Vegetables Quality and Biotic Stress

  • Carlo NicolettoEmail author
  • Carmelo Maucieri
  • Giampaolo Zanin
  • Fabio Vianello
  • Paolo Sambo


Biotic stresses are one of the most important factor that have a substantial effect on crop growth and development and, finally, responsible for enormous losses of crop yield. Worldwide crop yield is reduced of about 25% due to diseases and insect infestation. Within different crops, worldwide vegetable production and consumption are constantly growing as a result of countless findings that attest their beneficial health properties. The quality target is an aspect that is increasingly considered within productions destined for modern consumption. This objective can be pursued through the improvement of one or more quality attributes. This issue seems to be very complex if we consider the relevant differences that characterize the vegetable production industry starting from crops, genetics, commodities, pedoclimatic conditions, agronomic and technical points of view. Biotic stresses can play a double role in conditioning vegetable quality with positive or negative consequences. Considering the complex modes of stress signaling by the plant, secondary metabolism is greatly affected by the generation of reactive oxygen species (ROS), hormonal components, and enzymatic activity. It is easy to assume that the effect of biotic stress is negative for product quality, but in some cases there is a potential utility of these metabolites for the consumer health. Paradoxically, the presence of stress during the cultivation of some species can be a crop extra value under the health profile. This chapter will seek to provide some guidance on the relationship between vegetables and biotic stresses, highlighting the consequences of biotic stress, the possible impact on the quality of vegetable crops, and some possible solutions.


Agronomic practices Antioxidant activity Metabolites Nutritional properties Pest and diseases 


  1. Abate, T., van Huis, A., & Ampofo, J. K. O. (2000). Pest management strategies in traditional agriculture: An African perspective. Annual Review of Entomology, 45, 631–659.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Abdelraheem, A., Liu, F., Song, M., & Zhang, J. F. (2017). A meta-analysis of quantitative trait loci for abiotic and biotic stress resistance in tetraploid cotton. Molecular Genetics and Genomics, 292, 1–15. Scholar
  3. AbuQamar, S., Luo, H., Laluk, K., Mickelbart, M. V., & Mengiste, T. (2009). Crosstalk between biotic and abiotic stress responses in tomato is mediated by the AIM1 transcription factor. The Plant Journal, 58(2), 347–360.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Anderson, J. P., Badruzsaufari, E., Schenk, P. M., Manners, J. M., Desmond, O. J., Ehlert, C., Maclean, D. J., Ebert, P. R., & Kazan, K. (2004). Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell, 16, 3460–3479.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Ansari, R. A., & Mahmood, I. (2017). Optimization of organic and bio-organic fertilizers on soil properties and growth of pigeon pea. Scientia Horticulturae, 226, 1–9.Google Scholar
  6. Apel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Atkinson, N. J., & Urwin, P. E. (2012). The interaction of plant biotic and abiotic stresses: From genes to the field. Journal of Experimental Botany, 63(10), 3523–3543.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Atkinson, N. J., Dew, T. P., Orfila, C., & Urwin, P. E. (2011). Influence of combined biotic and abiotic stress on nutritional quality parameters in tomato (Solanum lycopersicum). Journal of Agricultural and Food Chemistry, 59, 9673–9682.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Balmer, D., Flors, V., Glauser, G., & Mauch-Mani, B. (2013). Metabolomics of cereals under biotic stress: Current knowledge and techniques. Frontiers in Plant Science, 4(82), 1–12.Google Scholar
  10. Baranski, M., Srednicka-Tober, D., Volakakis, N., Seal, C., Sanderson, R., Stewart, G. B., Benbrook, C., Biavati, B., Markellou, E., Giotis, C., Gromadzka-Ostrowska, J., Rembialkowska, E., Skwarlo-Sonta, K., Tahvonen, R., Janovska, D., Niggli, U., Nicot, P., & Leifert, C. (2014). Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: A systematic literature review and meta-analyses. British Journal of Nutrition, 112, 794–811.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Barbieri, G., Pernice, R., Maggio, A., De Pascale, S., & Fogliano, V. (2008). Glucosinolates profile of Brassica rapa L: Subsp. Sylvestris L. Janch. var. esculenta. Food Chemistry, 107, 1687–1691.CrossRefGoogle Scholar
  12. Benbrook, C. (2009). The impacts of yield on nutritional quality: Lessons from organic farming. Hortscience, 44, 12–14.CrossRefGoogle Scholar
  13. Bostock, R. M. (2005). Signal crosstalk and induced resistance: Straddling the line between cost and benefit. Annual Review of Phytopathology, 43, 545–580.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Cheong, Y. H., Chang, H. S., Gupta, R., Wang, X., Zhu, T., & Luan, S. (2002). Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiology, 129, 661–677.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Colla, G., Fiorillo, A., Cardarelli, M., & Rouphael, Y. (2013). Grafting to improve abiotic stress tolerance of fruit vegetables. II International Symposium on Organic Greenhouse Horticulture, 1041, 119–125.Google Scholar
  16. Colla, G., Pérez-Alfocea, F., & Schwarz, D. (2017). Vegetable grafting: Principles and practices. Wallingford: CABI.CrossRefGoogle Scholar
  17. Del Amor, F. M. (2007). Yield and fruit quality response of sweet pepper to organic and mineral fertilization. Renewable Agriculture and Food Systems, 22, 233–238.CrossRefGoogle Scholar
  18. Deletre, E., Chandre, F., Barkman, B., Menut, C., & Martin, T. (2016). Naturally occurring bioactive compounds from four repellent essential oils against Bemisia tabaci whiteflies. Pest Management Science, 72, 179–189.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Devi, G., & Nath, D. (2017). Entomopathogenic nematodes: A tool in biocontrol of insect pests of vegetables-A review. Agricultural Reviews, 38(2), 137–144.CrossRefGoogle Scholar
  20. Dimlioğlu, G., Daş, Z. A., Bor, M., Özdemir, F., & Türkan, İ. (2015). The impact of GABA in harpin-elicited biotic stress responses in Nicotiana tabaccum. Journal of Plant Physiology, 188, 51–57.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Dita, M. A., Rispail, N., Prats, E., Rubiales, D., & Singh, K. B. (2006). Biotechnology approaches to overcome biotic and abiotic stress constraints in legumes. Euphytica, 147(1–2), 1–24.CrossRefGoogle Scholar
  22. Dombrowski, J. E., Hind, S. R., Martin, R. C., & Stratmann, J. W. (2011). Wounding systemically activates a mitogen-activated protein kinase in forage and turf grasses. Plant Science, 180, 686–693.PubMedCrossRefGoogle Scholar
  23. Dorais, M., Ehret, D. L., & Papadopoulos, A. P. (2008). Tomato (Solanum lycopersicum) health components: From the seed to the consumer. Phytochemistry Reviews, 7, 231–250.CrossRefGoogle Scholar
  24. Duc, G., Agrama, H., Bao, S., Berger, J., Bourion, V., De Ron, A. M., Gowda, C. L. L., Mikic, A., Millot, D., Singh, K. B., Tullu, A., Vandenberg, A., Vaz Patto, M. C., Warkentin, T. D., & Zong, X. (2015). Breeding annual grain legumes for sustainable agriculture: New methods to approach complex traits and target new cultivar ideotypes. Critical Reviews in Plant Sciences, 34(1–3), 381–411.CrossRefGoogle Scholar
  25. Dumas, Y., Dadomo, M., Di Lucca, G., & Grolier, P. (2003). Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. Journal of the Science of Food and Agriculture, 83, 369–382.CrossRefGoogle Scholar
  26. EnglishLoeb, G., Stout, M. J., & Duffey, S. S. (1997). Drought stress in tomatoes: Changes in plant chemistry and potential nonlinear consequences for insect herbivores. Oikos, 79, 456–468.CrossRefGoogle Scholar
  27. Farooq, M. A., & Dietz, K. J. (2015). Silicon as versatile player in plant and human biology: Overlooked and poorly understood. Frontiers in Plant Science, 6, 994.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Fujita, M., Fujita, Y., Noutoshi, Y., Takahashi, F., Narusaka, Y., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2006). Crosstalk between abiotic and biotic stress responses: A current view from the points of convergence in the stress signaling networks. Current Opinion in Plant Biology, 9(4), 436–442.PubMedCrossRefGoogle Scholar
  29. Fuller, V. L., Lilley, C. J., & Urwin, P. E. (2008). Nematode resistance. The New Phytologist, 180, 27–44.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Graziani, G., Ferracane, R., Sambo, P., Santagata, S., Nicoletto, C., & Fogliano, V. (2015). Profiling chicory sesquiterpene lactones by high resolution mass spectrometry. Food Research International, 67, 193–198.CrossRefGoogle Scholar
  31. Gupta, G., Parihar, S. S., Ahirwar, N. K., Snehi, S. K., & Singh, V. (2015). Plant growth promoting rhizobacteria (PGPR): Current and future prospects for development of sustainable agriculture. Journal of Microbial and Biochemical Technology, 7(2), 096–102.Google Scholar
  32. He, X., Zhu, L., Wassan, G. M., Wang, Y., Miao, Y., Shaban, M., Hu, H., Sun, H., & Zhang, X. (2017). GhJAZ2 attenuates cotton resistance to biotic stresses via inhibiting the transcriptional activity of GhbHLH171. Molecular Plant Pathology, 19, 896. Scholar
  33. Higley, L. G., Browde, J. A., & Higley, P. M. (1993). Moving towards new understandings of biotic stress and stress interactions. In D. R. Buxton, R. Shibles, R. A. Forsberg, B. L. Blad, K. H. Asay, G. M. Paulson, & R. F. Wilson (Eds.), International crop science I. Madison: Crop Science Society of America.Google Scholar
  34. Huang, L., Raats, D., Sela, H., Klymiuk, V., Lidzbarsky, G., Feng, L., Krugman, T., & Fahima, T. (2016). Evolution and adaptation of wild emmer wheat populations to biotic and abiotic stresses. Annual Review of Phytopathology, 54, 279–301.PubMedCrossRefGoogle Scholar
  35. Hussain, S. S., Ali, M., Ahmad, M., & Siddique, K. H. (2011). Polyamines: Natural and engineered abiotic and biotic stress tolerance in plants. Biotechnology Advances, 29, 300–311.PubMedCrossRefGoogle Scholar
  36. Kayum, M. A., Kim, H. T., Nath, U. K., Park, J. I., Kho, K. H., Cho, Y. G., & Nou, I. S. (2016). Research on biotic and abiotic stress related genes exploration and prediction in Brassica rapa and B. oleracea: A review. Plant Breeding and Biotechnology, 4(2), 135–144.CrossRefGoogle Scholar
  37. Keneni, G., & Ahmed, S. (2016). Genetic options for combating biotic stresses in cool-season food legumes. Indian Journal of Genetics and Plant Breeding, 76(4), 437–450.CrossRefGoogle Scholar
  38. Khoury, C. K., Castañeda-Alvarez, N. P., Achicanoy, H. A., Sosa, C. C., Bernau, V., Kassa, M. T., Norton, S. L., van der Maesen, L. J. G., Upadhyaya, H. D., Ramírez-Villegas, J., Jarvis, A., & Struik, P. C. (2015). Crop wild relatives of pigeonpea [Cajanus cajan (L.) Millsp.]: Distributions, ex situ conservation status, and potential genetic resources for abiotic stress tolerance. Biological Conservation, 184, 259–270.CrossRefGoogle Scholar
  39. Kissoudis, C., Chowdhury, R., van Heusden, S., van de Wiel, C., Finkers, R., Visser, R. G., Bai, Y., & van der Linden, G. (2015). Combined biotic and abiotic stress resistance in tomato. Euphytica, 202(2), 317–332.CrossRefGoogle Scholar
  40. Lattanzio, V. (2003). Bioactive polyphenols: Their role in quality and storability of fruit and vegetables. Journal of Applied Botany, 77(5/6), 128–146.Google Scholar
  41. Lee, J. H., Hong, J. P., Oh, S. K., Lee, S., Choi, D., & Kim, W. (2004). The ethylene-responsive factor like protein 1 (CaERFLP1) of hot pepper (Capsicum annuum L.) interacts in vitro with both GCC and DRE/CRT sequences with different binding affinities: Possible biological roles of CaERFLP1 in response to pathogen infection and high salinity conditions in transgenic tobacco plants. Plant Molecular Biology, 55(1), 61–81.PubMedCrossRefGoogle Scholar
  42. Li, J. B., Luan, Y. S., & Yin, Y. L. (2014). SpMYB overexpression in tobacco plants leads to altered abiotic and biotic stress responses. Gene, 547(1), 145–151.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Li, H., Rodda, M., Gnanasambandam, A., Aftab, M., Redden, R., Hobson, K., Rosewarne, G., Materne, M., Kaur, S., & Slater, A. T. (2015). Breeding for biotic stress resistance in chickpea: Progress and prospects. Euphytica, 204(2), 257–288.CrossRefGoogle Scholar
  44. Lorenzo, O., & Solano, R. (2005). Molecular players regulating the jasmonate signaling network. Current Opinion in Plant Biology, 8, 532–540.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Maes, K., & Debergh, P. C. (2003). Volatiles emitted from in vitro grown tomato shoots during abiotic and biotic stress. Plant Cell, Tissue and Organ Culture, 75(1), 73–78.CrossRefGoogle Scholar
  46. Majid, M. U., Awan, M. F., Fatima, K., Tahir, M. S., Ali, Q., Rashid, B., RaoIdrees, A. Q., Nasir, A., & Husnain, T. (2017). Genetic resources of chili pepper (Capsicum annuum L.) against Phytophthora capsici and their induction through various biotic and abiotic factors. Cytology and Genetics, 51(4), 296–304.CrossRefGoogle Scholar
  47. Makkouk, K. M., Kumari, S. G., van Leur, J. A., & Jones, R. A. (2014). Control of plant virus diseases in cool-season grain legume crops. Advances in Virus Research, 90, 207–254.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Malarz, J., Stojakowska, A., & Kisiel, W. (2007). Effect of methyl jasmonate and salicylic acid on sesquiterpene lactone accumulation in hairy roots of Cichorium intybus. Acta Physiologiae Plantarum, 29(2), 127–132.CrossRefGoogle Scholar
  49. Mansoor, S., Briddon, R. W., Zafar, Y., & Stanley, J. (2003). Geminivirus disease complexes: An emerging threat. Journal of Plant Sciences, 8, 128–134.Google Scholar
  50. Mauch-Mani, B., & Mauch, F. (2005). The role of abscisic acid in plant–pathogen interactions. Current Opinion in Plant Biology, 8, 409–414.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Miedaner, T. (2016). Breeding strategies for improving plant resistance to diseases. In Advances in plant breeding strategies: Agronomic, abiotic and biotic stress traits (pp. 561–599). Cham: Springer.CrossRefGoogle Scholar
  52. Mir, R. R., & Kulwal, P. L. (2014). Legume genetics and genomics: Recent advances. National Academy Science Letters, 37(1), 1–3.CrossRefGoogle Scholar
  53. Mittler, R., & Blumwald, E. (2010). Genetic engineering for modern agriculture: Challenges and perspectives. Annual Review of Plant Biology, 61, 443–462.PubMedCrossRefGoogle Scholar
  54. Montoya, J. M., & Raffaelli, D. (2010). Climate change, biotic interactions and ecosystem services. Philosophical Transactions of the Royal Society B, 365, 2013–2018.CrossRefGoogle Scholar
  55. Muehlbauer, F. J., & Kaiser, W. J. (1994). Using host plant resistance to manage biotic stresses in cool season food legumes. In Expanding the production and use of cool season food legumes (pp. 233–246). Dordrecht: Springer.CrossRefGoogle Scholar
  56. Muigai, S. G., Schuster, D. J., Snyder, J. C., Scott, J. W., Bassett, M. J., & McAuslane, H. J. (2002). Mechanism of resistance in Lycopersicon germoplasm to the whitefly Bemisia argentifolli. Phytoparasitica, 30, 347–360.CrossRefGoogle Scholar
  57. Mutisya, S., Saidi, M., Opiyo, A., Ngouajio, M., & Martin, T. (2016). Synergistic effects of agronet covers and companion cropping on reducing whitefly infestation and improving yield of open field-grown tomatoes. Agronomy, 6(3), 42.CrossRefGoogle Scholar
  58. Nguyen, D., Rieu, I., Mariani, C., & van Dam, N. M. (2016). How plants handle multiple stresses: Hormonal interactions underlying responses to abiotic stress and insect herbivory. Plant Molecular Biology, 91(6), 727–740.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Nicoletto, C., Santagata, S., Pino, S., & Sambo, P. (2016). Antioxidant characterization of different italian broccoli landraces. Horticultura Brasileira, 34(1), 74–79.CrossRefGoogle Scholar
  60. Oancea, A. O., Gaspar, A., Seciu, A. M., Ștefan, L., Crăciunescu, O., Georgescu, F., & Lctușu, R. (2015). Development of a new technology for protective biofortification with selenium of Brassica crops. AgroLife Scientific Journal, 4(2), 80–85.Google Scholar
  61. Obidiegwu, J. E., Bryan, G. J., Jones, H. G., & Prashar, A. (2015). Coping with drought: Stress and adaptive responses in potato and perspectives for improvement. Frontiers in Plant Science, 6, 542.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Orsini, F., Cascone, P., De Pascale, S., Barbieri, G., Corrado, G., Rao, R., & Maggio, A. (2010). Systemin-dependent salinity tolerance in tomato: Evidence of specific convergence of abiotic and biotic stress responses. Physiologia Plantarum, 138, 10–21.PubMedCrossRefGoogle Scholar
  63. Orsini, F., Maggio, A., Rouphael, Y., & De Pascale, S. (2016). “Physiological quality” of organically grown vegetables. Scientia Horticulturae, 208, 131–139.CrossRefGoogle Scholar
  64. Oumouloud, A., & Álvarez, J. M. (2016). Breeding and genetics of resistance to Fusarium wilt in melon. In Advances in plant breeding strategies: Agronomic, abiotic and biotic stress traits (pp. 601–626). Cham: Springer.CrossRefGoogle Scholar
  65. Pegard, A., Brizzard, G., Fazari, A., Soucaze, O., Abad, P., & Djian-Caporalino, C. (2005). Histological characterization of resistance to different root-knot nematode species related to phenolics accumulation in Capsicum annuum. Phytopathology, 95, 158–165.PubMedCrossRefGoogle Scholar
  66. Peterson, R. K., & Higley, L. G. (2001). Illuminating the black box: The relationship between injury and yield. In R. K. D. Peterson & L. G. Higley (Eds.), Biotic stress and yield loss (pp. 1–14). Boca Raton: CRC Press.Google Scholar
  67. Poschenrieder, C., Tolrà, R., & Barceló, J. (2006). Can metals defend plants against biotic stress? Trends in Plant Science, 11(6), 288–295.PubMedCrossRefGoogle Scholar
  68. Prasch, C. M., & Sonnewald, U. (2013). Simultaneous application of heat, drought, and virus to Arabidopsis plants reveals significant shifts in signaling networks. Plant Physiology, 162, 1849–1866.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Quirós, R., Villalba, G., Munoz, P., Font, X., & Gabarrell, X. (2014). Environmental and agronomical assessment of three fertilization treatments applied in horticultural open field crops. Journal of Cleaner Production, 67, 147–158.CrossRefGoogle Scholar
  70. Radwan, M. A., Farrag, S. A. A., Abu-Elamayem, M. M., & Ahmed, N. S. (2012). Biological control of the root-knot nematode, Meloidogyne incognita on tomato using bioproducts of microbial origin. Applied Soil Ecology, 56, 58–62.CrossRefGoogle Scholar
  71. Rodda, M. S., Davidson, J., Javid, M., Sudheesh, S., Blake, S., Forster, J. W., & Kaur, S. (2017). Molecular breeding for Ascochyta blight resistance in lentil: Current Progress and future directions. Frontiers in Plant Science, 8, 1136.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Roxas, A. C. (2009). Repellency of different plants against flea beetle Phyllotreta striolata (Chrysomelidae, Coleoptera) on Brassica pekinensis. Journal of Entomology, 23, 185–195.Google Scholar
  73. Sato, Y., Itagaki, S., Kurokawa, T., Ogura, J., Kobayashi, M., Hirano, T., Sugawara, M., & Iseki, K. (2011). In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. International Journal of Pharmaceutics, 403(1), 136–138.PubMedCrossRefGoogle Scholar
  74. Schader, C., Zaller, J. G., & Köpke, U. (2005). Cotton-basil intercropping: Effects on pests, yields and economical parameters in an organic field in Fayoum. Egypt Biological Agriculture and Horticulture, 23, 59–72.CrossRefGoogle Scholar
  75. Schenk, P. M., Kazan, K., Wilson, I., Anderson, J. P., Richmond, T., Somerville, S. C., & Manners, J. M. (2000). Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proceedings of the National Academy of Sciences of the United States of America, 97, 11655–11660.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012, 1. Scholar
  77. Sharma, H. S., Fleming, C., Selby, C., Rao, J. R., & Martin, T. (2014). Plant biostimulants: A review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. Journal of Applied Phycology, 26(1), 465–490.CrossRefGoogle Scholar
  78. Singh, B., Sanwal, S. K., Rai, M., & Rai, A. B. (2009). Sources of biotic stress resistance in vegetable crops: A review. Vegetable Science, 36(2), 133–146.Google Scholar
  79. Song, B. Z., Wu, H. Y., Kong, Y., Zhang, J., Du, Y. L. J., Hu, H., & Yao, Y. C. (2010). Effects of intercropping with aromatic plants on diversity and structure of an arthropod community in a pear orchard. BioControl, 55, 741–751.CrossRefGoogle Scholar
  80. Sperdouli, I., & Moustakas, M. (2012). Interaction of proline, sugars, and anthocyanins during photosynthetic acclimation of Arabidopsis thaliana to drought stress. Journal of Plant Physiology, 169, 577–585.PubMedCrossRefGoogle Scholar
  81. Suzuki, N., Miller, G., Sejima, H., Harper, J., & Mittler, R. (2013). Enhanced seed production under prolonged heat stress conditions in Arabidopsis thaliana plants deficient in cytosolic ascorbate peroxidase 2. Journal of Experimental Botany, 64, 253–263.PubMedCrossRefGoogle Scholar
  82. Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E., & Mittler, R. (2014). Abiotic and biotic stress combinations. New Phytologist, 203(1), 32–43.PubMedCrossRefPubMedCentralGoogle Scholar
  83. Talcott, S. T., & Howard, L. R. (1999). Chemical and sensory quality of processed carrot puree as influenced by stress-induced phenolic compounds. Journal of Agricultural and Food Chemistry, 47(4), 1362–1366.PubMedCrossRefPubMedCentralGoogle Scholar
  84. Ton, J., van der Ent, S., van Hulten, M., Pozo, M., van Oosten, V., & van Loon, L. C. (2009). Priming as a mechanism behind induced resistance against pathogens; insects and abiotic stress. IOBC/wprs Bulletin, 44, 3–13.Google Scholar
  85. Torres, M. A., & Dangl, J. L. (2005). Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Current Opinion in Plant Biology, 8, 397–403.PubMedCrossRefPubMedCentralGoogle Scholar
  86. Treutter, D. (2006). Significance of flavonoids in plant resistance: A review. Environmental Chemistry Letters, 4, 147–157.CrossRefGoogle Scholar
  87. Turan, M., Ekinci, M., Yildirim, E., Güneş, A., Karagöz, K., Kotan, R., & Dursun, A. (2014). Plant growth-promoting rhizobacteria improved growth, nutrient, and hormone content of cabbage (Brassica oleracea) seedlings. Turkish Journal of Agriculture and Forestry, 38(3), 327–333.CrossRefGoogle Scholar
  88. Van den Ende, W., & El-Esawe, S. K. (2014). Sucrose signaling pathways leading to fructan and anthocyanin accumulation: A dual function in abiotic and biotic stress responses? Environmental and Experimental Botany, 108, 4–13.CrossRefGoogle Scholar
  89. Van Lenteren, J. C., Bolckmans, K., Köhl, J., Ravensberg, W. J., & Urbaneja, A. (2017). Biological control using invertebrates and microorganisms: Plenty of new opportunities. BioControl, 63, 1–21.Google Scholar
  90. Wu, Z., Yin, X., Bañuelos, G. S., Lin, Z. Q., Zhu, Z., Liu, Y., Yuan, L., & Li, M. (2015). Effect of selenium on control of postharvest gray mold of tomato fruit and the possible mechanisms involved. Frontiers in Microbiology, 6, 1441.PubMedPubMedCentralGoogle Scholar
  91. Xiong, L., & Yang, Y. (2003). Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell, 15, 745–759.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Yang, N. W., Zang, L. S., Wang, S., Guo, J. Y., Xu, H. X., Zhang, F., & Wan, F. H. (2014). Biological pest management by predators and parasitoids in the greenhouse vegetables in China. Biological Control, 68, 92–102.CrossRefGoogle Scholar
  93. Yasuda, M., Ishikawa, A., Jikumaru, Y., Seki, M., Umezawa, T., & Asami, T. (2008). Antagonistic interaction between systemic acquired resistance and the abscisic acid mediated abiotic stress response in Arabidopsis. Plant Cell, 20, 1678–1692.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Zaidi, A., Ahmad, E., Khan, M. S., Saif, S., & Rizvi, A. (2015). Role of plant growth promoting rhizobacteria in sustainable production of vegetables: Current perspective. Scientia Horticulturae, 193, 231–239.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Carlo Nicoletto
    • 1
    Email author
  • Carmelo Maucieri
    • 1
  • Giampaolo Zanin
    • 1
  • Fabio Vianello
    • 2
  • Paolo Sambo
    • 1
  1. 1.Department of Agronomy, Food, Natural resources, Animals and EnvironmentAgripolis – University of PadovaLegnaroItaly
  2. 2.Department of Comparative Biomedicine and Food ScienceUniversity of PadovaPadovaItaly

Personalised recommendations