Potential Role of Plant Growth Promoting Rhizobacteria in Alleviation of Biotic Stress

  • Irshad Mahmood
  • Rose Rizvi
  • Aisha Sumbul
  • Rizwan Ali Ansari


Plant growth promoting rhizobacteria (PGPR) are well known to ameliorate the plant health. A large number of rhizobacteria possess the growth promoting activities. Some of them are very common and has been also commercialised to large/industrial scale. Plant growth regulators have been found to induce the growth and development of various crop plants. Some hormones like auxin, cytokinin, IAA, etc. are the key hormones in the plant growth promotion. However, their ratio of auxin to cytokinin may be determinant in the lateral root or root hair formation. The root surface area and root lengths are also conceived to play very important role in the accumulation of nutrient and are significantly influenced by the application of PGPR. Moreover, PGPR also have the biocontrol activities against a wide range of soil-borne plant pathogens. Some organic molecules such as siderophores, antibiotics, and bacteriocins producing PGPR arrest the pathogen populations and improve the plant health indirectly. Presence of more PGPR in rhizosphere exhibits more vigour plant health. Therefore, PGPR is considered as an alternative and effective way in the management of plant pathogens and plant growth promotion.


PGPR Biotic stress Plant growth Rhizobium Siderophore 


  1. Ahemad, M., & Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University – Science, 26(1), 1–20.CrossRefGoogle Scholar
  2. Aloni, R., Aloni, E., Langhans, M., & Ullrich, C. I. (2006). Role of cytokinin and auxin in shaping root architecture: Regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Annals of Botany, 97, 883–893.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alonso, J. M., Stepanova, A. N., Leisse, T. J., Kim, C. J., Chen, H., Shinn, P., … Gadrinab, C. (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science, 301(5633), 653–657.PubMedCrossRefGoogle Scholar
  4. Ansari, R. A., Rizvi, R., Sumbul, A., & Mahmood, I. (2017). PGPR: Current vogue in sustainable crop production. In Probiotics and plant health (pp. 455–472). Singapore: Springer.CrossRefGoogle Scholar
  5. Antoun, H., Beauchamp, C. J., Goussard, N., Chabot, R., & Lalande, R. (1998). Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: Effect on radishes (Raphanus sativus L.). in molecular microbial ecology of the soil (pp. 57–67). Dordrecht: Springer.Google Scholar
  6. Arkhipova, T. N., Prinsen, E., Veselov, S. U., Martinenko, E. V., Melentiev, A. I., & Kudoyarova, G. R. (2007). Cytokinin producing bacteria enhance plant growth in drying soil. Plant and Soil, 292(1–2), 305–315.CrossRefGoogle Scholar
  7. Ashrafuzzaman, M., Hossen, F. A., Ismail, M. R., Hoque, A., Islam, M. Z., Shahidullah, S. M., & Meon, S. (2009). Efficiency of plant growth-promoting rhizobacteria (PGPR) for the enhancement of rice growth. African Journal of Biotechnology, 8(7), 1247–1252.Google Scholar
  8. Baldani, J., Caruso, L., Baldani, V. L., Goi, S. R., & Döbereiner, J. (1997). Recent advances in BNF with non-legume plants. Soil Biology and Biochemistry, 29(5–6), 911–922.CrossRefGoogle Scholar
  9. Beneduzi, A., Ambrosini, A., & Passaglia, L. M. (2012). Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genetics and Molecular Biology, 35(4), 1044–1051.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Brink, S. C. (2016). Unlocking the secrets of the rhizosphere. Trends in Plant Science, 21(3), 169–170.PubMedCrossRefGoogle Scholar
  11. Cacciari, I., Lippi, D., Pietrosanti, T., & Pietrosanti, W. (1989). Phytohormone-like substances produced by single and mixed diazotrophic cultures of Azospirillum and Arthrobacter. Plant and Soil, 115(1), 151–153.CrossRefGoogle Scholar
  12. Cascales, E., Buchanan, S. K., Duché, D., Kleanthous, C., Lloubes, R., Postle, K., … Cavard, D.. (2007). Colicin biology. Microbiology and Molecular Biology Reviews, 71(1), 158–229.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Cassan, F., Maiale, S., Masciarelli, O., Vidal, A., Luna, V., & Ruiz, O. (2009). Cadaverine production by Azospirillum brasilense and its possible role in plant growth promotion and osmotic stress mitigation. European Journal of Soil Biology, 45(1), 12–19.CrossRefGoogle Scholar
  14. Chin-A-Woeng, T. F., Bloemberg, G. V., & Lugtenberg, B. J. (2003). Phenazines and their role in biocontrol by Pseudomonas bacteria. The New Phytologist, 157(3), 503–523.CrossRefGoogle Scholar
  15. Cohen, A. C., Bottini, R., & Piccol, P. N. (2008). Azospirillum brasilense Sp 245 produces ABA in chemically-defined culture medium and increases ABA content in arabidopsis plants. Plant Growth Regulation, 54(2), 97–103.CrossRefGoogle Scholar
  16. Compant, S., Duffy, B., Nowak, J., Clément, C., & Barka, E. A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology, 71(9), 4951–4959.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Crosa, J. H., & Walsh, C. T. (2002). Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiology and Molecular Biology Reviews, 66(2), 223–249.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Dakora, F. D., & Phillips, D. A. (2002). Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant and Soil, 245, 35–47.CrossRefGoogle Scholar
  19. de Souza, J. T., Arnould, C., Deulvot, C., Lemanceau, P., Gianinazzi-Pearson, V., & Raaijmakers, J. M. (2003). Effect of 2, 4-diacetylphloroglucinol on Pythium: Cellular responses and variation in sensitivity among propagules and species. Phytopathology, 93(8), 966–975.PubMedCrossRefGoogle Scholar
  20. Dobbelaere, S., Vanderleyden, J., & Okon, Y. (2003). Plant growth-promoting effects of diazotrophs in the rhizosphere. Critical Reviews in Plant Sciences, 22(2), 107–149.CrossRefGoogle Scholar
  21. Dubrovsky, J. G., Puente, M. E., & Bashan, Y. (1994). Arabidopsis thaliana as a model system for the study of the effect of inoculation by Azospirillum brasilense Sp-245 on root hair growth. Soil Biology and Biochemistry, 26(12), 1657–1664.CrossRefGoogle Scholar
  22. Dwivedi, D., & Johri, B. N. (2003). Antifungals from fluorescent pseudomonads: Biosynthesis and regulation. Current Science, 85, 1693–1703.Google Scholar
  23. Elias, J. M., Guerrero-Molina, M. F., Martínez-Zamora, M. G., Díaz-Ricci, J. C., & Pedraza, R. O. (2018). Role of ethylene and related gene expression in the interaction between strawberry plants and the plant growth-promoting bacterium Azospirillum brasilense. Plant Biology, 20(3), 490–496.PubMedCrossRefGoogle Scholar
  24. Fernando, W. D., Nakkeeran, S., & Zhang, Y. (2005). Biosynthesis of antibiotics by PGPR and its relation in biocontrol of plant diseases. In PGPR: Biocontrol and biofertilization (pp. 67–109). Dordrecht: Springer.Google Scholar
  25. Fukaki, H., & Tasaka, M. (2009). Hormone interactions during lateral root formation. Plant Molecular Biology, 69(4), 437–449.PubMedCrossRefGoogle Scholar
  26. García de Salamone, I. E., Hynes, R. K., & Nelson, L. M. (2001). Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Canadian Journal of Microbiology, 47(5), 404–411.PubMedCrossRefGoogle Scholar
  27. Glass, A. D. (1989). Plant mineral nutrition. An introduction to current concepts (p. 234). Jones and Bartlett Publishers, Inc.Google Scholar
  28. Glick, B. R. (1995). The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology, 41(2), 109–117.CrossRefGoogle Scholar
  29. Glick, B. R., Jacobson, C. B., Schwarze, M. M., & Pasternak, J. J. (1994). 1-Aminocyclopropane-1-carboxylic acid deaminase mutants of the plant growth promoting rhizobacterium Pseudomonas putida GR12-2 do not stimulate canola root elongation. Canadian Journal of Microbiology, 40(11), 911–915.CrossRefGoogle Scholar
  30. Glick, B. R., Cheng, Z., Czarny, J., & Duan, J. (2007). Promotion of plant growth by ACC deaminase-producing soil bacteria. In New perspectives and approaches in plant growth-promoting rhizobacteria research (pp. 329–339). Dordrecht: Springer.CrossRefGoogle Scholar
  31. Goh, H. F., & Philip, K. (2015). Purification and characterization of bacteriocin produced by Weissella confusa A3 of dairy origin. PLoS One, 10(10), e0140434.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Goswami, D., Thakker, J. N., & Dhandhukia, P. C. (2016). Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review. Cogent Food & Agriculture, 2(1), 1127500.Google Scholar
  33. Gray, E. J., & Smith, D. L. (2005). Intracellular and extracellular PGPR: Commonalities and distinctions in the plant–bacterium signaling processes. Soil Biology and Biochemistry, 37(3), 395–412.CrossRefGoogle Scholar
  34. Haas, D., & Défago, G. (2005). Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews. Microbiology, 3(4), 307–319.PubMedCrossRefGoogle Scholar
  35. Haas, D., & Keel, C. (2003). Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annual Review of Phytopathology, 41(1), 117–153.PubMedCrossRefGoogle Scholar
  36. Han, H. S., & Lee, K. D. (2006). Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant, Soil and Environment, 52(3), 130–136.CrossRefGoogle Scholar
  37. Hill, D. S., Stein, J. I., Torkewitz, N. R., Morse, A. M., Howell, C. R., Pachlatko, J. P., … Ligon, J. M. (1994). Cloning of genes involved in the synthesis of pyrrolnitrin from Pseudomonas fluorescens and role of pyrrolnitrin synthesis in biological control of plant disease. Applied and Environmental Microbiology, 60(1), 78–85.Google Scholar
  38. Holguin, G., & Glick, B. R. (2001). Expression of the ACC deaminase gene from Enterobacter cloacae UW4 in Azospirillum brasilense. Microbial Ecology, 41(3), 281–288.PubMedCrossRefGoogle Scholar
  39. Hurek, T., & Reinhold-Hurek, B. (2003). Azoarcus sp. strain BH72 as a model for nitrogen-fixing grass endophytes. Journal of Biotechnology, 106(2–3), 169–178.PubMedCrossRefGoogle Scholar
  40. Hussain, A., & Hasnain, S. (2009). Cytokinin production by some bacteria: Its impact on cell division in cucumber cotyledons. African Journal of Microbiology Research, 3(11), 704–712.Google Scholar
  41. James, E. K., Gyaneshwar, P., Mathan, N., Barraquio, W. L., Reddy, P. M., Iannetta, P. P., … Ladha, J. K. (2002). Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Molecular Plant-Microbe Interactions, 15(9), 894–906.PubMedCrossRefGoogle Scholar
  42. Katz, E., & Demain, A. L. (1977). The peptide antibiotics of Bacillus: Chemistry, biogenesis, and possible functions. Bacteriological Reviews, 41(2), 449–474.PubMedPubMedCentralGoogle Scholar
  43. Kloepper, J. W., Leong, J., Teintze, M., & Schroth, M. N. (1980). Pseudomonas siderophores: A mechanism explaining disease-suppressive soils. Current Microbiology, 4(5), 317–320.CrossRefGoogle Scholar
  44. Li, Q., Saleh-Lakha, S., & Glick, B. R. (2005). The effect of native and ACC deaminase-containing Azospirillum brasilense Cd1843 on the rooting of carnation cuttings. Canadian Journal of Microbiology, 51(6), 511–514.PubMedCrossRefGoogle Scholar
  45. Loper, J. E. (1988). Role of fluorescent siderophore production in biological control of Pythium ultimum by a Pseudomonas fluorescens strain. Phytopathology, 78(2), 166–172.CrossRefGoogle Scholar
  46. Lugtenberg, B., & Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 63, 541–556.PubMedCrossRefGoogle Scholar
  47. Maksimov, I. V., Abizgil’Dina, R. R., & Pusenkova, L. I. (2011). Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens. Applied Biochemistry and Microbiology, 47(4), 333–345.CrossRefGoogle Scholar
  48. Malinich, E. A., & Bauer, C. E. (2018). The plant growth promoting bacterium Azospirillum brasilense is vertically transmitted in Phaseolus vulgaris (common bean). Symbiosis, 76, 1–12.CrossRefGoogle Scholar
  49. Miransari, M. (2014). Plant growth promoting rhizobacteria. Journal of Plant Nutrition, 37(14), 2227–2235.CrossRefGoogle Scholar
  50. Neeraja, C., Anil, K., Purushotham, P., Suma, K., Sarma, P. V. S. R. N., Moerschbacher, B. M., & Podile, A. R. (2010). Biotechnological approaches to develop bacterial chitinases as a bioshield against fungal diseases of plants. Critical Reviews in Biotechnology, 30(3), 231–241.PubMedCrossRefGoogle Scholar
  51. Patten, C. L., & Glick, B. R. (1996). Bacterial biosynthesis of indole-3-acetic acid. Canadian Journal of Microbiology, 42, 207–220.PubMedCrossRefGoogle Scholar
  52. Paulitz, T. C., & Loper, J. E. (1991). Lack of a role for fluorescent siderophore production in the biological control of Pythium damping-off of cucumber by a strain of Pseudomonas putida. Phytopathology, 81(8), 930–935.CrossRefGoogle Scholar
  53. Perrig, D., Boiero, M. L., Masciarelli, O. A., Penna, C., Ruiz, O. A., Cassán, F. D., & Luna, M. V. (2007). Plant-growth-promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and implications for inoculant formulation. Applied Microbiology and Biotechnology, 75(5), 1143–1150.PubMedCrossRefGoogle Scholar
  54. Quagliotto, L., Azziz, G., Bajsa, N., Vaz, P., Pérez, C., Ducamp, F., et al. (2009). Three native Pseudomonas fluorescens strains tested under growth chamber and field conditions as biocontrol agents against damping-off in alfalfa. Biological Control, 51(1), 42–50.CrossRefGoogle Scholar
  55. Raaijmakers, J. M., De Bruijn, I., Nybroe, O., & Ongena, M. (2010). Natural functions of lipopeptides from Bacillus and Pseudomonas: More than surfactants and antibiotics. FEMS Microbiology Reviews, 34(6), 1037–1062.PubMedCrossRefGoogle Scholar
  56. Ramaekers, L., Remans, R., Rao, I. M., Blair, M. W., & Vanderleyden, J. (2010). Strategies for improving phosphorus acquisition efficiency of crop plants. Field Crops Research, 117(2–3), 169–176.CrossRefGoogle Scholar
  57. Reddy, K. V. R., Yedery, R. D., & Aranha, C. (2004). Antimicrobial peptides: Premises and promises. International Journal of Antimicrobial Agents, 24(6), 536–547.PubMedCrossRefGoogle Scholar
  58. Remans, R., Ramaekers, L., Schelkens, S., Hernandez, G., Garcia, A., Reyes, J. L., … Vanderleyden, J. (2008). Effect of Rhizobium–Azospirillum coinoculation on nitrogen fixation and yield of two contrasting Phaseolus vulgaris L. genotypes cultivated across different environments in Cuba. Plant and Soil, 312(1–2), 25–37.CrossRefGoogle Scholar
  59. Richardson, A. E., Hocking, P. J., Simpson, R. J., & George, T. S. (2009). Plant mechanisms to optimise access to soil phosphorus. Crop & Pasture Science, 60(2), 124–143.CrossRefGoogle Scholar
  60. Riefler, M., Novak, O., Strnad, M., & Schmülling, T. (2006). Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. The Plant Cell, 18(1), 40–54.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Riggs, P. J., Chelius, M. K., Iniguez, A. L., Kaeppler, S. M., & Triplett, E. W. (2001). Enhanced maize productivity by inoculation with diazotrophic bacteria. Functional Plant Biology, 28(9), 829–836.CrossRefGoogle Scholar
  62. Riley, M. A., & Wertz, J. E. (2002). Bacteriocins: Evolution, ecology, and application. Annual Review of Microbiology, 56(1), 117–137.PubMedCrossRefGoogle Scholar
  63. Saleem, M., Arshad, M., Hussain, S., & Bhatti, A. S. (2007). Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. Journal of Industrial Microbiology & Biotechnology, 34(10), 635–648.CrossRefGoogle Scholar
  64. Salisbury, F. B., & Ross, C. W. (1992). Plant physiology. Belmont: Wadsworth Publishing Co..Google Scholar
  65. Sessitsch, A., Howieson, J. G., Perret, X., Antoun, H., & Martinez-Romero, E. (2002). Advances in Rhizobium research. Critical Reviews in Plant Sciences, 21(4), 323–378.CrossRefGoogle Scholar
  66. Sevilla, M., Burris, R. H., Gunapala, N., & Kennedy, C. (2001). Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild-type and nif mutant strains. Molecular Plant-Microbe Interactions, 14(3), 358–366.PubMedCrossRefGoogle Scholar
  67. Silo-Suh, L. A., Lethbridge, B. J., Raffel, S. J., He, H., Clardy, J., & Handelsman, J. (1994). Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Applied and Environmental Microbiology, 60(6), 2023–2030.PubMedPubMedCentralGoogle Scholar
  68. Spaepen, S., Vanderleyden, J., & Remans, R. (2007). Indole-3-acetic acid in microbial and microorganism-plant signalling. FEMS Microbiology Reviews, 31, 425–448.PubMedCrossRefGoogle Scholar
  69. Timmusk, S., Nicander, B., Granhall, U., & Tillberg, E. (1999). Cytokinin production by Paenibacillus polymyxa. Soil Biology and Biochemistry, 31(13), 1847–1852.CrossRefGoogle Scholar
  70. Van Loon, L. C. (2007). Plant responses to plant growth-promoting rhizobacteria. In New perspectives and approaches in plant growth-promoting Rhizobacteria research (pp. 243–254). Dordrecht: Springer.CrossRefGoogle Scholar
  71. Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255(2), 571–586.CrossRefGoogle Scholar
  72. Yanni, Y. G., Rizk, R. Y., El-Fattah, F. K. A., Squartini, A., Corich, V., Giacomini, A., … Vega-Hernandez, M. (2001). The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Functional Plant Biology, 28(9), 845–870.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Irshad Mahmood
    • 1
  • Rose Rizvi
    • 1
  • Aisha Sumbul
    • 1
  • Rizwan Ali Ansari
    • 1
  1. 1.Section of Plant Pathology and Nematology, Department of BotanyAligarh Muslim UniversityAligarhIndia

Personalised recommendations