Eco-friendly Approaches to the Management of Plant-Parasitic Nematodes

  • Everaldo Antônio LopesEmail author
  • Rosangela Dallemole-Giaretta
  • Wânia dos Santos Neves
  • Douglas Ferreira Parreira
  • Paulo Afonso Ferreira


Eco-friendly approaches have been increasingly used for the management of plant-parasitic nematodes because of growing worldwide concern regarding health risks and environmental contamination caused by nematicides. Avoiding the introduction and spread of nematodes to non-infested areas is the most efficient method of control. Cleaning machinery and equipment, use of healthy planting materials, and quarantine procedures are good examples of preventive practices. In infested fields, nematode populations can be reduced by combining cultural, physical, and biological methods and genetic resistance of plants. The use of resistant crops is one of the most efficient and eco-friendly methods for reducing losses caused by plant-parasitic nematodes. Based on the information on which nematode species/races are prevalent in the field, the grower should choose a resistant crop, when available. Soil plowing and irrigation – named humid fallow – have been used for the management of root-knot nematodes in common bean (Phaseolus vulgaris), lettuce (Lactuca sativa), and okra (Abelmoschus esculentus) in Brazil. Soil steaming, treatment of planting materials with hot water, and soil solarization are recommended for the control of several plant-parasitic nematode species, based on the lethal action of high temperatures. Biofumigation with residues from some species of Brassicaceae and manures releases volatile toxic gases during the degradation process of the organic matter, including isothiocyanates. Non-host or antagonistic plants are also important tools for the integrated management of nematodes. In this context, marigolds (Tagetes erecta and T. patula), crotalaria (Crotalaria spectabilis), sunn hemp (Crotalaria juncea), and velvet bean (Mucuna pruriens) are widely used as antagonistic plants. Soil amendment with crop residues of neem (Azadirachta indica), castor bean (Ricinus communis), velvet bean (Mucuna pruriens), crotalaria (Crotalaria spectabilis), and Brassica spp.; oil seed cakes of neem, castor bean, mustard, and sesame; cattle manure; poultry litter; liquid swine manure; and crab shells release nematotoxic substances during decomposition, provide nutrients to the plants, and increase the population of biocontrol agents. More than 200 species of nematode antagonists have been identified, including fungi, bacteria, nematodes, tardigrades, and collemboles. Fungi and bacteria are the most studied and commercially exploited organisms for nematode control. Several commercial bionematicides have been developed from the nematode-trapping fungi Arthrobotrys, Dactylaria, Dactylella, and Monacrosporium, the egg-parasitic fungi Purpureocillium lilacinum and Pochonia chlamydosporia, the antibiotic bacterium Bacillus species, and the obligate parasite bacterium Pasteuria spp. The anaerobic soil disinfestation is an ecological alternative to soil fumigation for the control of several soilborne pathogens, including nematodes. This technique consists of incorporating organic material that is easily decomposable (C/N ratio from 8 to 20:1) into the soil, irrigating to saturation, and covering the soil with oxygen-impermeable plastic. Accumulation of toxic products from anaerobic decomposition, antagonism by anaerobic organisms, lack of oxygen, and the combination of all of them are the main drivers that explain the efficacy of anaerobic soil disinfestation. Consumers have been demanding higher food security and environmental quality, and this situation will not be different in the future. In this context, scientists’ efforts in discovering new nonchemical strategies for nematode control and improvements in the current methods must be continuous.


Cyst nematode Lesion nematode Nematode control Root-knot nematode Sustainable agriculture Sustainable management 



E. A. Lopes thanks CNPq for the productivity grant (304663/2014-0).


  1. Ali, M. A., Azeem, F., Abbas, A., Joyia, F. A., Li, H., & Dababat, A. A. (2017). Transgenic strategies for enhancement of nematode resistance in plants. Frontiers in Plant Science, 8, 750.CrossRefGoogle Scholar
  2. Ansari, R. A., & Mahmood, I. (2017). Optimization of organic and bio-organic fertilizers on soil properties and growth of pigeon pea. Scientia Horticulturae, 226, 1–9.Google Scholar
  3. Asmus, G. L., & Ishimi, C. M. (2009). Flutuação populacional de Rotylenchulus reniformis em solo cultivado com algodoeiro. Pesquisa Agropecuária Brasileira, 44, 51–57.CrossRefGoogle Scholar
  4. Asmus, G. L., & Richetti, A. (2010). Rotação de culturas para o manejo do nematoide reniforme em algodoeiro. Dourados: Embrapa Agropecuária Oeste.Google Scholar
  5. Bensen, T., Smith, R., Subbarao, K., Koike, T., Fennimore, S., & Shem-Tov, S. (2009). Mustard and other cover crop effects vary on lettuce drop caused by Sclerotinia minor and on weeds. Plant Disease, 93, 1019–1027.CrossRefGoogle Scholar
  6. Bishop, A. H., Gowen, S. R., Pembroke, B., & Trotter, J. R. (2007). Morphological and molecular characteristics of a new species of Pasteuria parasitic on Meloidogyne ardenensis. Journal of Invertebrate Pathology, 96, 28–33.CrossRefGoogle Scholar
  7. Blok, W. J., Lamers, J. G., Termorshuizen, A. J., & Bollen, G. J. (2000). Control of soilborne plant pathogens by incorporating fresh organic amendments followed by tarping. Phytopathology, 90, 253–259.CrossRefGoogle Scholar
  8. Bontempo, A. F., Fernandes, R. H., Lopes, J., Freitas, L. G., & Lopes, E. A. (2014). Pochonia chlamydosporia controls Meloidogyne incognita on carrot. Australasian Plant Pathology, 43, 421–424.CrossRefGoogle Scholar
  9. Bontempo, A. F., Lopes, E. A., Fernandes, R. H., Freitas, L. G., & Dallemole-Giaretta, R. (2017). Dose-response effect of Pochonia chlamydosporia against Meloidogyne incognita on carrot under field conditions. Revista Caatinga, 30, 258–262.CrossRefGoogle Scholar
  10. Borges, D. C., Antedomênico, S. R., Santos, V. P., & Inomoto, M. M. (2009). Reação de genótipos de Avena spp. a Meloidogyne incognita raça 4. Tropical Plant Pathology, 34, 24–28.CrossRefGoogle Scholar
  11. Borges, D. C., Machado, A. C. Z., & Inomoto, M. M. (2010). Reação de aveias a Pratylenchus brachyurus. Tropical Plant Pathology, 35, 178–181.Google Scholar
  12. Bridge, J. (2000). Keynote: Nematodes of bananas and plantains in Africa: Research trends and management strategies relating to the small scale farmer. Acta Horticulturae, 540, 391–408.CrossRefGoogle Scholar
  13. Bridge, J., & Starr, J. L. (2007). Plant nematodes of agricultural importance: A color handbook. Burlington: Academic.CrossRefGoogle Scholar
  14. Brown, P. D., & Morra, M. J. (1997). Control of soil-borne plant pests using glucosinolate-containing plants. In D. L. Sparks (Ed.), Advances in agronomy (pp. 167–215). San Diego: Academic.Google Scholar
  15. Campos, V. P., Dutra, M. R., Silva, J. R. C., & Valério, C. R. (2005). Revolvimento do solo e irrigação no controle de fitonematoides. Editora UFLA.Google Scholar
  16. Chen, S., & Dickson, D. W. (2012). Biological control of plant-parasitic nematodes. In R. H. Manzanilla-López & N. Marbán-Mendoza (Eds.), Practical plant nematology (pp. 761–811). Montecillo: Colegio de Postgraduados.Google Scholar
  17. Dallemole-Giaretta, R., Freitas, L. G., Cavallin, I. C., Marmentini, G. A., Faria, C. M. R., & Resende, J. T. V. (2013). Avaliação de um produto à base de Pochonia chlamydosporia no controle de Meloidogyne javanica em alface e cenoura no campo. Nematropica, 43, 131–137.Google Scholar
  18. Dallemole-Giaretta, R., Santos, I., Camochena, R. C., Lopes, E. A., Reiner, D. A., Pazolini, K., & Xavier, D. M. (2014). Bioprodutos à base de fungos para o controle biológico de doenças de plantas. Revisão Anual de Patologia de Plantas, 22, 116–159.Google Scholar
  19. Decraemer, W., & Hunt, D. J. (2006). Structure and classification. In R. N. Perry & M. Moens (Eds.), Plant nematology (pp. 3–32). Wallingford: CABI Publishing.CrossRefGoogle Scholar
  20. DeVay, J. E. (1991). Historical review and principles of soil solarization. In J. E. DeVay, J. J. Stapleton, & C. L. Elmore (Eds.), Soil Solarization (pp. 1–15). Rome: FAO.Google Scholar
  21. Dias, W. P., Silva, J. F. V., Carneiro, G. E. S., Garcia, A., & Arias, C. A. A. (2009). Nematoide de cisto da soja: biologia e manejo pelo uso da resistência genética. Nematologia Brasileira, 33, 1–16.Google Scholar
  22. Dutra, M. R., & Campos, V. P. (1998). Efeito do preparo do solo na população de nematoides das galhas (Meloidogyne spp.). Nematologia Brasileira, 22, 19.Google Scholar
  23. Dutra, M. R., & Campos, V. P. (2003a). Manejo do solo e da irrigação como nova tática de controle de Meloidogyne incognita em feijoeiro. Fitopatologia Brasileira, 28, 608–614.CrossRefGoogle Scholar
  24. Dutra, M. R., & Campos, V. P. (2003b). Efeito do manejo do solo e da água na população de Meloidogyne javanica (Treub, 1885) em quiabeiro em campo. Summa Phytopathologica, 29, 249–254.Google Scholar
  25. Dutra, M. R., Campos, V. P., & Toyota, M. (2003). Manejo do solo e da irrigação para o controle de Meloidogyne javanica em alface. Nematologia Brasileira, 27, 29–34.Google Scholar
  26. Fassuolitis, G. (1987). Genetic basis of plant resistance to nematodes. In J. A. Veech & D. W. Dickson (Eds.), Vistas on nematology (pp. 364–371). Hyattsville: Society of Nematologists Inc.Google Scholar
  27. Ferraz, S., Freitas, L. G., Lopes, E. A., & Dias-Arieira, C. R. (2010). Manejo sustentável de fitonematoides. Viçosa: Editora UFV.Google Scholar
  28. Freitas, L. G., Dalemole-Giaretta, R., Ferraz, S., Zooca, R. J. F., & Podestá, G. S. (2009). Controle biológico de nematoides: estudo de casos. In L. Zambolim & M. C. Picanço (Eds.), Controle biológico: pragas e doenças: exemplos práticos (pp. 41–82). Viçosa: UFV/DFP.Google Scholar
  29. Fuller, V. L., Lilley, C. J., & Urwin, P. E. (2008). Nematode resistance. The New Phytologist, 180, 27–44.CrossRefGoogle Scholar
  30. Gamliel, A., & Stapleton, J. J. (1993). Effect of soil amendment with chicken compost or ammonium phosphate and solarization on pathogen control, rhizosphere microorganisms and lettuce growth. Plant Disease, 77, 886–891.CrossRefGoogle Scholar
  31. Gamliel, A., Austerweil, M., & Kritzman, G. (2000). Non-chemical approach to soilborne pest management – Organic amendments. Crop Protection, 19, 847–853.CrossRefGoogle Scholar
  32. Godefroid, M., Tixier, P., Chabrier, C., Djigal, D., & Quénéhervé, P. (2017). Associations of soil type and previous crop with plant-feeding nematode communities in plantain agrosystems. Applied Soil Ecology, 113, 63–70.CrossRefGoogle Scholar
  33. Hoitink, H. A. J., & Fahy, P. C. (1986). Basis for the control of soilborne plant pathogens with compost. Annual Review of Phytopathology, 24, 93–114.CrossRefGoogle Scholar
  34. Inomoto, M. M., & Asmus, G. L. (2009). Culturas de cobertura e de rotação devem ser plantas não hospedeiras de nematoides. Visão Agrícola, 9, 112–116.Google Scholar
  35. Inomoto, M. M., & Asmus, G. L. (2014). Adubos verdes das famílias Fabaceae e Mimosaceae para o controle de fitonematoides. In Lima Filho OF, E. J. Ambrosano, F. Rossi, & J. A. D. Carlos (Eds.), Adubação verde e plantas de cobertura no Brasil. Brasília: Embrapa.Google Scholar
  36. Inomoto, M. M., Antedomênico, S. R., Santos, V. P., Silva, R. A., & Almeida, G. C. (2008). Avaliação em casa de vegetação do uso de sorgo, milheto e crotalária no manejo de Meloidogyne incognita. Tropical Plant Pathology, 33, 125–129.CrossRefGoogle Scholar
  37. Jones, J. T., Haegman, A., Danchin, E. G., Gaur, H. S., Helder, J., Jones, M. G., Kikuchi, T., Manzanilla-López, R., Palomares-Rius, J. E., Wesemael, W. M., & Perry, R. N. (2013). Top 10 plant-parasitic nematodes in molecular plant pathology. Molecular Plant Pathology, 14, 946–961.CrossRefGoogle Scholar
  38. Katan, J., & Gamliel, A. (2009). Soil solarization- 30 years on – What lessons have been learned? In U. Gisi, I. Chet, & L. Gullino (Eds.), Recent development in disease management (pp. 265–283). Amsterdam: Springer.Google Scholar
  39. Katan, J., & Gamliel, A. (2011). Soilborne diseases, control by physical methods. In J. Glinski, J. Horabik, & J. Lipiec (Eds.), Encyclopedia of agrophysics (pp. 813–816). Amsterdam: Springer.CrossRefGoogle Scholar
  40. Kirkegaard, J. A., Sarwan, M., Mathiessen, J. N., Thomas, G., & Monteiro, A. A. (1998). Assessment the biofumigation potential of crucifers. Acta Horticulturae, 459, 105–111.CrossRefGoogle Scholar
  41. Lehman, P. S. (2004). Cost benefits of nematode management through regulating programs. In Z. Chen, S. Chen, & D. W. Dickson (Eds.), Nematology – Advances and perspectives (Nematode management and utilization) (Vol. 2, pp. 1133–1177). Tsinghua: University Press & CABI Publishing.Google Scholar
  42. Leon, L., Branchero, L., Lopez-Perez, J. A., & Bello, A. (2000). Control de Meloidogyne incognita en cultivo de tomate en Uruguay. Boletín de sanidad vegetal, 26, 401–407.Google Scholar
  43. Leon, L., Lopez-Perez, J. A., Rodríguez, A., Casanova, D., Arias, M., & Bello, A. (2001). Management of Meloidogyne arenaria in protected crops of Swiss chard in Uruguay. Nematropica, 31, 103–108.Google Scholar
  44. Lopes, E. A., & Ferraz, S. (2016). Importância dos fitonematoides na agricultura. In C. M. G. Oliveira, M. A. Santos, & L. H. S. Castro (Eds.), Diagnose de fitonematoides (pp. 1–10). Campinas: Millenium Editora.Google Scholar
  45. Marbán-Mendoza, N., & Manzanilla-López, R. H. (2012). Chemical and non-chemical tactics to control plant-parasitic nematodes. In R. H. Manzanilla-López & N. Marbán-Mendoza (Eds.), Practical plant nematology (pp. 729–759). Montecillo: Colegio de Postgraduados.Google Scholar
  46. Martinelli, P. R. P., Santos, J. M., & Barbosa, J. C. (2012). Eficácia de formulações contendo cinco fungos nematófagos para o manejo de Pratylenchus jaehni em citros. Nematologia Brasileira, 36, 1–8.Google Scholar
  47. Matsuo, E., Ferreira, P. A., Sediyama, T., Ferraz, S., Borém, A., & Fritsche-Neto, R. (2012). Breeding for nematodes resistance. In R. Fritsche-Neto & A. Borém (Eds.), Plant breeding for biotic stress resistance (pp. 81–102). Heidelberg: Springer.CrossRefGoogle Scholar
  48. McSorley, R., & Gallaher, R. N. (1995). Cultural practices improve crop tolerance to nematodes. Nematropica, 25, 53–60.Google Scholar
  49. Neves, W. S., Freitas, L. G., Dallemole-Giaretta, R., Coutinho, M. M., Ferraz, S., & Parreira, D. F. (2012). Incorporação de farinha de semente de mamão ao solo, em diferentes doses, para o controle de Meloidogyne javanica. Nematologia Brasileira, 36, 25–31.Google Scholar
  50. Nicol, J. M., Turner, S. J., Coyne, D. L., den Nijs, L., Hockland, S., & Tahna Maafi, Z. (2011). Current nematode threats to world agriculture. In J. Jones, G. Gheysen, & C. Fenoll (Eds.), Genomics and molecular genetics of plant-nematode interactions (pp. 21–43). Heidelberg: Springer.CrossRefGoogle Scholar
  51. Njoroge, S. M., Kabir, Z., Martin, F. N., Koike, S. T., & Subbarao, K. V. (2009). Comparison of crop rotation for Verticillium wilt management and effect on Pythium species in conventional and organic strawberry production. Plant Disease, 93, 519–527.CrossRefGoogle Scholar
  52. Peng, Y., & Moens, M. (2003). Host resistance and tolerance to migratory plant-parasitic nematodes. Nematology, 5, 145–177.CrossRefGoogle Scholar
  53. Rao, M. S., Kamalnath, M., Umamaheswari, R., Rajinikanth, R., Prabu, P., Priti, K., Grace, G. N., Chaya, M. K., & Gopalakrishnan, C. (2017). Bacillus subtilis IIHR BS-2 enriched vermicompost controls root knot nematode and soft rot disease complex in carrot. Scientia Horticulturae, 218, 56–62.CrossRefGoogle Scholar
  54. Rich, J. R., Brito, J. A., Kaur, R., & Ferrell, J. A. (2009). Weed species as hosts of Meloidogyne: A review. Nematropica, 39, 157–185.Google Scholar
  55. Ritzinger, C. H. S. P., & McSorley, R. (1998). Effect of fresh and dry organic amendments on Meloidogyne arenaria in greenhouse experiments. Nematropica, 28, 173–185.Google Scholar
  56. Roberts, P. A. (2002). Concepts and consequences of resistance. In J. L. Starr, R. Cook, & J. Bridge (Eds.), Plant resistance to parasitic nematodes (pp. 23–41). Wallingford: CABI Publishing.CrossRefGoogle Scholar
  57. Rodríguez-Kábana, R., Morgan-Jones, G., & Chet, I. (1987). Biological control of nematodes: Soil amendments and microbial antagonists. Plant and Soil, 100, 237–247.CrossRefGoogle Scholar
  58. Rosskopf, E. N., Burelle, N., Hong, J., Butler, D. M., Noling, J. W., He, Z., Booker, B., & Sances, S. (2014). Comparison of anaerobic soil disinfestation and drip-applied organic acids for raised-bed specialty crop production in Florida. Acta Horticulturae, 1044, 221–228.CrossRefGoogle Scholar
  59. Runia, W. T., Thoden, T. C., Molendijk, L. P. G., van den Berg, W., Termorshuizen, A. J., Streminska, M. A., van der Wurff, F. H., & Meints, H. (2014). Unravelling the mechanism of pathogen inactivation during anaerobic soil disinfestation. Acta Horticulturae, 1044, 177–193.CrossRefGoogle Scholar
  60. Sasser, J. N., & Freckman, D. W. (1987). A world perspective on nematology: The role of the society. In J. A. Veech & D. W. Dickson (Eds.), Vistas on nematology (pp. 7–14). Hyattsville: Society of Nematologists.Google Scholar
  61. Shennan, C., Muramoto, J., Lamers, J., Mazzola, M., Rosskopf, E. N., Kokalis-Burelle, N., Momma, N., Butler, D. M., & Kobara, Y. (2014). Anaerobic soil disinfestation for soil borne disease control in strawberry and vegetable systems: Current knowledge and future directions. Acta Horticulturae, 1044, 165–175.CrossRefGoogle Scholar
  62. Shinmura, A. (2000). Causal agent and control of root rot of welsh onion. PSJ Soilborne Disease Workshop Report, 20, 133–143.Google Scholar
  63. Shinmura, A. (2004). Principle and effect of soil sterilization method by reducing redox potential of soil. (PSJ) Soilborne Disease Workshop Report, 22, 2–12.Google Scholar
  64. Shrestha, U., Augé, R. M., & Butler, D. M. (2016). A meta-analysis of the impact of anaerobic soil disinfestation on pest suppression and yield of horticultural crops. Frontiers in Plant Science, 7, 1254.PubMedPubMedCentralGoogle Scholar
  65. Sikora, R. A., Bridge, J., & Starr, J. L. (2005). Management practices: An overview of integrated nematode management technologies. In M. Luc, R. A. Sikora, & J. Bridge (Eds.), Plant parasitic nematodes in subtropical and tropical agriculture (pp. 793–825). Wallingford: CABI Publishing.CrossRefGoogle Scholar
  66. Silva, J. F. V. (1999). Um histórico. In O nematoide de cisto da soja: a experiência brasileira (pp. 15–24). Jaboticabal: Sociedade Brasileira de Nematologia.Google Scholar
  67. Stapleton, J. J., Duncan, R. A., & Johnson, R. (1998). Soil disinfestations with cruciferous amendments and sub-lethal heating: Effects on Meloidogyne incognita, Sclerotium rolfsiiand Pythium ultimum. Plant Pathology, 47, 737–742.Google Scholar
  68. Stirling, G. R. (2014). Biological control of plant-parasitic nematodes: Soil ecosystem management in sustainable agriculture. Wallingford: CABI Publishing.CrossRefGoogle Scholar
  69. Sturhan, D., Winkelheide, R., Sayre, R. M., & Wergin, W. P. (1994). Light and electron microscopical studies of the life cycle and developmental stages of a Pasteuria isolate parasitizing the pea cyst nematode, Heterodera goettingiana. Fundamental and Applied Nematology, 17, 29–42.Google Scholar
  70. Thomas, C., & Cottage, A. (2006). Genetic engineering for resistance. In R. N. Perry & M. Moens (Eds.), Plant nematology (pp. 255–272). Wallingford: CABI Publishing.CrossRefGoogle Scholar
  71. Tihohod, D. (1993). Nematologia Agrícola Aplicada. Jaboticabal: UNESP.Google Scholar
  72. Tsang, M. M. C., Hara, A. H., & Sipes, B. S. (2003). Hot water treatments of potted palms to control the burrowing nematode, Radopholus simili. Crop Protection, 22, 589–593.CrossRefGoogle Scholar
  73. Van Gundy, S. D., Bird, A. F., & Wallace, H. R. (1967). Aging and starvation in juvenile of Meloidogyne javanica and Tylenchulus semipenetrans. Phytopathology, 57, 559–571.Google Scholar
  74. Wang, K. H., & McSorley, R. (2008). Exposure time to lethal temperatures for Meloidogyne incognita suppression and its implication for soil solarization. Journal of Nematology, 40, 7–12.PubMedPubMedCentralGoogle Scholar
  75. Zhou, L., Yuen, G., Wang, Y., Wei, L., & Ji, G. (2016). Evaluation of bacterial biological control agents for control of root-knot nematode disease on tomato. Crop Protection, 84, 8–13.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Everaldo Antônio Lopes
    • 1
    Email author
  • Rosangela Dallemole-Giaretta
    • 2
  • Wânia dos Santos Neves
    • 3
  • Douglas Ferreira Parreira
    • 4
  • Paulo Afonso Ferreira
    • 5
  1. 1.Instituto de Ciências AgráriasUniversidade Federal de ViçosaRio ParanaíbaBrazil
  2. 2.Universidade Tecnológica Federal do ParanáPato BrancoBrazil
  3. 3.Empresa de Pesquisa Agropecuária de Minas Gerais (EPAMIG)EPAMIG SudesteViçosaBrazil
  4. 4.Departamento de FitopatologiaUniversidade Federal de ViçosaViçosaBrazil
  5. 5.Universidade Federal de Mato GrossoBarra do GarçasBrazil

Personalised recommendations