Advertisement

Phytosanitation: A Novel Approach Toward Disease Management

  • Regiane Cristina Oliveira de Freitas BuenoEmail author
  • Rizwan Ali Ansari
  • Giuseppina Pace Pereira Lima
  • Renate Krause Sakate
Chapter

Abstract

For millennia, man has been producing food, using agriculture, but with increasing cultivated areas, due to the increasing need for food, problems related to production, especially the increase of insect pests, diseases of plants and interferences with weed plants also multiplied. The evolution of plants, through a better genetic approach, transformed the terrestrial environment, making them a very valuable resource for the herbivore community. In ecosystems, plants and insects are just some of the living organisms that continually interact in complex ways and may be the most complex relationships observed in nature. The generated effects of this interaction may be beneficial or harmful to both. To avoid insect attack, plants have developed different mechanisms, such as physical and chemical barriers, defense proteins, volatile substances, secondary metabolism, and trichomes. On the other hand, the insects developed different patterns of associations with host plants, together with different feeding strategies necessary for the exploration of the hosts. Herbivorous insects present complementary adaptations as a response to each defense adaptation in host plants. It is clear that insects are successful in terms of number of species and size of population and as the chemical composition of plants is variable, this represents a challenge for insect feeding. However, insects possess a powerful set of enzymes that constitute the defense against toxic chemicals produced by plants.

Keywords

Insect plant interaction Plant physiological stress Integrated pest management Crop protection Entomology 

References

  1. Alistarå, O., & Midtgaard, F. (1987). A preliminary experiment on the fecundity of Neodiprion sertifer reared on Pinus sylvestris grown in forest soil of various acidity. Scandinavian Journal of Forest Research, 2, 365–367.CrossRefGoogle Scholar
  2. Angelo, A. C., & Dalmolin, A. (2007). Interações Herbívoro-Planta e suas Implicações para o Controle Biológico: Que tipos de inimigos naturais procurar? In J. H. Pedrosa-Macedo, A. Dal Molin, & C. W. Smith (Eds.) O Araçazeiro: Ecologia e Controle Biológico (pp 71–91). FUPEF.Google Scholar
  3. Apel, K., & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399.CrossRefGoogle Scholar
  4. Argenta, G., Silva, P. R. F., Bortolini, C. G., Forsthofer, E. L., Manjabosco, E. A., & Beheregaray Neto, V. (2001). Resposta de híbridos simples à redução do espaçamento entre linhas. Pesq Agropec Bras, 36, 71–78.CrossRefGoogle Scholar
  5. Awmack, C. S., & Leather, S. R. (2002). Host plant quality and fecundity in herbivorous insects. Annual Review of Entomology, 47, 817–884.CrossRefGoogle Scholar
  6. Bergonci, J. I., & Pereira, P. G. (2002). Comportamento do potencial da água na folha e da condutância estomática do milho em função da fração de água disponível no solo. RB Agro, 10, 229–235.Google Scholar
  7. Bilgin, D. D., Zavala, J. A., Zhu, J. I. N., Clough, S. J., Ort, D. R., & Anddelucia, E. H. (2010). Biotic stress globally downregulates photosynthesis genes. Plant, Cell & Environment, 33, 1597–1613.CrossRefGoogle Scholar
  8. Blokhina, O., Virolainen, E., & Fagerstedt, K. V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress a review. Annals of Botany, 91, 179–194.CrossRefGoogle Scholar
  9. Braccini, A. L., Reis, M. S., Sediyama, C. S., Scapim, C. A., & MCL, B. (2008). Produtividade de grãos e qualidade de sementes de café em resposta à densidade populacional. Revista Ceres, 6, 489–496.Google Scholar
  10. Brandão Filho, J. U. T., Goto, R., Guimarães, V. F., Habermann, G., Rodrigues, J. D., & Callegari, O. (2003). Influência da enxertia nas trocas gasosas de dois híbridos de berinjela cultivados em ambiente protegido. Horticultura Brasileira, 21, 474–477.CrossRefGoogle Scholar
  11. Breusegem, F. V., Vranová, E., Dat, J. F., & Inzé, D. (2001). The role of active oxygen species in plant signal transduction. Plant Science, 161, 405–414.CrossRefGoogle Scholar
  12. Campos, M. F., Ono, E. O., Boaro, C. S. F., & Rodrigues, J. D. (2008). Análise de crescimento em plantas de soja tratadas com substâncias reguladoras. Biotemas, 21, 53–63.CrossRefGoogle Scholar
  13. Carneiro, E., Cuzzi, C., Link, S., Vilani, A., Sartori, C., & Onofre, S. B. (2010). Entomofauna associada à cultura da soja (Glycinemax (L) Merril) (Fabaceae) conduzida em sistema orgânico. RAMA, 3, 271–289.Google Scholar
  14. Carvalho, M. M. (2014). Influência de sistemas de semeadura na população de pragas e nas características morfofisiológicas em cultivares de soja 66 f. Dissertação (Mestrado em Agronomia-Proteção de plantas) Universidade Estadual Paulista “Júlio de Mesquita Filho”.Google Scholar
  15. Cates, R. G., Redak, R. A., & Henderson, C. B. (1983). Natural product defensive chemistry of Douglas-fir, western spruce budworm success, and forest management practices. Zietang Entomology, 96, 173–182.Google Scholar
  16. Cavalcante, A. P. R., Jacinto, T., & Machado, O. (1999). Methyl jasmonate changes the levels of rubisco and other leaf proteins in Ricinus communis. Acta Physiologiae Plantarum, 21, 161–166.  https://doi.org/10.1007/s11738-999-0071-3.CrossRefGoogle Scholar
  17. Chaboussou, F. (1999). Plantas doentes pelo uso de agrotóxicos: a teoria da trofobiose 2 ed L & PM.Google Scholar
  18. Chiavegato, E. J., Silva, A. A., & Gottardo, L. C. B. (2010). Densidade e arranjo de plantas em sistema adensado In J. L. Belot & P. A. Vilela (Eds.). O sistema de cultivo do algodoeiro adensado em Mato Grosso: Embasamento e Primeiros Resultados 1 Defanti, Cuiabá, pp 121–134.Google Scholar
  19. Coleman, J. S., & Jones, C. G. (1988). Acute ozone stress on eastern cottonwood (Populus deltoids Bartr) and the pest potential of the aphid, Chaitophorous populicola Thomas (Homoptera: Aphididae). Environmental Entomology, 17, 207–212.CrossRefGoogle Scholar
  20. Costa, G. F., & Marenco, R. A. (2007). Fotossíntese, condutância estomática e potencial hídrico foliar em árvores jovens de andiroba (Carapaguianensis). Acta Amazonica, 37, 229–234.CrossRefGoogle Scholar
  21. Cruz, P. L., Baldin, E. L. L., Guimarães, L. R. P., Pannuti, L. E. R., Lima, G. P. P., Heng-Moss, T. M., & Hunt, E. T. E. (2016). Tolerance of KS-4202 soybean to the attack of Bemisiatabaci Biotype B (Hemiptera: Aleyrodidae). Florida Entomologist, 99, 600–607.CrossRefGoogle Scholar
  22. De Moraes, C. M., Mescher, M. C., & Tumlinson, J. H. (2001). Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature, 410, 577–580.CrossRefGoogle Scholar
  23. Dong, H. Z., & Li, W. J. (2007). Variability of endotoxin expression in Bt transgenic cotton. Journal of Agronomy and Crop Science, 193, 21–29.CrossRefGoogle Scholar
  24. Farias, J. P. B., Nepomuceno, A. L., & Neumaier, N. (2007). Ecofisiologia da soja Londrina: Embrapa Soja, 9 p (Embrapa Soja Circular Técnica 48).Google Scholar
  25. Farias, J. R., Andow, D. A., Horikoshi, R. J., Sorgatto, R. J., Fresia, P., Santos, A. C., & Omoto, C. (2014). Field-evolved resistance to Cry1F maize by Spodoptera frugiperda (Lepiodptera: Noctuidae) in Brazil. Crop Protection, 64, 150–158.CrossRefGoogle Scholar
  26. Farooq, M., Wahid, A., Ito, O., Lee, D. J., & Siddique, K. H. M. (2009). Advances in drought resistance of rice. Critical Reviews in Plant Sciences, 28, 199–217.CrossRefGoogle Scholar
  27. Foyer, C. H., & Noctor, G. (2005). Oxidant and antioxidant signalling in plants: A reevaluation of the concept of oxidative stress in a physiological context. Plant, Cell & Environment, 28, 1056–1071.CrossRefGoogle Scholar
  28. Foyer, C. H., & Noctor, G. (2009). Redox regulation in photosynthetic organisms: Signaling, acclimation and practical implications. Antioxidants & Redox Signaling, 11, 862–905.CrossRefGoogle Scholar
  29. Franze, D., Gutsche, R., Heng-Moss, T. M., Higley, L. G., Sarath, G., & EJD, B. (2007). Physiological and biochemical responses of resistant and susceptible wheat to injury by Russian wheat aphid. Journal of Economic Entomology, 100, 1692–1703.CrossRefGoogle Scholar
  30. Gazzoni, D. L., & Moscardi, F. (1998). Effect of defoliation levels on recovery of leaf area, on yield and agronomic traits of soybeans. Pesquisa Agropecuária Brasileira, 33, 411–424.Google Scholar
  31. Ge, T., Sui, F., Bai, L., Tong, C., & Sun, N. (2012). Effects of water stress on growth, biomass partitioning, and water-use efficiency in summer maize (Zea mays L) throughout the growth cycle. Acta Physiologiae Plantarum, 34, 1043–1053.CrossRefGoogle Scholar
  32. Ghosh, S., Mahoney, S. R., Penterman, J. N., Peirson, D., & Dumbroff, E. B. (2001). Ultrastructural and biochemical changes in chloroplasts during Brassica napus senescence. Plant Physiology and Biochemistry, 39, 777–784.  https://doi.org/10.1016/S0981-9428(01)01296-7.CrossRefGoogle Scholar
  33. Green, T. R., & Ryan, C. A. (1972). Wound-induced proteinase inhibitors in plant leaves: A possible defense mechanism against insects. Science, 175, 776–777.CrossRefGoogle Scholar
  34. Gutsche, A., Heng-Moss, T., Sarath, G., Twigg, P., Xia, Y., Lu, G., & Mornhinweg, D. (2009). Gene expression profiling of tolerant barley in response to Diuraphis noxia (Hemiptera: Aphididae) feeding. Bulletin of Entomological Research, 99, 163–173.CrossRefGoogle Scholar
  35. Haile, F. J., Higley, L. G., & Specht, J. E. (1998). Soybean cultivars and insect defoliation: Yield loss and economic injury levels. Agronomy, J9, 344–352.CrossRefGoogle Scholar
  36. Hartman, G. L., Wang, T. C., & Tschanz, A. T. (1991). Soybean rust development and the quantitative relationchips between rust severity and soybean yield. Plant Disease, 75, 596–600.CrossRefGoogle Scholar
  37. Hernandez, J. A., Ferrer, M. A., Jimenez, A., Barcelo, A. R., & Sevilla, F. (2001). Antioxidant systems and O2/ H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiology, 127, 827–831.CrossRefGoogle Scholar
  38. Herms, D. A., & Mattson, W. J. (1992). The dilemma of plants: To grow or defend. Quarterly Review of Biology, 283–335.Google Scholar
  39. Higley, L. G., & Peterson, R. K. D. (1996). The biological basis of the EIL. In L. G. Higley & L. P. Pedigo (Eds.), Economic thresholds for integrated pest management (pp. 22–40). Nebraska: University of Nebraska Press.Google Scholar
  40. Hoffmann-Campo, C. B., Correa-Ferreira, B. S., & Soja, M. F. (2012). Manejo Integrado de Insetos e Outros Artrópodes-Praga. Londrina: Embrapa Soja, 859 p.Google Scholar
  41. Isaaa. (2016). The international service for the acquisition of agri-biotech applications. Available in http://wwwisaaaorgGoogle Scholar
  42. Kacperska, A. (2004). Sensor types in signal transduction pathways in plant cells responding to abiotic stressors: Do they depend on stress intensity? Physiologia Plantarum, 122, 159–168.CrossRefGoogle Scholar
  43. Kehr, J. (2006). Phloem sap proteins: their identities and potential roles in the interaction between plants and phloem-feeding insects. Journal of Experimental Botany, 57, 767–774.CrossRefGoogle Scholar
  44. Kerbauy, G. B. (2004). Fisiologia Vegetal 1 ed Guanabara Koogan, Rio de Janeiro 452 pp.Google Scholar
  45. Larcher, W. (2000). Ecofisiologia vegetal. São Carlos: Rima Artes e Textos, 531 p.Google Scholar
  46. Larcher, W. (2006). Ecofisiologia vegetal Rima, São Carlos 550 pp.Google Scholar
  47. Lattanzio, V., Lattanzio, V. M. T., & Cardinali, A. (2006). Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochemistry Advance Research, 661, 23–67.Google Scholar
  48. Lichtenthaler, H. K., Lang, M., Sowinska, M., Heisel, F., & Miehe, J. A. (1996). Detection of vegetation stress via a new high resolution fluorescence imaging system. Journal of Plant Physiology, 106, 1127–1133.Google Scholar
  49. Lima, S. F., Alvarez, R. C. F., Theodoro, G. F., Bavaresco, M., & Silva, K. S. (2012). Efeito da semeadura em linhas cruzadas sobre a produtividade de grãos e a severidade da ferrugem asiática da soja. Bioscience Journal, 28, 954–962.Google Scholar
  50. Liu, C. C., Liu, Y. G., Guo, K., Zheng, Y. R., Li, G. Q., Yu, L. F., & Yang, R. (2010). Influence of drought intensity on the response of six woody karst species subjected to successive cycles of drought and rewatering. Physiologia Plantarum, 139, 39–54.  https://doi.org/10.1111/j.1399-3054.2009.01341.x.CrossRefPubMedGoogle Scholar
  51. Lopes, J. L. W., Guerrini, I. A., Silva, M. R., Saad, J. C. C., & Lopes, C. F. (2011). Estresse hídrico em plantio de Eucalyptusgrandisvs Eucalyptusurophylla, em função do solo, substrato e manejo hídrico de viveiro. Revista Árvore, 35, 31–39.CrossRefGoogle Scholar
  52. Marchi-Werle, L., Heng-Moss, T. M., Hunt, T. E., Baldin, E. L. L., & Baird, E. L. M. (2014). Characterization of peroxidase changes in tolerant and susceptible soybeans challenged by soybean Aphid (Hemiptera: Aphididae). Journal of Economic Entomology, 107, 1985–1991.CrossRefGoogle Scholar
  53. Mattson, W. J., & Haack, R. A. (1987). The role of drought stress in provoking outbreaks of phytophagous insects. In P. Barbosa & J. Schultz (Eds.), Insect outbreaks (pp. 365–407). San Diego: Academic Press.CrossRefGoogle Scholar
  54. Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7, 405–410.CrossRefGoogle Scholar
  55. Morais, L. A. S. (2009). Influência dos fatores abióticos na composição química dos óleos essenciais. Horticultura Brasileira, 27, 4050–4063.Google Scholar
  56. Munné-Bosch, S., Queval, G., & Foyer, C. H. (2013). The impact of global change factors on redox signaling underpinning stress tolerance. Plant Physiology, 161, 5–19.CrossRefGoogle Scholar
  57. Navarro, H. M., Jr., & Costa, J. A. (2002). Contribuição relativa doa componentes do rendimento para produção de grãos em soja. Pesquisa Agropecuária Brasileira, 37, 269–274.CrossRefGoogle Scholar
  58. Ortolani, A. A., Camargo, M. B. P. (1987). Influência dos fatores climáticos na produção In: Castro RC (eds.), Ecofisiologia da produção agrícola Associação Brasileira para Pesquisa da Potassa e do Fosfato (pp 71–81). Piracicaba.Google Scholar
  59. Panizzi, A. R., Parra, J. R. P. (2009). Bioecologia e nutrição de insetos – base para o manejo integrado de pragas Embrapa, Brasília 1169 p.Google Scholar
  60. Pengelly, B. C., Blamey, F. P. C., & Muchow, R. C. (1999). Radiation interception and the accumulation of biomass and nitrogen by soybean and three tropical annual forage legumes. Field Crops Research, 63, 99–112.CrossRefGoogle Scholar
  61. Pereira, C. R. (2002). Análise do crescimento e desenvolvimento da cultura de soja sob diferentes condições ambientais 282 p Tese (Doutorado em Engenharia Agrícola), Universidade Federal de Viçosa, Viçosa.Google Scholar
  62. Peterson, R. K. D., & Higley, L. G. (1993). Arthropod injury and plant gas exchange: Current understanding and approaches for synthesis. Entomology Journal of Agriculture Science, 1, 93–100.Google Scholar
  63. Pierson, L. M. T., Heng-Moss, M., Hunt, T. E., & Reese, J. (2011). Physiological responses of resistant and susceptible reproductive stage soybean-to-soybean aphid (Aphis glycines Matsumura) feeding. Arthropod-Plant Interactions, 5, 49–58.CrossRefGoogle Scholar
  64. Pires, J. L. F., Costa, J. A., & Thomas, A. L. (1998). Rendimento de grãos de soja influenciado pelo arranjo de plantas e níveis de adubação. Pesqagropec Gau, 4, 183–188.Google Scholar
  65. Porras, C. A., Cayón, D. G., & Delgado, O. A. (1997). Comportamento fisiológico de genótipos de soya em diferentes arreglos de siembra. Acta Agronomica, 47, 9–15.Google Scholar
  66. Procópio, S. O., Balbinot Junior, A. A., Debiasi, H., Franchini, J. C., & Panison, F. (2013). Plantio cruzado na cultura da soja utilizando uma cultivar de hábito de crescimento indeterminado. Revista Ciência Agrarias, 56, 319–325.  https://doi.org/10.4322/rca.2013.048.CrossRefGoogle Scholar
  67. Rambo, L., Costa, J. A., Pires, J. L. F., Parcianello, G., & Ferreira, F. G. (2003). Rendimento de grãos da soja em função do arranjo de plantas. Ciencia Rural, 33, 405–411.CrossRefGoogle Scholar
  68. Rao, CK (2005) Transgenic Bt Technology: 3. Expression of transgenes. http://www.monsanto.co.uk/news/ukshowlib.phtml?uid¼9304 Google Scholar
  69. Raventós, J., & Silva, J. F. (1995). Competition effects and responses to variable t numbers of neighbours en two tropical savanna grasses in Venezuela. Journal of Tropical Ecology, 11, 39–52.CrossRefGoogle Scholar
  70. Reichert, J. L., & Costa, E. C. (2003). Desfolhamentos contínuos e sequenciais simulando danos de pragas sobre a cultivar de soja BRS 137 Cienc Rural 33: 1–6.Google Scholar
  71. Rhoades, D. F. (1979). Evolution of plant chemical defense against herbivores. In G. A. Rosenthal & D. H. Janzen (Eds.), Herbivores: Their interactions with secondary plant metabolites (pp. 3–54). New York: Academic.Google Scholar
  72. Rodrigues, S. M., Silvie, P., & Degrande, P. E. (2010). O sistema de cultivo adensado do algodoeiro e os artrópodes-pragas In: Belot JL, Vilela PAO sistema de cultivo do algodoeiro adensado em Mato Grosso: Embasamento e Primeiros Resultados Defanti Editora, Cuiabá (pp 239–249).Google Scholar
  73. Rosa, S. R. A., Castro, T. A. P., & Oliveira, I. P. (2007). Análise de crescimento em Capim-Tanzânia nos sistemas de plantio solteiro e consórcio com leguminosas. Ciência Animal Brasileira, 8, 251–260.Google Scholar
  74. Ryan, C. A. (1990). Genes for improving defences against insects and pathogens. Annual Review of Phytopathology, 28, 425–449.CrossRefGoogle Scholar
  75. Scandalios, J. G. (1997). Molecular genetics of superoxide dismutases. In J. G. Scandalios (Ed.), Oxidative stress and the molecular biology of antioxidant defenses (pp. 527–568). Plainview: Cold Spring Harbor Laboratory Press.Google Scholar
  76. Scandalios, J. G. (2005). Oxidative stress: Molecular perception and transduction of signals triggering antioxidant gene defenses. Brazilian Journal of Medical and Biological Research, 38, 995–1014.CrossRefGoogle Scholar
  77. Scott, W. O., & Aldrich, S. R. (1975). Producción moderna de la soja (p. 192). Buenos Aires: Hemisferio Sul.Google Scholar
  78. Shaw, R. H., & Weber, C. R. (1967). Effects of canopy arrangements on light interception and yield of soybeans. Agronomy Journal, 59, 155–159.CrossRefGoogle Scholar
  79. Siedow, J. N. (1995). Public affairs. ASPP Newsletter, 22, 6–9.Google Scholar
  80. Sorg, O. (2004). Oxidative stress: A theoretical model or a biological reality? Comptes Rendus Biologies, 327, 649–662.CrossRefGoogle Scholar
  81. Souza, T. C., Magalhães, P. C., Castro, E. M., Duarte, V. P., & Lavinsky, A. O. (2016). Corn root morphoanatomy at different development stages and yield under water stress. Pesquisa Agropecuária Brasileira, 51, 330–339.CrossRefGoogle Scholar
  82. Świątek, K., Lewandowska, M., Świątek, M., Bednarski, W., & Brzozowski, B. (2014). The improvement of enzymatic hydrolysis efficiency of rape straw and Miscanthus giganteus polysaccharides. Bioresource Technology, 151, 323–331.CrossRefGoogle Scholar
  83. Stamp, N. (2003). Theory of plant defensive level: Example of process and pitfalls in development of ecological theory. Oikos, 102, 672–678.  https://doi.org/10.1034/j.1600-0706.2003.11943.x.CrossRefGoogle Scholar
  84. Taiz, L., & Zeiger, E. (2004). Fisiologia vegetal (pp. 449–484). Porto Alegre: Artmed.Google Scholar
  85. Terzi, R., Saglam, A., Kutlu, N., Nar, H., & Kadioglu, A. (2010). Impact of soil drought stress on photochemical efficiency of photo- system II and antioxidant enzyme activities of Phaseolus vulgaris cultivars. Turkish Journal of Botany, 34, 1–10.Google Scholar
  86. Timbó, R. V., Hermes-Lima, M., Silva, L. P., Mehta, A., & Moraes, E. M. C. B. (2014). Biochemical aspects of the soybean response to herbivory injury by the brown stink bug Euschistus heros (Hemiptera: Pentatomidae). PLoS One, 9, e109735.CrossRefGoogle Scholar
  87. Tourino, M. C. C., Rezende, P. M., & Salvador, N. (2002). Espaçamento, densidade e uniformidade de semeadura na produtividade e características agronômicas da soja. Pesqagropbras, 37, 1071–1077.Google Scholar
  88. Trumble, J. T., Kolodny-Hirsch, D. M., & Ting, I. P. (1993). Plant compensations for arthropod herbivory. Annual Review of Physiology, 38, 93–119.Google Scholar
  89. Van Breusegem, F., Vranová, E., Dat, J. F., & Inzé, E. D. (2001). The role of active oxygen species in plant signal transduction. Plant Science, 161, 05–14.Google Scholar
  90. Van Loon, L. C., Rep, M., & CMJ, P. (2006). Significance of inducible defense-related proteins in infected plants. Annual Review of Physiology, 44, 135–162.Google Scholar
  91. Vavasseur, A., & Raghavendra, A. S. (2005). Guard cell metabolism and CO2 sensing. New Phytologist, 165, 665–682.CrossRefGoogle Scholar
  92. Vendramim, J. D., & Guzzo, E. C. (2009). Resistência de plantas e a bioecologia e nutrição dos insetos. In A. R. Panizzi & J. R. P. Parra (Eds.), Bioecologia e nutrição dos insetos: base para o manejo integrado de pragas (pp. 1055–1105). Brasília/ Londrina: Embrapa Informação Tecnológica/Embrapa Soja.Google Scholar
  93. Wells, R. (1991). Soybean growth response to plant density: Relationships among canopy photosynthesis, leaf area, and light interception. Crop Science, 31, 755–761.CrossRefGoogle Scholar
  94. White, T. C. R. (1970). Some aspects of the life history, host selection, dispersal, and oviposition of adult Cardiaspina densitexta (Homoptera: Psyllidae). Australian Journal of Zoology, 18, 105–117.  https://doi.org/10.1071/ZO9700105.CrossRefGoogle Scholar
  95. White, J. R. (1984). Origins and measurements of internal stress in plastics. Polymer Testing, 4, 165–191.CrossRefGoogle Scholar
  96. Zhao, F., Zhang, D., Zhao, Y., Wang, W., Yang, H., Tai, F., Li, C., & Hu, X. (2016). The difference of physiological and proteomic changes in Maize leaves adaptation to drought. Heat, and Combined Both Stresses Front Plant Science, 7, 1471.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Regiane Cristina Oliveira de Freitas Bueno
    • 1
    Email author
  • Rizwan Ali Ansari
    • 2
  • Giuseppina Pace Pereira Lima
    • 3
  • Renate Krause Sakate
    • 1
  1. 1.School of Agriculture, Department of Crop ProtectionSão Paulo State University (UNESP)BotucatuBrazil
  2. 2.Section of Plant Pathology and Nematology, Department of BotanyAligarh Muslim UniversityAligarhIndia
  3. 3.Department of Chemistry and Biochemistry, Institute of BiosciencesSão Paulo State University (UNESP)BotucatuBrazil

Personalised recommendations