CrossRefGoogle Scholar
  20. 20.
    Kim JB, Lee JH, Moon CK, Kim SY, Kim JJ (2013) Highly enhanced light extraction from surface plasmonic loss minimized organic light-emitting diodes. Adv Mater 25:3571–3577CrossRefGoogle Scholar
  21. 21.
    Kim KH, Moon CK, Lee JH, Kim SY, Kim JJ (2014) Highly efficient organic light-emitting diodes with phosphorescent emitters having high quantum yield and horizontal orientation of transition dipole moments. Adv Mater 26:3844–3847CrossRefGoogle Scholar
  22. 22.
    Sun JW et al (2014) A fluorescent organic light-emitting diode with 30% external quantum efficiency. Adv Mater 26:5684–5688ADSCrossRefGoogle Scholar
  23. 23.
    Frischeisen J, Yokoyama D, Adachi C, Brütting W (2010) Determination of molecular dipole orientation in doped fluorescent organic thin films by photoluminescence measurements. Appl Phys Lett 96:073302.  https://doi.org/10.1063/1.3309705ADSCrossRefGoogle Scholar
  24. 24.
    Flämmich M et al (2011) Oriented phosphorescent emitters boost OLED efficiency. Org Electron 12:1663–1668CrossRefGoogle Scholar
  25. 25.
    Liehm P et al (2012) Comparing the emissive dipole orientation of two similar phosphorescent green emitter molecules in highly efficient organic light-emitting diodes. Appl Phys Lett 101:253304ADSCrossRefGoogle Scholar
  26. 26.
    Flämmich M et al (2010) Orientation of emissive dipoles in OLEDs: quantitative in situ analysis. Org Electron 11:1039–1046CrossRefGoogle Scholar
  27. 27.
    Schmidt TD et al (2011) Evidence for non-isotropic emitter orientation in a red phosphorescent organic light-emitting diode and its implications for determining the emitter’s radiative quantum efficiency. Appl Phys Lett 99:225Google Scholar
  28. 28.
    Penninck L, Steinbacher F, Krause R, Neyts K (2012) Determining emissive dipole orientation in organic light emitting devices by decay time measurement. Org Electron 13:3079–3084CrossRefGoogle Scholar
  29. 29.
    Lin H-W et al (2004) Anisotropic optical properties and molecular orientation in vacuum-deposited ter (9, 9-diarylfluorene) s thin films using spectroscopic ellipsometry. J Appl Phys 95:881–886ADSCrossRefGoogle Scholar
  30. 30.
    Yokoyama D, Sakaguchi A, Suzuki M, Adachi C (2008) Horizontal molecular orientation in vacuum-deposited organic amorphous films of hole and electron transport materials. Appl Phys Lett 93:394CrossRefGoogle Scholar
  31. 31.
    Yokoyama D (2011) Molecular orientation in small-molecule organic light-emitting diodes. J Mater Chem 21:19187–19202CrossRefGoogle Scholar
  32. 32.
    Yokoyama D, Nakayama KI, Otani T, Kido J (2012) Wide-range refractive index control of organic semiconductor films toward advanced optical design of organic optoelectronic devices. Adv Mater 24(47):6368–6373CrossRefGoogle Scholar
  33. 33.
    Penninck L, De Visschere P, Beeckman J, Neyts K (2011) Dipole radiation within one-dimensional anisotropic microcavities: a simulation method. Opt Express 19:18558–18576ADSCrossRefGoogle Scholar
  34. 34.
    Purcell EM (1995) Spontaneous emission probabilities at radio frequencies. In: Confined Electrons and Photons. Springer, Boston, MA, pp 839–839CrossRefGoogle Scholar
  35. 35.
    Lamansky S et al (2001) Highly phosphorescent bis-cyclometalated iridium complexes: synthesis, photophysical characterization, and use in organic light emitting diodes. J Am Chem Soc 123:4304–4312CrossRefGoogle Scholar
  36. 36.
    Kim KH, Moon CK, Lee JH, Kim SY, Kim JJ (2014) Highly efficient organic light-emitting diodes with phosphorescent emitters having high quantum yield and horizontal orientation of transition dipole moments. Adv Mater 26:3844–3847.  https://doi.org/10.1002/adma.201305733CrossRefGoogle Scholar
  37. 37.
    Kim S-Y et al (2013) Organic light-emitting diodes with 30% external quantum efficiency based on a horizontally oriented emitter. Adv Func Mater 23:3896–3900.  https://doi.org/10.1002/adfm.201300104CrossRefGoogle Scholar
  38. 38.
    Park YS et al (2013) Exciplex-forming co-host for organic light-emitting diodes with ultimate efficiency. Adv Func Mater 23:4914–4920CrossRefGoogle Scholar
  39. 39.
    Lee JH, Lee S, Yoo SJ, Kim KH, Kim JJ (2014) Langevin and trap-assisted recombination in phosphorescent organic light emitting diodes. Adv Func Mater 24:4681–4688CrossRefGoogle Scholar
  40. 40.
    Lee S, Kim KH, Limbach D, Park YS, Kim JJ (2013) Low roll-off and high efficiency orange organic light emitting diodes with controlled co-doping of green and red phosphorescent dopants in an exciplex forming co-host. Adv Func Mater 23:4105–4110CrossRefGoogle Scholar
  41. 41.
    Yokoyama D (2011) Molecular orientation in small-molecule organic light-emitting diodes. J Mater Chem 21:19187.  https://doi.org/10.1039/c1jm13417eCrossRefGoogle Scholar
  42. 42.
    Sasabe H et al (2011) Influence of substituted pyridine rings on physical properties and electron mobilities of 2-methylpyrimidine skeleton-based electron transporters. Adv Func Mater 21:336–342CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Chang-Ki Moon
    • 1
  1. 1.Department of Materials Science and Engineering, The Graduate SchoolSeoul National UniversitySeoulKorea (Republic of)

Personalised recommendations