Advertisement

Management of Soil-Borne Diseases of Plants Through Some Cultural Practices and Actinobacteria

  • K. P. Roopa
  • Anusha S. Gadag
Chapter

Abstract

With a growing population, the demand for crop production is an increasing trend. The main hindrance in this regard is the biotic stresses like diseases and pests attacking crop causing huge losses every year. Mainly the soil-borne pathogens are devastatingly affecting the crop production. It is challenging to predict, detect and diagnose a variety of soil-borne pathogens that are causing plant diseases. The soil-borne plant pathogens can be categorized under divisions of bacterium, virus, fungus or plant parasitic nematode. These pathogens are highly effective due to extensive surviving periods even in absence of host plant and also congenial environmental condition. The survivability of soil-borne pathogens in the soil varies for each of them. Most soil-borne pathogens are difficult to control by conventional procedures like the use of resistant cultivars. Extensive use of fungicides is expensive and affects nontarget microflora. The promising strategies used are crop rotation and cover cropping and using organic amendments (manures and composts) and biological control are alternative methods which can replace the use of chemical pesticides in the control of soil-borne pathogens. In recent years, biological control has become very popular and included in plant disease management, and it is considered as a practical and safe approach in many crops. Among these antagonistic microorganisms, actinobacteria are well-known and classified among the most active rhizobacteria. In recent decade actinobacteria have gained importance due to its extensive presence and active colonization ability in rhizosphere of plants, its ability to produce a wide variety of agro-active compounds effective against many pathogens. Actinobacteria, especially Streptomyces spp., have biocontrol action against a range of phytopathogens. The actinobacterial mechanisms imparting soil-borne disease control majorly involve antibiosis, hyperparasitism, production of cell wall-degrading enzymes, stimulation of nodulation, etc. Actinobacteria-treated plants showed ameliorated plant health. The role of actinobacteria, as the probable stimulator of ISR (induced systemic resistance), is a major aspect in disease control. It induces signalling pathway involved in plant disease resistance and produces many defence-related enzymes protecting plants against pathogen attack and also preventing its further spread. Hence actinobacteria are an effective biocontrol agent and can be used for the control of soil-borne pathogens.

Keywords

Management Soil borne pathogens Crop rotation Solarization Sanitation Biocontrol Actinobacteria 

References

  1. Adam, M., Heuer, H., & Hallmann, J. (2014). Bacterial antagonists of fungal pathogens also control root-knot nematodes by induced systemic resistance of tomato plants. PLoS One, 9(2).Google Scholar
  2. Agrios, G. N. (2005). Plant Pathology (5th ed.p. 952). San Diego/New York: Academic.Google Scholar
  3. Alexander, M. (1977). Introduction to soil microbiology (2nd ed.). New York: Wiley.Google Scholar
  4. Ansari, R. A., & Mahmood, I. (2017). Optimization of organic and bio-organic fertilizers on soil properties and growth of pigeon pea. Scientia Horticulturae, 226, 1–9.Google Scholar
  5. Baniasadi, F., Bonjar, G. S., Baghizadeh, A., Nik, A. K., Jorjandi, M., Aghighi, S., & Farokhi, P. R. (2009). Biological control of sclerotinia sclerotiorum, causal agent of sunflower head and stem rot disease, by use of soil borne actinobacteria isolates. American Journal of Agricultural and Biological Sciences, 4(2), 146–151.CrossRefGoogle Scholar
  6. Baumann, D. T., Bastiaans, L., & Kropff, M. J. (2002). Intercropping system optimization for yield, quality, and weed suppression combining mechanistic and descriptive models. Agronomy Journal, 94, 734–742.CrossRefGoogle Scholar
  7. Baysal-Gurel, F., Gardener, B. M., & Miller, S. A. (2012). Soilborne disease management in organic vegetable production. Available on www.extension.org/pages/64951. Accessed 28 Feb 2016.
  8. Behal, V. (2000). Bioactive products from Streptomyces. Advances in Applied Microbiology, 47, 113–157.PubMedCrossRefGoogle Scholar
  9. Benson, D. M., Grand, L. F., Vernia, C. S., & Gottwald, T. R. (2006). Temporal and spatial epidemiology of Phytophthora root rot in Fraser fir plantations. Plant Disease, 90(9), 1171–1180.PubMedCrossRefGoogle Scholar
  10. Berg, G., Fritze, A., Roskot, N., & Smalla, K. (2001). Evaluation of potential biocontrol rhizobacteria from different host plants of Verticillium dahliae Kleb. Journal of Applied Microbiology, 91(6), 963–971.PubMedCrossRefGoogle Scholar
  11. Bouizgarne, B. (2013). Bacteria for plant growth promotion and disease management. In Bacteria in agrobiology: Disease management (p. 15). Heidelberg: Springer.CrossRefGoogle Scholar
  12. Boukaew, S., Plubrukam, A., & Prasertsan, P. (2013). Effect of volatile substances from Streptomyces philanthi RM-1-138 on growth of Rhizoctonia solani on rice leaf. BioControl, 58, 471–482.CrossRefGoogle Scholar
  13. Buchenauer, H. (1998). Biological control of soil-borne diseases by rhizobacteria/Biologische Bekämpfung von bodenbürtigen Krankheiten durch Rhizobakterien. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz/Journal of Plant Diseases and Protection, 105, 329–348.Google Scholar
  14. Bukovinszky, T. (2004). Tailoring complexity, pp. Multitrophic interactions in simple and diversified habitats. PhD Thesis. Wageningen University, Wageningen.Google Scholar
  15. Cao, L., Qiu, Z., You, J., Tan, H., & Zhou, S. (2005). Isolation and characterization of endophytic streptomycete antagonists of fusarium wilt pathogen from surface-sterilized banana roots. FEMS Microbiology Letters, 247(2), 147–152.PubMedCrossRefGoogle Scholar
  16. Cardoso, R. A., Pires, L. T. A., Zucchi, T. D., Zucchi, F. D., & Zucchi, T. M. A. D. (2010). Mitotic crossing-over induced by two commercial herbicides in diploid strains of the fungus Aspergillus nidulans. Genetics and Molecular Research, 9, 231–238.PubMedCrossRefGoogle Scholar
  17. Chattopadhyay, S. K., & Nandi, B. (1982). Inhibition of Helminthosporium oryzae and Alternaria solani by Streptomyces longisporus (Krasil’nokov) Waksman. Plant and Soil, 69, 171–175.CrossRefGoogle Scholar
  18. Chernin, L., & Chet, I. (2002). Microbial enzymes in biocontrol of plant pathogens and pests. In Enzymes in the environment, activity, ecology, and applications (pp. 171–225). New York: Marcel Dekker.Google Scholar
  19. Chitraselvi, E. R., Kalidass, S., & Kant, R. (2015). Efficiency of rhizosphere bacteria in production of indole acetic acid, siderophore and phosphate solubilization. International Journal of ChemTech Research, 7(6), 2557–2564.Google Scholar
  20. Clardy, J., Fischbach, M. A., & Walsh, C. T. (2006). New antibiotics from bacterial natural products. Nature Biotechnology, 24, 1541–1550.PubMedCrossRefGoogle Scholar
  21. Coombs, J. T., Michelsen, P. P., & Franco, M. M. (2004). Evaluation of endophytic actinobacteria as antagonists of Gaeumannomyces graminis var. tritici in wheat. Biological Control, 29, 359–366.CrossRefGoogle Scholar
  22. Costa, F. G., Zucchi, T. D., & Melo, I. S. D. (2013). Biological control of phytopathogenic fungi by endophytic actinobacteria isolated from maize (Zea mays L.). Brazilian Archives of Biology and Technology, 56(6), 948–955.CrossRefGoogle Scholar
  23. Crawford, D. L., Lynch, J. M., Whipps, J. M., & Ousley, M. A. (1993). Isolation and characterization of actinomycete antagonists of a fungal root pathogen. Applied and Environmental Microbiology, 59(11), 3899–3905.PubMedPubMedCentralGoogle Scholar
  24. Diab, H., Hu, S., & Benson, D. M. (2003). Suppression of Rhizoctonia solani on impatiens by enhanced microbial activity in composted swine waste amended potting mixes. Phytopathology, 93, 1115–1123.PubMedCrossRefGoogle Scholar
  25. Doumbou, C. L., Hamby Salove, M. K., Crawford, D. L., & Beaulieu, C. (2001). Actinobacteria, promising tools to control plant diseases and to promote plant growth. Phytoprotection, 82(3), 85–102.CrossRefGoogle Scholar
  26. El-Tarabily, K. A. (2006). Rhizosphere-competent isolates of streptomycete and non-streptomycete actinobacteria capable of producing cell-wall degrading enzymes to control Pythium aphanidermatum damping-off disease of cucumber. Canadian Journal of Botany, 84(2), 211–222.CrossRefGoogle Scholar
  27. El-Tarabily, K. A., Nassar, A. H., Hardy, G. E., & Sivasithamparam, K. (2003). Fish emulsion as a food base for rhizobacteria promoting growth of radish (Raphanus sativus L. var. sativus) in a sandy soil. Plant and Soil, 252, 397–411.CrossRefGoogle Scholar
  28. El-Tarabily, K. A. (2003). An endophytic chitinase-producing isolate of Actinoplanes missouriensis, with potential for biological control of root rot of lupine caused by Plectosporium tabacinum. Australian Journal of Botany, 51, 257–266.CrossRefGoogle Scholar
  29. El-Tarabily, K. A., Hardy, G. E. S. J., Sivasithamparam, K., Hussein, A. M., & Kurtböke, D. I. (1997). The potential for the biological control of cavity-spot disease of carrots, caused by Pythium coloratum, by streptomycete and non-streptomycete actinobacteria. The New Phytologist, 137(3), 495–507.CrossRefGoogle Scholar
  30. Endo, A., & Misato, T. (1969). Polyoxin D, a competitive inhibitor of UDP-N-acetylglucosamine, pp. chitin N-acetylglucosaminyltransferase in Neurospora crassa. Biochemical and Biophysical Research Communications, 37(4), 718–722.PubMedCrossRefGoogle Scholar
  31. Erwin, D. C., & Ribeiro, O. K. (1996). Phytophthora diseases worldwide (p. 562). St. Paul: The American Phytopathological Society Press.Google Scholar
  32. Franco-Correa, M., Quintana, A., Duque, C., Suarez, C., Rodríguez, M. X., & Barea, J. M. (2010). Evaluation of actinomycete strains for key traits related with plant growth promotion and mycorrhiza helping activities. Applied Soil Ecology, 45(3), 209–217.CrossRefGoogle Scholar
  33. Frankowski, J., Lorito, M., Scala, F., Schmid, R., Berg, G., & Bahl, H. (2001). Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Archives of Microbiology, 176(6), 421–426.PubMedCrossRefGoogle Scholar
  34. Hamdali, H., Hafidi, M., Virolle, M. J., & Ouhdouch, Y. (2008). Rock phosphate-solubilizing actinobacteria, pp. screening for plant growth-promoting activities. World Journal of Microbiology and Biotechnology, 24(11), 2565–2575.CrossRefGoogle Scholar
  35. Hussain, S., Ghaffar, A., & Aslam, M. (1990). Biological control of Macrophomina phaseolina charcoal rot of sunflower and mung bean. Journal of Phytopathology, 130, 157–160.CrossRefGoogle Scholar
  36. Ijaz, S., Sadaqat, H. A., & Khan, M. N. (2013). A review of the impact of charcoal rot (Macrophomina phaseolina) on sunflower. The Journal of Agricultural Science, 151(2), 222–227.CrossRefGoogle Scholar
  37. Ilic, S. B., Konstantinovic, S. S., Todorovic, Z. B., Lazic, M. L., Veljkovic, V. B., Jokovic, N., & Radovanovic, B. C. (2007). Characterization and antimicrobial activity of the bioactive metabolites in streptomycete isolates. Microbiology, 76(4), 421–428.CrossRefGoogle Scholar
  38. Isono, K., Nagatsu, J., Kawashima, Y., & Suzuki, S. (1965). Studies on polyoxins, antifungal antibiotics. Part I. Isolation and characterization of polyoxins A and B. Agricultural and Biological Chemistry, 29, 848–854.Google Scholar
  39. Katan, J. (2000). Physical and cultural methods for the management of soil-borne pathogens. Crop Protection, 19(8–10), 725–731.CrossRefGoogle Scholar
  40. Keijer, J., Korsman, M. G., Dullemans, A. M., Houterman, P. M., De Bree, J., & Van Silfhout, C. H. (1997). In vitro analysis of host plant specificity in Rhizoctonia solani. Plant Pathology, 46(5), 659–669.CrossRefGoogle Scholar
  41. Khan, M. R., Altaf, S., Mohiddin, F. A., Khan, U., & Anwer, A. (2009). Biological control of plant nematodes with phosphate solubilizing microorganisms. In M. S. Khan & A. Zaidi (Eds.), Phosphate solubilizing microbes for crop improvement (pp. 395–426). New York: Nova Science Publishers, p. 451.CrossRefGoogle Scholar
  42. Khan, S. N. (2007). Macrophomina phaseolina as causal agent or charcoal rot of sunflower. Mycopathology, 5(2), 111–118.Google Scholar
  43. Khan, N. I., Filonow, A. B., Singleton, L. L., & Payton, M. E. (1993). Parasitism of oospores of Pythium spp. by strains of Actinoplanes spp. Canadian Journal of Microbiology, 39(10), 964–972.CrossRefGoogle Scholar
  44. Klein, E., Katan, J., & Gamliel, A. (2011). Soil suppressiveness to fusarium disease following organic amendments and solarization. Plant Disease, 95, 1116–1123.PubMedCrossRefGoogle Scholar
  45. Kloepper, J. W., & Beauchamp, C. J. (1992). A review of issues related to measuring colonization of plant roots by bacteria. Canadian Journal of Microbiology, 38(12), 1219–1232.CrossRefGoogle Scholar
  46. Lacey, J. (1997). Actinobacteria in composts. Annals of Agricultural and Environmental Medicine, 4, 113–121.Google Scholar
  47. Lam, S. T., & Gaffney, T. D. (1993). Biological activities of bacteria used in plant pathogen control. In I. Chet (Ed.), Biotechnology in plant disease control (pp. 291–320). New York: Wiley-Liss, Inc..Google Scholar
  48. Lim, H. S., Kim, Y. S., & Kim, S. D. (1991). Pseudomonas stutzeri YPL-1 genetic transformation and antifungal mechanism against fusarium solani, an agent of plant root rot. Applied and Environmental Microbiology, 57(2), 510–516.PubMedPubMedCentralGoogle Scholar
  49. Lumsden, R. D., Lewis, J. A., & Millner, P. D. (1983). Effect of composted sewage sludge on several soilborne pathogens and diseases. Phytopathology, 73, 1543–1548.CrossRefGoogle Scholar
  50. McKellar, M. E., & Nelson, E. B. (2003). Compost induced suppression of pythium damping-off is mediated by fatty-acid metabolizing seed-colonizing microbial communities. Applied and Environmental Microbiology, 69, 452–460.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Momma, N. (2008). Biological soil disinfestation (BSD) of soilborne pathogens and its possible mechanisms. Japan Agricultural Research Quarterly, 42(1), 7–12.CrossRefGoogle Scholar
  52. Morsy, E. M., Abdel-Kawi, K. A., & Khalil, M. N. A. (2009). Efficiency of Trichoderma viride and Bacillus subtilis as biocontrol agents against Fusarium solani on tomato plants. Egyptian Journal of Phytopathology, 37(1), 47–57.Google Scholar
  53. Ningthoujam, S., Sanasam, S., Tamreihao, K., & Nimaich, S. (2009). Antagonistic activities of local actinomycete isolates against rice fungal pathogens. African Journal of Microbiology Research, 3(11), 737–742.Google Scholar
  54. Ordentlich, A., Elad, Y., & Chet, I. (1988). The role of chitinase of Serratia marcescens in biocontrol of Sclerotium rolfsii. Phytopathology, 78(1), 84–88.Google Scholar
  55. Pal, K. K., & Gardener, B. M. (2006). Biological control of plant pathogens. The Plant Health Instructor, 2, 1117–1142.Google Scholar
  56. Patel, S. T., & Anahosur, K. H. (2001). Potential antagonism of Trichoderma harzianum against Fusarium spp., Macrophomina phaseolina and Sclerotium rolfsii. Journal of Mycology and Plant Pathology, 31, 365–366.Google Scholar
  57. Patil, H. J., Srivastava, A. K., Singh, D. P., Chaudhari, B. L., & Arora, D. K. (2011). Actinobacteria mediated biochemical responses in tomato (Solanum lycopersicum) enhances bioprotection against Rhizoctonia solani. Crop Protection, 30(10), 1269–1273.CrossRefGoogle Scholar
  58. Pattanapipitpaisal, P., & Kamlandharn, R. (2012). Screening of chitinolytic actinobacteria for biological control of Sclerotium rolfsii stem rot disease of chilli. Songklanakarin Journal of Science & Technology, 34(4), 383–389.Google Scholar
  59. Quecine, M. C., Araujo, W. L., Marcon, J., Gai, C. S., Azevedo, J. L., & Pizzirani-Kleiner, A. A. (2008). Chitinolytic activity of endophytic Streptomyces and potential for biocontrol. Letters in Applied Microbiology, 47(6), 486–491.PubMedCrossRefGoogle Scholar
  60. Ray, D. K., Mueller, N. D., West, P. C., & Foley, J. A. (2013). Yield trends are insufficient to double global crop production by 2050. PLoS One, 8(6), e66428.Google Scholar
  61. Sabaou, N., Bounaga, N., & Bounaga, D. (1983). Antibiotic, mycolytic and parasitic actions of 2 actinobacteria against Furasium-oxysporum f. sp. albedinis and other special forms. Canadian Journal of Microbiology, 29(2), 194–199.CrossRefGoogle Scholar
  62. Saifullah, M., Stephen, M., & Khattak, B. (2007). Isolation of Trichoderma harzianum and in vitro screening for its effectiveness against root-knot nematodes (Meloidogyne sp.) from Swat, Pakistan. Pakistan Journal of Nematology, 25(2), 313–322.Google Scholar
  63. Shafique, H. A., Noreen, R., Sultana, V., Ara, J., & EhteshamulHaque, S. (2015b). Effect of endophytic Pseudomonas aeruginosa and Trichoderma harzianum on soil-borne diseases, mycorrhizae and induction of systemic resistance in okra grown in soil amended with Vernonia anthelmintica (L.) seed’s powder. Pakistan Journal of Botany, 47, 2421–2426.Google Scholar
  64. Shafique, H. A., Sultana, V., Ara, J., Ehteshamul-Haque, S., & Athar, M. (2015a). Role of antagonistic microorganisms and organic amendment in stimulating the defense system of okra against root rotting fungi. Polish Journal of Microbiology, 64(2), 157–164.PubMedGoogle Scholar
  65. Shapira, R., Altman, A., Henis, Y., & Chet, I. (1989). Polyamines and ornithine decarboxylase activity during growth and differentiation in Sclerotium rolfsii. Microbiology, 135(5), 1361–1367.CrossRefGoogle Scholar
  66. Sharma, M. (2014). Actinobacteria, pp. source, identification, and their applications. International Journal of Current Microbiology and Applied Sciences, 3(2), 801–832.CrossRefGoogle Scholar
  67. Shinde, S. J., Prashanthi, S. K., & Krishnaraj, P. U. (2014). Identification and utilization of actinobacteria for biocontrol of rice sheath blight pathogen, Rhizoctonia solani. Asian Journal of Bio Science, 9(2), 227–233.CrossRefGoogle Scholar
  68. Sikora, R. A., & Fernández, E. (2005). Nematode parasites of vegetables. In M. Luc, R. A. Sikora, & J. Bridge (Eds.), Plant parasitic nematodes in subtropical and tropical agriculture (2nd ed., pp. 319–392). Willingford: CABI Publishing, p. 896.CrossRefGoogle Scholar
  69. Sikora, G. E. (1957). Inhibition of Fusarium oxysporum f. lycopersici by a species of Micromonospora isolated from tomato. Phytopathol, 47, 429–432.Google Scholar
  70. Solans, M., Vobis, G., & Gabriel, W. L. (2009). Saprophytic actinobacteria promote nodulation in Medicago sativa-Sinorhizobium meliloti symbiosis in the presence of high N. Journal of Plant Growth Regulation, 28, 106–114.CrossRefGoogle Scholar
  71. Srinivasan, T., Chitra, A. M., & Sekar, C. (2013). Application effect of exopolysaccharide (EPS) rich, PGPR coaggregates on the enhancement of ISR mediated biocontrol in groundnut Sclerotium rolfsii pathosystem under rainfed condition. Indian Streams Research Journal, 3(9), 1–7(ISSN 2230-7850).Google Scholar
  72. Sutherland, E. D., Baker, K. K., & Lockwood, J. L. (1984). Ultrastructure of Phytophthora megasperma f. sp. glycinea oospores parasitized by Actinoplanes missouriensis and Humicola fuscoatra. Transactions of the British Mycological Society, 82(4), 726–729.CrossRefGoogle Scholar
  73. Szczechura, W., Staniaszek, M., & Habdas, H. (2013). Fusarium oxysporum f. sp. radicis-lycopersici – the cause of fusarium crown and root rot in tomato cultivation. Journal of Plant Protection Research, 53(2), 172–178.CrossRefGoogle Scholar
  74. Tahvonen, R., & Avikainen, H. (1987). The biological control of seedborne Alternaria brassicicola of cruciferous plants with a powdery préparation of Streptomyces sp. Journal of Agricultural Science in Finland, 59, 199–208.Google Scholar
  75. Tapio, E., & Pohto-Lahdenperä, A. (1991). Scanning electron microscopy of hyphal interaction between Streptomyces griseoviridis and some plant pathogenic fungi. Journal of Agricultural Science in Finland, 63(5), 435–441.Google Scholar
  76. Tokala, R. K., Strap, J. L., Jung, C. M., Crawford, D. L., Salove, M. H., Deobald, L. A., Bailey, J. F., & Morra, M. J. (2002). Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Applied and Environmental Microbiology, 68(5), 2161–2171.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Umezawa, H., Okami, Y., Hashimoto, T., Suhara, Y., Hamada, M., & Takeuchi, T. (1965). A new antibiotic, kasugamycin. The Journal of Antibiotics, 18, 101–103.PubMedGoogle Scholar
  78. Upadhyay, R. S., & Rai, B. (1987). Studies on antagonism between Fusarium udum Butler and root region microflora of pigeon-pea. Plant and Soil, 101, 79–93.CrossRefGoogle Scholar
  79. USDA.(2003). Biological control of Fusarium wilt and other soil-borne pathogenic fungi. http://www.ars.usda.gov/research/projects/projects.htm? ACCN_NO=406590&fy=2003.Google Scholar
  80. Valois, D., Fayad, K., Barasubiye, T., Gagnon, M., Déry, C., Brzezinski, R., & Beaulieu, C. (1996). Glucanolytic actinobacteria antagonisticto Phytophtora fragariaevar. rubi, the causal agent of raspberry root rot. Applied and Environmental Microbiology, 62, 1630–1635.PubMedPubMedCentralGoogle Scholar
  81. Van Loon, L. C., Bakker, P. A. H. M., & Pieterse, C. M. J. (1998). Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology, 36, 453–483.PubMedCrossRefGoogle Scholar
  82. Van Peer, R., Niemann, G. J., & Schippers, B. (1991). Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology, 81(411), 728–734.CrossRefGoogle Scholar
  83. Veeken, A. H. M., Blok, W. J., Curci, F., Coenen, G. C. M., Temorshuizen, A. J., & Hamelers, H. V. M. (2005). Improving quality of composted biowaste to enhance disease suppressiveness of compost-amended, peat based potting mixes. Soil Biology and Biochemistry, 37, 2131–2140.CrossRefGoogle Scholar
  84. Veena, D. R., Priya, H. R., Khatib, R. M., & Divya Joythi. (2014). Soilborne diseases in crop plants and their management. Research and Reviews: Journal of Agriculture and Allied Sciences, 3(2), 12–18.Google Scholar
  85. Verhagen, B. W. M., Glazebrook, J., Zhu, T., Chang, H. S., van Loon, L. C., & Pieterse, C. M. J. (2004). The transcriptome of rhizobacteria induced systemic resistance in Arabidopsis. Molecular Plant-Microbe Interactions, 17(8), 895–908.PubMedCrossRefGoogle Scholar
  86. Wang, C., Wang, Z., Qiao, X., Li, Z., Li, F., Chen, M., Wang, Y., Huang, Y., & Cui, H. (2013). Antifungal activity of volatile organic compounds from Streptomyces alboflavus TD-1. FEMS Microbiology Letters, 341(1), 45–51.PubMedCrossRefGoogle Scholar
  87. Wei, G., Kloepper, J. W., & Tuzun, S. (1991). Induction of systemic resistance of cucumber to Colletotrichum orbiculare by selected strains of plant growth-promoting rhizobacteria. Phytopathology, 81, 1508–1512.CrossRefGoogle Scholar
  88. Weller, D. M., Raaijmakers, J. M., Gardener, B. B. M., & Thomashow, L. S. (2002). Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology, 40(1), 309–348.PubMedCrossRefGoogle Scholar
  89. Youssef, M. M. A., & Lashein, A. M. S. (2013). Effect of cabbage (Brassica oleracea) leaf residue as a biofumigant, on root knot nematode, Meloidogyne incognita infecting tomato. Journal of Plant Protection Research, 53(3), 271–274.CrossRefGoogle Scholar
  90. Yuan, W. M., & Crawford, D. L. (1995). Characterization of streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots. Applied and Environmental Microbiology, 61(8), 3119–3128.PubMedPubMedCentralGoogle Scholar
  91. Zucchi, T. D., De Moraes, L. A. B., & De Melo, I. S. (2008). Streptomyces sp. ASBV-1 reduces aflatoxin accumulation by Aspergillus parasiticus in peanut grains. Journal of Applied Microbiology, 105(6), 2153–2160.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • K. P. Roopa
    • 1
  • Anusha S. Gadag
    • 1
  1. 1.Department of BiotechnologyUniversity of Agricultural SciencesDharwadIndia

Personalised recommendations