Advertisement

Microbe-Assisted Plant Growth Ameliorations

  • Muhammad Saifulla
  • T. YellaGoud
  • S. V. Manjunatha
  • T. G. Manu
  • G. Rajesh
Chapter

Abstract

Diverse microbes present in soil play a remarkable role in symbiotic action under different plant ecosystems. The use of prominent microbes against the pathogenic microorganisms affecting plant health helps in preventing the potential harmful effect of chemical pesticides on environment and human kind. Plant growth promoting rhizobacteria (PGPR) are one of the beneficial microbial groups under biocontrol agents for the best alternative to avoid the hazardous effect of chemicals and help in maintaining the plant health. PGPR colonize plant roots and help in plant health ameliorations using various bacteria. They play a significant role in enhancing the production of plant growth hormone substances, fixation and availability of plant nutrients and modulate the defence activity for inhibiting the effect of various pathogens through production of antimicrobial metabolites. Integration of PGPR and plant induces the defence mechanisms against the variety of pathogenic group. The exploitation of productive and efficient PGPR community helps in achieving plant growth and protection from plant pathogens significantly to avoid the crop loss.

Keywords

PGPR Plant health Biological control Rhizosphere Rhizoplane 

References

  1. Ahemad, M., & Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University Science, 26(1), 1–20.CrossRefGoogle Scholar
  2. Ansari, R. A., & Mahmood, I. (2017). Optimization of organic and bio-organic fertilizers on soil properties and growth of pigeon pea. Scientia Horticulturae, 226, 1–9.CrossRefGoogle Scholar
  3. Ansari, R. A., Mahmood, I., Rizvi, R., & Sumbul, A. (2017a). Siderophores: Augmentation of soil health and crop productivity. In Probiotics in agroecosystem (pp. 291–312). Singapore: Springer.CrossRefGoogle Scholar
  4. Ansari, R. A., Rizvi, R., Sumbul, A., & Mahmood, I. (2017b). PGPR: Current vogue in sustainable crop production. In Probiotics and plant health (pp. 455–472). Singapore: Springer.CrossRefGoogle Scholar
  5. Arora, N. K., Tewari, S., & Singh, R. (2013). Multifaceted plant-associated microbes and their mechanisms diminish the concept of direct and indirect PGPRs. In N. K. Arora (Ed.), Plant microbe symbiosis: Fundamentals and advances (pp. 411–449). New Delhi: Springer.CrossRefGoogle Scholar
  6. Bacilio-Jiménez, M., Aguilar-Flores, S., Ventura-Zapata, E., Pérez-Campos, E., Bouquelet, S., & Zenteno, E. (2003). Chemical characterization of root exudates from rice (Oryza sativa) and their effects on the chemotactic response of endophytic bacteria. Plant and Soil, 249(2), 271–277.CrossRefGoogle Scholar
  7. Bais, H. P., Park, S. W., Weir, T. L., Callaway, R. M., & Vivanco, J. M. (2004). How plants communicate using the underground information superhighway. Trends in Plant Science, 9(1), 26–32.CrossRefGoogle Scholar
  8. Bashan, Y., & Holguin, G. (1997). Azospirillum-plant relationships: Environmental and physiological advances (1990–1996). Canadian Journal of Microbiology, 43, 103–121.CrossRefGoogle Scholar
  9. Bhattacharyya, P. N., & Jha, D. K. (2012). Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World Journal of Microbiology and Biotechnology, 28, 1327–1350.CrossRefGoogle Scholar
  10. Böhme, H., & Masepohl, B. (2018). Differentiation of Vegetative Anabaena Cells into Nitrogen-Fixing Heterocysts. InPlant responses to environmental stresses (pp. 91–110). London: Routledge.CrossRefGoogle Scholar
  11. Cornwell, W. K., Cornelissen, J. H., Amatangelo, K., Dorrepaal, E., Eviner, V. T., Godoy, O., et al. (2008). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters, 11(10), 1065–1071.CrossRefGoogle Scholar
  12. Crowley, D. E., & Kraemer, S. M. (2007). Function of siderophores in the plant rhizosphere. In R. Pinton et al. (Eds.), The Rhizosphere, biochemistry and organic substances at the soil-plant interface (pp. 73–109). Boca Raton: CRC Press.Google Scholar
  13. Duca, D. R., Rose, D. R., & Glick, B. R. (2018). Indole acetic acid overproduction transformants of the rhizobacterium Pseudomonas sp. UW4. Antonie Van Leeuwenhoek, 1–16.Google Scholar
  14. Gamalero, E., Berta, G., & Glick, B. R. (2009). The use of microorganisms to facilitate the growth of plants in saline soils. In M. S. Khan, A. Zaidi, & J. Musarrat (Eds.), Microbial strategies for crop improvement. Berlin/Heidelberg: Springer.Google Scholar
  15. Giordano, W., & Hirsch, A. M. (2004). The expression of MaEXP1, a Melilotus alba expansin gene, is upregulated during the sweet clover-Sinorhizobium meliloti interaction. Molecular Plant-Microbe Interactions, 17, 613–622.CrossRefGoogle Scholar
  16. Glick, B. R. (2012). Plant growth-promoting bacteria: Mechanisms and applications. Waterloo: Hindawi Publishing Corporation, Scientifica.Google Scholar
  17. Haas, D., & Défago, G. (2005). Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews Microbiology, 3(4), 307.CrossRefGoogle Scholar
  18. Han, H. S., & Lee, K. D. (2006). Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant, Soil and Environment, 52, 130–136.CrossRefGoogle Scholar
  19. Indiragandhi, P., Anandham, R., Madhaiyan, M., & Sa, T. M. (2008). Characterization of plant growth-promoting traits of bacteria isolated from larval guts of diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). Current Microbiology, 56, 327–333.CrossRefGoogle Scholar
  20. Kang, B. G., Kim, W. T., Yun, H. S., & Chang, S. C. (2010). Use of plant growth-promoting rhizobacteria to control stress responses of plant roots. Plant Biotechnology Reports, 4, 179–183.CrossRefGoogle Scholar
  21. Khalid, A., Akhtar, M. J., Mahmood, M. H., & Arshad, M. (2006). Effect of substrate-dependent microbial ethylene production on plant growth. Microbiology, 75, 231–236.CrossRefGoogle Scholar
  22. Khan, M. S., Zaidi, A., Wani, P. A., & Oves, M. (2009). Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environmental Chemistry Letters, 7, 1–19.CrossRefGoogle Scholar
  23. Kim, J., & Rees, D. C. (1994). Nitrogenase and biological nitrogen fixation. Biochemistry, 33, 389–397.CrossRefGoogle Scholar
  24. Kumar, P., & Dubey, R. C. (2012). Plant growth promoting Rhizobacteria for biocontrol of phytopathogens and yield enhancement of phaseolus vulgaris. Journal of Current Perspectives in Applied Microbiology, 1, 6–38.Google Scholar
  25. Lugtenberg, B., & Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 63, 541–556.CrossRefGoogle Scholar
  26. Marschner, P. (2012). Rhizosphere biology. In Marschner’s mineral nutrition of higher plants (3rd ed., pp. 369–388). Amsterdam: Elsevier.CrossRefGoogle Scholar
  27. Masson-Boivin, C., Giraud, E., Perret, X., & Batut, J. (2009). Establishing nitrogen-fixing symbiosis with legumes: How many rhizobium recipes? Trends in Microbiology, 17(10), 458–466.CrossRefGoogle Scholar
  28. Miransari, M., & Smith, D. L. (2014). Plant hormones and seed germination. Environmental and Experimental Botany, 99, 110–121.CrossRefGoogle Scholar
  29. Nadeem, S. M., Zahir, Z. A., Naveed, M., & Arshad, M. (2007). Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Canadian Journal of Microbiology, 53, 1141–1149.CrossRefGoogle Scholar
  30. Neilands, J. B. (1995). Siderophores: Structure and function of microbial iron transport compounds. The Journal of Biological Chemistry, 270, 26723–26726.CrossRefGoogle Scholar
  31. Pandey, P., & Maheshwari, D. K. (2007). Two sp. microbial consortium for growth promotion of Cajanus Cajan. Current Science, 92, 1137–1142.Google Scholar
  32. Parmar, P., & Sindhu, S. S. (2013). Potassium solubilization by Rhizosphere bacteria: Influence of nutritional and environmental conditions. Journal of Microbiology Research, 3, 25–31.Google Scholar
  33. Patni, B., Panwar, A. S., Negi, P., & Joshi, G. K. (2018). Plant growth promoting traits of psychrotolerant bacteria: A boon for agriculture in hilly terrains. Plant Science Today, 5(1), 24–28.CrossRefGoogle Scholar
  34. Rajkumar, M., Ae, N., Prasad, M. N. V., & Freitas, H. (2010). Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends in Biotechnology, 28, 142–149.CrossRefGoogle Scholar
  35. Ramamoorthy, V., Viswanathan, R., Raguchander, T., Prakasam, V., & Samiyappan, R. (2001). Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Protection, 20(1), 1–11.CrossRefGoogle Scholar
  36. Saleem, M., Arshad, M., Hussain, S., & Bhatti, A. S. (2007). Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. Journal of Industrial Microbiology and Biotechnology, 34, 635–648.CrossRefGoogle Scholar
  37. Shaharoona, B., Arshad, M., & Khalid, A. (2007a). Differential response of etiolated pea seedlings to inoculation with rhizobacteria capable of utilizing 1-aminocyclopropane-1-carboxylate or L-methionine. Journal of Microbiology, 45, 15–20.Google Scholar
  38. Shaharoona, B., Jamro, G. M., Zahir, Z. A., Arshad, M., & Memon, K. S. (2007b). Effectiveness of various Pseudomonas spp. And Burkholderia caryophylli containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.). Journal of Microbiology and Biotechnology, 17, 1300–1307.PubMedGoogle Scholar
  39. Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., & Gobi, T. A. (2013). Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2, 587.Google Scholar
  40. Shilev, S. (2013). Soil Rhizobacteria regulating the uptake of nutrients and undesirable elements by plants. In N. K. Arora (Ed.), Plant microbe symbiosis: Fundamentals and advances (pp. 147–150). New Delhi: Springer.CrossRefGoogle Scholar
  41. Vansuyt, G., Robin, A., Briat, J. F., Curie, C., & Lemanceau, P. (2007). Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 20, 441–447.CrossRefGoogle Scholar
  42. Yang, J., Kloepper, J. W., & Ryu, C. M. (2009). Rhizosphere bacteria help plants tolerate abiotic stress. Trends in Plant Science, 14(1), 1–4.CrossRefGoogle Scholar
  43. Zahir, Z. A., Munir, A., Asghar, H. N., Shaharoona, B., & Arshad, M. (2008). Effectiveness of rhizobacteria containing ACC-deaminase for growth promotion of pea (Pisum sativum) under drought conditions. Journal of Microbiology and Biotechnology, 18, 958–963.PubMedGoogle Scholar
  44. Zahir, Z. A., Ghani, U., Naveed, M., Nadeem, S. M., & Asghar, H. N. (2009). Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions. Archives of Microbiology, 191, 415–424.CrossRefGoogle Scholar
  45. Zahran, H. H. (2001). Rhizobia from wild legumes: Diversity, taxonomy, ecology, nitrogen fixation and biotechnology. Journal of Biotechnology, 91, 143–153.CrossRefGoogle Scholar
  46. Zaidi, A., Khan, M. S., Ahemad, M., & Oves, M. (2009). Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiologica et Immunologica Hungarica, 56, 263–284.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Muhammad Saifulla
    • 1
  • T. YellaGoud
    • 2
  • S. V. Manjunatha
    • 1
  • T. G. Manu
    • 1
  • G. Rajesh
    • 3
  1. 1.Department of Plant Pathology, College of AgricultureUniversity of Agricultural SciencesBengaluruIndia
  2. 2.National Institute of Plant Health Management (NIPHM)HyderabadIndia
  3. 3.Department of Plant PathologyIndian Council of Agricultural ResearchKhanakuruIndia

Personalised recommendations