Biofilmed Biofertilizer for Sustainable Agriculture

  • M. C. M. ZakeelEmail author
  • M. I. S. Safeena


The pressure due to global population increase and rising environmental damage has the unfortunate consequence that world food production may shortly become inadequate to feed all the mouths of the world. It is therefore indispensable that agricultural productivity be significantly improved within next couple of decades. To achieve this, agricultural practices are approached in a more sustainable and eco-friendly manner. Further, the substantial use of chemical fertilizers and pesticides in conventional farming has led to the accumulation of harmful chemical remnants and heavy metals in the environment leading to degradation of agroecosystem and incidence of unpredictable chronic diseases in human. Therefore, biofilmed biofertilizers (BFBFs) have become a viable alternative for chemical fertilizers in agriculture. BFBFs, in addition to their fertilizing task, accomplish a variety of processes such as reinstating agroecosystem, maintaining regulated metabolic and biochemical processes, improving soil quality, suppression of pests and diseases, amelioration of plants from stress and synthesis of plant hormones. The consortia of microbes in BFBFs add an array of benefits together for the soil-plant system to support plant growth and development thereby to enhance the yield. Moreover, BFBF itself is a sustainable system which can ensure the sustainability of agroecosystem. Therefore, the use of BFBFs in agriculture would lead to a more eco-friendly approach in crop production with many health, environmental and economic benefits.


Biofilmed biofertilizer Plant-microbe interaction Sustainable agriculture Biological nitrogen fixation Agroecosystem 


  1. Abeles, F. B., Morgan, P. W., & Saltveit, M. E., Jr. (1992). Ethylene in plant biology (2nd ed.). New York: Academic.Google Scholar
  2. Afzal, I., Basra, S. M., & Iqbal, A. (2005). The effects of seed soaking with plant growth regulators on seedling vigor of wheat under salinity stress. Journal of Stress Physiology and Biochemistry, 1, 6–14.Google Scholar
  3. Alkorta, I., & Garbisu, C. (2001). Phytoremediation of organic contaminants in soils. Bioresource Technology, 79(3), 273–276.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Anonymous. (2016). ISAAA in brief. Accessed 12 Feb 2016.
  5. Anonymous. (2017). The world population prospects: The 2017 revision. UN Department of Economic and Social Affairs. Accessed 16 Aug 2017.
  6. Ansari, R. A., & Mahmood, I. (2017). Optimization of organic and bio-organic fertilizers on soil properties and growth of pigeon pea. Scientia Horticulturae, 226, 1–9.CrossRefGoogle Scholar
  7. Appanna, V. (2007). Efficacy of phosphate solubilizing bacteria isolated from vertisols on growth and yield parameters of sorghum. Research Journal of Microbiology, 2, 550–559.CrossRefGoogle Scholar
  8. Atzorn, R., Crozier, A., Wheeler, C. T., & Sandberg, G. (1988). Production of gibberellins and indole-3-acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta, 175(4), 532–538.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Badri, D. V., Loyola-Vargas, V. M., Du, J., Stermitz, F. R., Broeckling, C. D., Iglesias-Andreu, L., & Vivanco, J. M. (2008). Transcriptome analysis of Arabidopsis roots treated with signaling compounds: A focus on signal transduction, metabolic regulation and secretion. New Phytologist, 179, 209–223.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bailey, B. A., Bae, H., Strem, M. D., Crozier, J., Thomas, S. E., Samuels, G. J., & Holmes, K. A. (2008). Antibiosis, mycoparasitism, and colonization success for endophytic Trichoderma isolates with biological control potential in Theobroma cacao. Biological Control, 46, 24–35.CrossRefGoogle Scholar
  11. Bandara, W. M. M. S., Seneviratne, G., & Kulasooriya, S. A. (2006). Interactions among endophytic bacteria and fungi: Effects and potentials. Journal of Biosciences, 31, 645–650.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bandara, J. M. R. S., Senevirathna, D. M. A. N., Dasanayake, D. M. R. S. B., Herath, V., Bandara, J. M. R. P., Abeysekara, T., & Rajapaksha, K. H. (2008). Chronic renal failure among farm families in cascade irrigation systems in Sri Lanka associated with elevated dietary cadmium levels in rice and freshwater fish (Tilapia). Environmental Geochemistry and Health, 30(5), 465–478.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Barea, J. M., Navarro, E., & Montoya, E. (1976). Production of plant growth regulators by rhizosphere phosphate-solubilizing bacteria. Journal of Applied Microbiology, 40, 129–134.Google Scholar
  14. Bashan, Y., & Levanony, H. (1990). Current status of Azospirillum inoculation technology: Azospirillum as a challenge for agriculture. Canadian Journal of Microbiology, 36(9), 591–608.CrossRefGoogle Scholar
  15. Bashan, Y., Holguin, G., & de-Bashan, L. E. (2004). Azospirillum–plant relationships: Physiological, molecular, agricultural and environmental advances. Canadian Journal of Microbiology, 50, 521–577.Google Scholar
  16. Bastidia, F., Zsolnay, A., Hernandez, T., & García, C. (2008). Past, present and future of soil quality indices, a biological perspective. Geoderma, 147, 159–171.CrossRefGoogle Scholar
  17. Beauregard, P. B., Chai, Y., Vlamakis, H., Losick, R., & Kolter, R. (2013). Bacillus subtilis biofilm induction by plant polysaccharides. Proceedings of the National Academy of Sciences of the United States of America, 110, 1621–1630.CrossRefGoogle Scholar
  18. Biofertilizer Manual. (2006) Japan Atomic Industrial Forum (JAIF), Japan.Google Scholar
  19. Bnayahu, B. Y. (1991). Root excretions and their environmental effects: Influence on availability of phosphorus. In Y. Waisel, A. Eshel, & U. Kafkafi (Eds.), Plant roots: The hidden half (pp. 529–557). New York: Marcel Dekker.Google Scholar
  20. Brookes, P. C. (1995). The use of microbial parameters in monitoring soil pollution by heavy metals. Biology and Fertility of Soils, 19, 269–279.CrossRefGoogle Scholar
  21. Buddhika, U. V. A., Kulasooriya, S. A., Seneviratne, G., & Abayasekara, C. L. (2012a). Potential of biofilmed microbial communities as biofertilizers for maize (Zea mays L.). In L. Nugaliyadda et al. (Eds.), Proceedings of Sri Lanka–India conference on agrobiotechnology for sustainable development (p. 63). Peradeniya, Sri Lanka: Agriculture Education Unit, Faculty of Agriculture, University of Peradeniya.Google Scholar
  22. Buddhika, U. V. A., Seneviratne, G., & Abayasekara, C. L. (2012b, December, 12–13). Biofilmed biofertilizers for sustaining maize cultivation. Paper presented at the World Congress on Biotechnology, Hyderabad, India. Accessed 22 Dec 2012.
  23. Buddhika, U. V. A., Athauda, A. R. W. P. K., Seneviratne, G., Kulasooriya, S. A., & Abayasekara, C. L. (2013). Emergence of diverse microbes on application of biofilmed biofertilizers to a maize growing soil. Ceylon Journal of Science (Biological Sciences), 42, 87–94.CrossRefGoogle Scholar
  24. Buddhika, U. V. A., Seneviratne, G., & Abayasekara, C. L. (2014). Fungal–bacterial biofilms differ from bacterial monocultures in seed germination and indole acetic acid production. International Journal of Scientific and Research Publications, 4, 1–5.Google Scholar
  25. Buddhika, U. V. A., Seneviratne, G., Ekanayake, E. M. H. G. S., Senanayake, D. M. N., Igalavithane, A. D., Weeraratne, N., et al. (2016). Biofilmed biofertilizers: Application in Agroecosystems. In V. K. Gupta et al. (Eds.), The handbook of microbial bioresourses (pp. 96–106). Wallingford: CAB International.CrossRefGoogle Scholar
  26. Cassan, F., Perrig, D., Sgroy, V., Masciarelli, O., Penna, C., & Luna, V. (2009). Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). European Journal of Soil Biology, 45, 28–35.CrossRefGoogle Scholar
  27. Chandrajith, R., Seneviratna, S., Wickramaarachchi, K., Attanayaka, T., Aturaliya, T. N. C., & Disanayake, C. B. (2010). Natural radio nuclides and trace elements in the rice field soils in relation to fertilizer application: Study of a chronic kidney disease area in Sri Lanka. Environment and Earth Science, 60, 193–201.CrossRefGoogle Scholar
  28. Cheanieha Queene, A., Safeena, M. I. S., & Zakeel, M. C. M. (2016). Plant pathogenic fungi as potential biocontrol agents for water hyacinth (Eichhornia crassipes Mart. Solms). In Proceedings of the National Symposium on Invasive Alien Species-2017, GEF/UNDP project on Strengthening Capacity to Control the Introduction and Spread of Invasive Alien Species (IAS) in Sri Lanka, Biodiversity Secretariat, Ministry of Mahaweli Development & Environment in collaboration with University of Colombo and United Nations Development Programme (UNDP), Sri Lanka, p. 11.Google Scholar
  29. Cheng, Z., Wei, Y. Y. C., Sung, W. W. L., Glick, B. R., & McConkey, B. J. (2009). Proteomic analysis of the response of the plant growth-promoting bacterium Pseudomonas putida UW4 to nickel stress. Proteome Science, 7, article18.Google Scholar
  30. Czarnes, S., Hallett, P. D., Bengough, A. G., & Young, I. M. (2000). Root- and microbial-derived mucilages affect soil structure and water transport. European Journal of Soil Science, 51, 435–443.CrossRefGoogle Scholar
  31. Danhorn, T., & Fuqua, C. (2007). Biofilm formation by plant-associated bacteria. Annual Review of Microbiology, 61, 401–422.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Davey, M. E., & O’Toole, G. A. (2000). Microbial biofilms: From ecology to molecular genetics. Microbiology and Molecular Biology Reviews, 64, 847–867.PubMedPubMedCentralCrossRefGoogle Scholar
  33. de Rosa, C. T., Johnson, B. L., Fay, M., Hansen, H., & Mumtaz, M. M. (1996). Public health implications of hazardous waste sites: Findings, assessment and research. Food and Chemical Toxicology, 34, 1131–1138.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Donlan, R. M. (2002). Biofilms: Microbial life on surfaces. Emerging Infectious Diseases, 8, 881–890.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Fernandes, E. C. M., Motavallic, P. P., Castilla, C., & Mukurimbira, L. (1997). Management control of soil organic matter dynamics in tropical land use systems. Geoderma, 79, 49–67.CrossRefGoogle Scholar
  36. Gamalero, E., & Glick, B. R. (2012). Plant growth-promoting bacteria and metal phytoremediation. In N. A. Anjum et al. (Eds.), Phytotechnologies (pp. 359–374). Boca Raton: Taylor & Francis.Google Scholar
  37. Garbeva, P., van Veen, J. A., & van Elsas, J. D. (2004). Microbial diversity in soil: Selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annual Review of Phytopathology, 42, 243–270.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Gillera, K. E., Witter, E., & Mcgrath, S. P. (1998). Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils. Soil Biology and Biochemistry, 30, 1389–1414.CrossRefGoogle Scholar
  39. Glick, B. R. (2004). Bacterial ACC deaminase and the alleviation of plant stress. Advances in Applied Microbiology, 56, 291–312.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Glick, B. R. (2010). Using soil bacteria to facilitate phytoremediation. Biotechnology Advances, 28(3), 367–374.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Glick, B. R. (2012). Plant growth-promoting bacteria: Mechanism and applications. Scientifica. Hindawi Publishing Corporation.Google Scholar
  42. Glick, B. R., & Bashan, Y. (1997). Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnology Advances, 15(2), 353–378.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Glick, B. R., & Stearns, J. C. (2011). Making phytoremediation work better: Maximizing a plant’s growth potential in the midst of adversity. International Journal of Phytoremediation, 13(1), 4–16.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Glick, B. R., Liu, C., Ghosh, S., & Dumbroff, E. B. (1997). Early development of canola seedlings in the presence of the plant growth-promoting rhizobacterium Pseudomonas putida GR122. Soil Biology and Biochemistry, 29(8), 1233–1239.CrossRefGoogle Scholar
  45. Glick, B. R., Penrose, D. M., & Li, J. (1998). A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. Journal of Theoretical Biology, 190(1), 63–68.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Grichko, V. P., & Glick, B. R. (2001). Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiology and Biochemistry, 39(1), 11–17.CrossRefGoogle Scholar
  47. Guerinot, M. L., & Ying, Y. (1994). Iron: Nutritious, noxious and not readily available. Plant Physiology, 104(3), 815–820.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Hao, Y., Charles, T. C., & Glick, B. R. (2007). ACC deaminase from plant growth-promoting bacteria affects crown gall development. Canadian Journal of Microbiology, 53(12), 1291–1299.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Hao, Y., Charles, T. C., & Glick, B. R. (2011). An ACC deaminase containing A. tumefaciens strain D3 shows biocontrol activity to crown gall disease. Canadian Journal of Microbiology, 57(4), 278–286.PubMedCrossRefPubMedCentralGoogle Scholar
  50. He, L. Y., Zhang, Y. F., Ma, H. Y., et al. (2010). Characterization of copper-resistant bacteria and assessment of bacterial communities in rhizosphere soils of copper-tolerant plants. Applied Soil Ecology, 44, 49–55.CrossRefGoogle Scholar
  51. Herath, H. M. L. I., Senanayeke, D. M. N., Seneviratne, G., & Bandara, D. C. (2013). Variation of biochemical expressions of developed fungal–bacterial biofilms over their monocultures and its effect on plant growth. Tropical Agricultural Research, 24, 186–192.Google Scholar
  52. Hettiarachchi, R. P., Dharmakeerthi, R. S., Seneviratne, G., Jayakody, A. N., & Edirimannaa, V. (2012). Effect of biofilmed biofertilizers on growth and mineral composition of Hevea seedlings under greenhouse conditions. In L. S. K. Hettiarachchi & I. S. B. Abeysinghe (Eds.), Proceedings of the 4th symposium on plantation crop research (pp. 195–203). Sri Lanka: Taj Samudra Hotel.Google Scholar
  53. Hider, R. C., & Kong, X. (2010). Chemistry and biology of siderophores. Natural Product Reports, 27(5), 637–657.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Holguin, G., & Bashan, Y. (1996). Nitrogen-fixation by Azospirillum brasilense Cd is promoted when co-cultured with a mangrove rhizosphere bacterium (Staphylococcus sp.). Soil Biology and Biochemistry, 28, 1651–1660.CrossRefGoogle Scholar
  55. Husen, E., Wahyudi, A. T., Suwanto, A., & Giyanto. (2011). Growth enhancement and disease reduction of soybean by 1-aminocyclopropane-1-carboxylate deaminase-producing Pseudomonas. American Journal of Applied Sciences, 8(11), 1073–1080.CrossRefGoogle Scholar
  56. James, E. K., & Olivares, F. L. (1997). Infection and colonization of sugar cane and other graminaceous plants by endophytic diazotrophs. Critical Reviews in Plant Sciences, 17(1), 77–119.CrossRefGoogle Scholar
  57. Jayasinghearachchi, H. S., & Seneviratne, G. (2004). A bradyrhizobial–Penicillium spp. biofilm with nitrogenase activity improves N2 fixing symbiosis of soybean. Biology and Fertility of Soils, 40, 432–434.CrossRefGoogle Scholar
  58. Jayasinghearachchi, H. S., & Seneviratne, G. (2006). Fungal solubilization of rock phosphate is enhanced by forming fungal–rhizobial biofilms. Soil Biology and Biochemistry, 38, 405–408.CrossRefGoogle Scholar
  59. Jayasumana, M. A. C. S., Paranagama, P. A., Amarasinghe, M. D., Wijewardane, K. M. R. C., Dahanayake, K. S., Fonseka, S. I., Rajakaruna, K. D. L. M. P., Mahamithawa, A. M. P., Samarasinghe, U. D., & Senanayake, V. K. (2013). Possible link of chronic arsenic toxicity with chronic kidney disease of unknown etiology in Sri Lanka. Journal of National Sciences Research, 3(1), 64–73.Google Scholar
  60. Johri, N., Jacquillet, G., & Unwin, R. (2010). Heavy metal poisoning: The effects of cadmium on the kidney. Biometals, 23(5), 783–792.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Jones, L. H. P., & Jarvis, S. C. (1981). The fate of heavy metals. In D. J. Green & M. H. B. Hayes (Eds.), Chemistry of soil processes (p. 593). New York: Wiley.Google Scholar
  62. Joo, G. J., Kim, Y. M., Kim, J. T., Rhee, I. K., Kim, J. H., & Lee, I. J. (2005). Gibberellins-producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. Journal of Microbiology, 43(6), 510–515.Google Scholar
  63. Kang, S. M., Joo, G. J., Hamayun, M., et al. (2009). Gibberellin production and phosphate solubilization by newly isolated strain of Acinetobacter calcoaceticus and its effect on plant growth. Biotechnology Letters, 31(2), 277–281.PubMedCrossRefGoogle Scholar
  64. Kaur, H., Kaur, J., & Gera, R. (2016). Plant growth promoting Rhizobacteria: A boon to agriculture. International Journal of Cell Science and Biotechnology, 5, 17–22.Google Scholar
  65. Khan, M. S., Zaidi, A., & Wani, P. A. (2007). Role of phosphate solubilizing microorganisms in sustainable agriculture – A review. Agronomy for Sustainable Development, 27(1), 29–43.CrossRefGoogle Scholar
  66. Kim, N. H., Hyun, Y. Y., Lee, K.-B., Chang, Y., Rhu, S., Oh, K.-H., & Ahn, C. (2015). Environmental heavy metal exposure and chronic kidney disease in the general population. Journal of Korean Medical Science, 30, 272–277. Scholar
  67. Kokare, C. R., Chakraborthy, S., Khopade, A. N., & Mahadik, K. R. (2008). Biofilm: Importance and applications. Indian Journal of Biotechnology, 8, 159–168.Google Scholar
  68. Loper, J. E., & Buyer, J. S. (1991). Siderophoresin microbial interactions on plant surfaces. Molecular Plant-Microbe Interactions, 4, 5–13.CrossRefGoogle Scholar
  69. Lorteau, M. A., Ferguson, B. J., & Guinel, F. C. (2001). Effects of cytokinin on ethylene production and nodulation in pea (Pisum sativum)cv. Sparkle. Physiologia Plantarum, 112(3), 421–428.PubMedCrossRefGoogle Scholar
  70. Lucy, M., Reed, E., & Glick, B. R. (2004). Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek, 86(1), 1–25.PubMedCrossRefPubMedCentralGoogle Scholar
  71. Ma, J. F. (2005). Plant root responses to three abundant soil minerals: Silicon, aluminum and iron. Critical Reviews in Plant Sciences, 24(4), 267–281.CrossRefGoogle Scholar
  72. Ma, W., Penrose, D. M., & Glick, B. R. (2002). Strategies used by rhizobia to lower plant ethylene levels and increase nodulation. Canadian Journal of Microbiology, 48(11), 947–954.PubMedCrossRefGoogle Scholar
  73. Ma, W., Guinel, F. C., & Glick, B. R. (2003). Rhizobium leguminosarum biovar viciae 1-aminocyclopropane-1-carboxylate deaminase promotes nodulation of pea plants. Applied and Environmental Microbiology, 69(8), 4396–4402.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Ma, W., Charles, T. C., & Glick, B. R. (2004). Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in Sinorhizobium meliloti increases its ability to nodulate alfalfa. Applied and Environmental Microbiology, 70(10), 5891–5897.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Mahdi, S. S., Hassan, G. I., Samoon, S. A., Rather, H. A., Dar, S. A., & Zehra, B. (2010). Biofertilizers in organic agriculture. Journal of Phytology, 2, 42–54.Google Scholar
  76. Manawasinghe, I. S., Seneviratne, G., Zakeel, M. C. M., & Singhalage, I. D. (2014, November 13–14). Fungal-bacterial biofilms application improved rice root endophytic microbial community. In Proceedings of the 2nd international symposium on driving research towards economy: Opportunities and challenges, National Institute of Fundamental Studies, Kandy, p 49.Google Scholar
  77. Marroquí, S., Zorreguieta, A., Santamaría, C., et al. (2001). Enhanced symbiotic performance by Rhizobium tropici glycogen synthase mutants. Journal of Bacteriology, 183(3), 854–864.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Mayak, S., Tirosh, T., & Glick, B. R. (2004). Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Science, 166(2), 525–530.CrossRefGoogle Scholar
  79. Mazzola, M. (2007). Manipulation of rhizosphere bacterial communities to induce suppressive soils. Journal of Nematology, 39, 213–220.PubMedPubMedCentralGoogle Scholar
  80. McLaughlin, M. J., Hamon, R. E., McLaren, R. G., Speir, T. W., & Rogers, S. J. (2000). Review: A bioavailability-based rationale for controlling metal and metalloid contamination of agricultural land in Australia and New Zealand. Australian Journal of Soil Research, 38, 1037–1086.CrossRefGoogle Scholar
  81. Mendes, R., Kruijt, M., de Bruijn, I., et al. (2011). Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science, 332, 1097–1100.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Mikanová, O., & Nováková, J. (2002). Evaluation of P solubilization activity of soil microorganisms and its sensitivity of soluble phosphate. Rostlinná Výroba, 48, 397–400.Google Scholar
  83. Nadell, C. D., Xavier, J. B., & Foster, K. R. (2009). The sociobiology of biofilms. FEMS Microbiology Reviews, 33, 206–224.PubMedCrossRefPubMedCentralGoogle Scholar
  84. Neilands, J. B. (1981). Iron absorption and transport in microorganisms. Annual Review of Nutrition, 1, 27–46.PubMedCrossRefPubMedCentralGoogle Scholar
  85. Nelson, L. M. (2004). Plant growth promoting rhizobacteria (PGPR): Prospects for new inoculants. Crop Management, 3. Accessed 16 Aug 2013.CrossRefGoogle Scholar
  86. Pal, S. S. (1998). Interaction of an acid tolerant strain of phosphate solubilizing bacteria with a few acid tolerant crops. Plant and Soil, 198, 169–177.CrossRefGoogle Scholar
  87. Pankhurst, C. E., Hawke, B. G., Mc Donald, H. J., et al. (1995). Evaluation of soil biological properties as potential bioindicators of soil health. Australian Journal of Experimental Agriculture, 35, 1015–1028.CrossRefGoogle Scholar
  88. Patten, C. L., & Glick, B. R. (1996). Bacterial biosynthesis of indole3-acetic acid. Canadian Journal of Microbiology, 42(3), 207–220.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Pilon-Smits, E. (2005). Phytoremediation. Annual Review of Plant Biology, 56, 15–39.PubMedCrossRefPubMedCentralGoogle Scholar
  90. Pilon-Smits, E., & Freeman, J. L. (2006). Environmental cleanup using plants: Biotechnological advances and ecological considerations. Frontiers in Ecology and the Environment, 4(4), 203–210.CrossRefGoogle Scholar
  91. Prasanna, R., Nain, L., Ancha, R., Shrikrishna, J., Joshi, M., & Kaushik, B. D. (2009). Rhizosphere dynamics of inoculated cyanobacteria and their growth-promoting role in rice crop. Egyptian Journal of Biology, 11, 26–36.Google Scholar
  92. Prasanna, R., Triveni, S., Bidyarani, N., et al. (2014). Evaluating the efficacy of cyanobacterial formulations and biofilmed inoculants for leguminous crops. Archives of Agronomy and Soil Science, 60, 349–366.CrossRefGoogle Scholar
  93. Ramey, B. E., Koutsoudis, M., von Bodman, S. B., & Fuqua, C. (2004). Biofilm formation in plant–microbe associations. Current Opinion in Microbiology, 7, 602–609.PubMedCrossRefPubMedCentralGoogle Scholar
  94. Rana, A., Saharan, B., Nain, L., Prasanna, R., & Shivay, Y. S. (2012a). Enhancing micronutrient uptake and yield of wheat through bacterial PGPR consortia. Soil Science and Plant Nutrition, 58, 573–582.CrossRefGoogle Scholar
  95. Rana, A., Joshi, M., Prasanna, R., Shivay, Y. S., & Nain, L. (2012b). Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. European Journal of Soil Biology, 50, 118–126.CrossRefGoogle Scholar
  96. Reed, M. L. E., & Glick, B. R. (2005). Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Canadian Journal of Microbiology, 51(12), 1061–1069.PubMedCrossRefPubMedCentralGoogle Scholar
  97. Richardson, A. E. (2001). Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Functional Plant Biology, 28(9), 897–906.CrossRefGoogle Scholar
  98. Rodríguez, H., & Fraga, R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 17, 319–339.PubMedCrossRefPubMedCentralGoogle Scholar
  99. Rodriguez, H., Gonzalez, T., Goire, I., & Bashan, Y. (2004). Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp. Naturwissenschaften, 91(11), 552–555.PubMedCrossRefPubMedCentralGoogle Scholar
  100. Rudrappa, T., Biedrzycki, M. L., & Bais, H. P. (2008). Causes and consequences of plant associated biofilms. FEMS Microbiology Ecology, 64, 153–166.PubMedCrossRefPubMedCentralGoogle Scholar
  101. Saharan, B. S., & Nehra, V. (2011). Plant growth promoting rhizobacteria: A critical review. Life Sciences and Medicine Research, 21, 1–30.Google Scholar
  102. Salt, D. E., Blaylock, M., & Kumaretal, N. P. B. A. (1995). Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Nature Biotechnology, 13(5), 468–474.CrossRefGoogle Scholar
  103. Seneviratne, G. (2012). Are we wrong in conventional approach of biocontrol? Current Science, 103(12), 1387.Google Scholar
  104. Seneviratne, G., & Indrasena, I. K. (2006). Nitrogen fixation in lichens is important for improved rock weathering. Journal of Biosciences, 31, 639–643.PubMedCrossRefPubMedCentralGoogle Scholar
  105. Seneviratne, G., & Jayasinghearachchi, H. S. (2003). Mycelial colonization by bradyrhizobia and azorhizobia. Journal of Biosciences, 28, 243–247.PubMedCrossRefPubMedCentralGoogle Scholar
  106. Seneviratne, G., & Kulasooriya, S. A. (2013). Reinstating soil microbial diversity in agroecosystems: The need of the hour for sustainability and health. Agriculture, Ecosystems and Environment, 164, 181–182.CrossRefGoogle Scholar
  107. Seneviratne, G., Kecskés, M. L., & Kennedy, I. R. (2008). Biofilmed biofertilizers: Novel inoculants for efficient nutrient use in plants. In I. R. Kennedy et al, (Eds.), Efficient nutrient use in rice production in Vietnam achieved using inoculant biofertilizers. Proceedings of a project (SMCN/2002/073) workshop held in Hanoi, Vietnam, 12–13 October 2007 (ACIAR proceedings no. 130, p. 137). Canberra: Australian Centre for International Agricultural Research (ACIAR).Google Scholar
  108. Seneviratne, G., Thilakaratne, R. M. M. S., Jayasekara, A. P. D. A., Seneviratne, K. A. C. N., Padmathilake, K. R. E., & De Silva, M. S. D. L. (2009). Developing beneficial microbial biofilms on roots of non-legumes: A novel biofertilizing technique. In M. S. Khan, A. Zaidi, & J. Musarrat (Eds.), Microbial strategies for crop improvement (pp. 51–62). Heidelberg: Springer.CrossRefGoogle Scholar
  109. Seneviratne, G., Jayasekare, A. P. D. A., De Silva, M. S. D. L., & Abeysekera, U. P. (2011). Developed microbial biofilms can restore deteriorated conventional agricultural soils. Soil Biology and Biochemistry, 43, 1059–1062.CrossRefGoogle Scholar
  110. Seneviratne, G., Weeraratne, N., & Buddhika, U. V. A. (2013). Diversity of plant root associated microbes: Its regulation by introduced biofilms. In N. K. Arora (Ed.), Plant microbe symbiosis – Fundamentals and advances (pp. 351–372). New Delhi: Springer.CrossRefGoogle Scholar
  111. Sharma, S. K., Ramesh, A., Sharma, M. P., Joshi, O. P., Govaerts, B., Steenwerth, K. L., & Karlen, D. L. (2011). Microbial community structure and diversity as indicators for evaluating soil quality. In E. Lichtfoust (Ed.), Biodiversity, biofuels, agroforestry and conservation agriculture (pp. 317–358). Dordrecht: Springer.Google Scholar
  112. Six, J., Bossuyt, H., Degryze, S., & Denef, K. (2004). A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research, 79, 7–31.CrossRefGoogle Scholar
  113. Spaepen, S., & Vanderleyden, J. (2011). Auxin and plant-microbe interactions. Cold Spring Harbor Perspectives in Biology, 3(4).Google Scholar
  114. Swarnalakshmi, K., Prasanna, R., Kumar, A., Pattnaik, S., Chakravarty, K., Shivay, Y. S., Singh, R., & Saxena, A. K. (2013). Evaluating the influence of novel cyanobacterial biofilmed biofertilizers on soil fertility and plant nutrition in wheat. European Journal of Soil Biology, 55, 105–116.CrossRefGoogle Scholar
  115. Tao, G. C., Tian, S. J., Cai, M. Y., & Xie, G. H. (2008). Phosphate solubilizing and-mineralizing abilities of bacteria isolated from soils 11 project supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, the Ministry of Education of the P.R. China. Pedosphere, 18(4), 515–523.CrossRefGoogle Scholar
  116. Tien, T., Gaskin, M., & Hubbel, D. (1979). Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Applied and Environmental Microbiology, 37, 1016–1024.PubMedPubMedCentralGoogle Scholar
  117. Tiwary, D. K., Hasan, M. A., & Chattopadhyay, P. K. (1998). Studies on the effect of inoculation with Azotobacter and Azospirillum on growth, yield and quality of banana. Indian Journal of Agriculture, 42, 235–240.Google Scholar
  118. Toklikishvili, N., Dandurishvili, N., Tediashvili, M., et al. (2010). Inhibitory effect of ACC deaminase-producing bacteria on crown gall formation in tomato plants infected by Agrobacterium tumefaciens or A. vitis. Plant Pathology, 59(6), 1023–1030.CrossRefGoogle Scholar
  119. Triveni, S., Prasanna, R., Shukla, L., & Saxena, A. K. (2013). Evaluating the biochemical traits of novel Trichoderma-based biofilms for use as plant growth-promoting inoculants. Annals of Microbiology, 63, 1147–1156.CrossRefGoogle Scholar
  120. Tsavkelova, E. A., Klimova, S. Y., Cherdyntseva, T. A., & Netrusov, A. I. (2006). Microbial producers of plant growth stimulators and their practical use: A review. Applied Biochemistry and Microbiology, 42(2), 117–126.CrossRefGoogle Scholar
  121. Varma, L. N. (1993). Biofertilizer in agriculture. In P. K. Thampan (Ed.), Organics in soil health and crop production (p. 151). Kochi: Tree Crop Development Foundation.Google Scholar
  122. Wang, C., Knill, E., Glick, B. R., & Défago, G. (2000). Effect of transferring1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gacA derivative CHA96 on their growth-promoting and disease suppressive capacities. Canadian Journal of Microbiology, 46(10), 898–907.PubMedCrossRefPubMedCentralGoogle Scholar
  123. West, S. A., Diggle, S. P., Buckling, A., Gardner, A., & Griffin, A. S. (2007). The social lives of microbes. Annual Review of Ecology, Evolution, and Systematics, 38, 53–77.CrossRefGoogle Scholar
  124. Wu, S. C., Cao, Z. H., Li, Z. G., Cheong, K. C., & Wong, M. H. (2005). Effects of biofertilizers containing N fixer, P and K solubilizers and AM fungi on maize growth: A greenhouse trial. Geoderma, 125, 155–166.CrossRefGoogle Scholar
  125. Yao, H., He, Z., Wilson, M. J., & Campbell, C. D. (2000). Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use. Microbial Ecology, 40, 223–237.PubMedPubMedCentralGoogle Scholar
  126. Yu, T., Chen, J., Lu, H., & Zheng, X. (2009). Indole-3-acetic acid improves postharvest biological control of blue mold rot of apple by Cryptococcus laurentii. Phytopathology, 99, 258–264.PubMedCrossRefPubMedCentralGoogle Scholar
  127. Yuhashi, K. I., Ichikawa, N., Ezura, H., et al. (2000). Rhizobitoxine production by Bradyrhizobium elkanii enhances nodulation and competitiveness on Macroptilium atropurpureum. Applied and Environmental Microbiology, 66(6), 2658–2663.PubMedPubMedCentralCrossRefGoogle Scholar
  128. Zahir, Z. A., Munir, A., Asghar, H. N., Shaharoona, B., & Arshad, M. (2008). Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions. Journal of Microbiology and Biotechnology, 18(5), 958–963.Google Scholar
  129. Zakeel, M. C. M. (2015). Bio-filmed biofertilizers for sustainable agriculture and environment. SOBA Environment Magazine (pp. 49–51). Ministry of Environment.Google Scholar
  130. Ziegler, J. (1993). Health risk assessment research: The OTA report. Environmental Health Perspectives, 101(5), 402–406.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Plant Sciences, Faculty of AgricultureRajarata University of Sri LankaAnuradhapuraSri Lanka
  2. 2.Department of Biological Sciences, Faculty of Applied SciencesSouth Eastern University of Sri LankaSammanthuraiSri Lanka

Personalised recommendations