Advertisement

Helpful Linkages of Trichodermas in the process of Mycoremediation and Mycorestoration

  • Manoj Kumar Solanki
  • Brijendra Kumar Kashyap
  • Anjali Chandrol Solanki
  • Mukesh Kumar Malviya
  • Kanakala Surapathrudu
Chapter

Abstract

Toxic soil and polluted water enhanced the infertility of soil and directly affected the balanced ecosystem, which causes a destructive effect on the human society. Utilization of microorganism for the agricultural and soil management is a beneficial object, and many microorganisms have shown significant impact in the laboratory, but they failed in large-scale application. However, past reports discussed that Trichoderma is a potential organism for the plant disease management and plant growth promotion. To extend the consequence regarding Trichoderma, this chapter focused on the role of Trichoderma in the mycoremediation and mycorestoration. In this chapter, we discussed the Trichoderma linkages in bioremediation of pollutants like fungicides, pesticides, and heavy metals. Moreover, utilization of Trichoderma for the restoration of saline, acidic and metal contaminated soil. To balance the energy resources and ecosystem, we need to look forward with a microbial substitute like Trichoderma at large scale.

Keywords

Abiotic factors Biotic factors Bioremediation Trichoderma Soil management 

References

  1. Adams, P., De-Leij, F. A. A. M., & Lynch, J. M. (2007). Trichoderma harzianum Rifai 1295-22 mediates growth promotion of crack willow (Salix fragilis) saplings in both clean and metal-contaminated soil. Microbial Ecology, 54, 306–313.  https://doi.org/10.1007/s00248-006-9203-0.CrossRefPubMedGoogle Scholar
  2. Afify, M., El-Moneim, A., & Abo-El-Seoud, M. (2013). Stimulating of biodegradation of oxamyl pesticide by low dose gamma irradiated fungi. Journal of Plant Pathology and Microbiology, 4, 201.Google Scholar
  3. Ahmad, P., Hashem, A., Abd-Allah, E. F., et al. (2015). Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system. Frontiers in Plant Science, 6, 868.  https://doi.org/10.3389/fpls.2015.00868.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Alfano, G., Ivey, M. L. L., Cakir, C., et al. (2007). Systemic modulation of gene expression in tomato by Trichoderma hamatum 382. Phytopathology, 97, 429–437.  https://doi.org/10.1094/PHYTO-97-4-0429.CrossRefPubMedGoogle Scholar
  5. Ali, I., Barrech, D., & Malik, T. (2018). A review on Mycoremediation—The fungal bioremediation. Pure and Applied Biology, 7, 343–348.Google Scholar
  6. Almeida, F. B., Dos, R., Cerqueira, F. M., do Nascimento Silva, R., et al. (2007). Mycoparasitism studies of Trichoderma harzianum strains against Rhizoctonia solani: Evaluation of coiling and hydrolytic enzyme production. Biotechnology Letters, 29, 1189–1193.  https://doi.org/10.1007/s10529-007-9372-z.CrossRefPubMedGoogle Scholar
  7. Argumedo-Delira, R., Alarcón, A., Ferrera-Cerrato, R., et al. (2012). Tolerance and growth of 11 Trichoderma strains to crude oil, naphthalene, phenanthrene and benzo [a]pyrene. Journal of Environmental Management, 95, S291–S299.  https://doi.org/10.1016/j.jenvman.2010.08.011.CrossRefPubMedGoogle Scholar
  8. Arriagada, C., Aranda, E., Sampedro, I., et al. (2009). Contribution of the saprobic fungi Trametes versicolor and Trichoderma harzianum and the arbuscular mycorrhizal fungi Glomus deserticola and G. claroideum to arsenic tolerance of Eucalyptus globulus. Bioresource Technology, 100, 6250–6257.  https://doi.org/10.1016/j.biortech.2009.07.010.CrossRefPubMedGoogle Scholar
  9. Bae, H., Sicher, R. C., Kim, M. S., et al. (2009). The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. Journal of Experimental Botany, 60, 3279–3295.  https://doi.org/10.1093/jxb/erp165.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Baker, R. (1988). Trzchoderma SPP. as plant-growth stimulants. Critical Reviews in Biotechnology, 7, 97–106.  https://doi.org/10.3109/07388558809150724.CrossRefGoogle Scholar
  11. Bennett, J. W., Connick, W. J., Daigle, D., & Wunch, K. (2001). Formulation of fungi for in situ bioremediation. In G. M. Gadd (Ed.), Fungi in Bioremediation (pp. 97–112). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  12. Boukaew, S., Chuenchit, S., & Petcharat, V. (2011). Evaluation of Streptomyces spp. for biological control of Sclerotium root and stem rot and Ralstonia wilt of chili pepper. Biological Control, 56, 365–374.  https://doi.org/10.1007/s10526-010-9336-4.CrossRefGoogle Scholar
  13. Cao, L., Jiang, M., Zeng, Z., et al. (2008). Trichoderma atroviride F6 improves phytoextraction efficiency of mustard (Brassica juncea (L.) Coss. Var. foliosa bailey) in cd, Ni contaminated soils. Chemosphere, 71, 1769–1773.  https://doi.org/10.1016/j.chemosphere.2008.01.066.CrossRefPubMedGoogle Scholar
  14. Celar, F., & Valic, N. (2005). Effects of Trichoderma spp. and Gliocladium roseum culture filtrates on seed germination of vegetables and maize/Wirkung von Kulturfiltraten von Trichoderma spp. und Gliocladium roseum auf die Keimung der Samen von Gemüsepflanzen und Mais. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz/Journal of Plant Diseases and Protection, 112, 343–350.  https://doi.org/10.2307/43215635.CrossRefGoogle Scholar
  15. Chang, Y., Chang, Y., Baker, R., et al. (1986). Increased growth of plants in presence of the biological control agent Trichoderma harzianum. Plant Disease, 70, 145–148.CrossRefGoogle Scholar
  16. Chaparro, A. P., Carvajal, L. H., & Orduz, S. (2011). Fungicide tolerance of Trichoderma asperelloides and T. harzianum strains. Agricultural Sciences, 2, 301–307.CrossRefGoogle Scholar
  17. Chishimba, K. (2013). Response of wheat (Triticum Aestivum) to Vesicular Arbuscular Mycorrhiza (VAM) and Trichoderma on grain yield and uptake of phosphorous in acidic soils. Doctoral dissertation, University of Zambia.Google Scholar
  18. Contreras-Cornejo, H., & Macías-Rodríguez, L. (2009). Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant, 149, 1579–1592.  https://doi.org/10.1104/pp.108.130369.CrossRefGoogle Scholar
  19. Das, N., & Chandran, P. (2011). Microbial degradation of petroleum hydrocarbon contaminants: An overview. Biotechnology Research International, 11, 1–13.Google Scholar
  20. Devi, S., Sreenivasulu, Y., & Rao, K. (2017). Protective role of Trichoderma logibrachiatum (WT2) on Lead induced oxidative stress in Helianthus annus L. Indian Journal of Experimental Biology, 55, 235–241.Google Scholar
  21. Elad, Y., & Kapat, A. (1999). The Role of Trichoderma harzianum Protease in the Biocontrol of Botrytis cinerea. European Journal of Plant Pathology, 105, 177–189.  https://doi.org/10.1023/A:1008753629207.CrossRefGoogle Scholar
  22. El-Kassas, H. Y., & El-Taher, E. M. (2009). Optimization of batch process parameters by response surface methodology for Mycoremediation of chrome-VI by a chromium resistant strain of marine Trichoderma viride. Environmental Sciences, 5, 676–681.Google Scholar
  23. Ezzi, M. I., & Lynch, J. M. (2005). Biodegradation of cyanide by Trichoderma spp. and Fusarium spp. Enzyme and Microbial Technology, 36(7), 849–854.CrossRefGoogle Scholar
  24. Firdaus-e-Bareen, Shafiq, M., & Jamil, S. (2012). Role of plant growth regulators and a saprobic fungus in enhancement of metal phytoextraction potential and stress alleviation in pearl millet. Journal of Hazardous Materials, 237–238, 186–193.  https://doi.org/10.1016/j.jhazmat.2012.08.033.CrossRefPubMedGoogle Scholar
  25. Gajera, H. P., & Vakharia, D. N. (2012). Production of lytic enzymes by Trichoderma isolates during in vitro antagonism with Aspergillus niger, the causal agent of collar rot of peanut. Brazilian Journal of Microbiology, 43, 43–52.  https://doi.org/10.1590/S1517-83822012000100005.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gamalero, E., Berta, G., & Glick, B. R. (2009). The use of microorganisms to facilitate the growth of plants in saline soils. In Microbial strategies for crop improvement (pp. 1–22). Berlin/Heidelberg: Springer.Google Scholar
  27. Golzary, H., Panjehkeh, N., Ahmadzadeh, M., Salari, M., & Sedaghati-khoravi, E. (2011). Elucidating the parasitic capabilities of Trichoderma against Meloidogyne javanica on tomato. Insight Plant Disease, 1(1), 12–19.Google Scholar
  28. Guan, Z.-J., Lu, S.-B., Huo, Y.-L., et al. (2016). Do genetically modified plants affect adversely on soil microbial communities? Agriculture Ecosystems and Environment, 235, 289–305.  https://doi.org/10.1016/j.agee.2016.10.026.CrossRefGoogle Scholar
  29. Hajieghrari, B. (2010). Effect of some metal-containing compounds and fertilizers on mycoparasite Trichoderma species mycelia growth response. African Journal of Biotechnology, 6, 4025–4033.Google Scholar
  30. Harman, G. (2006). Overview of mechanisms and uses of Trichoderma spp. Phytopathology, 96, 190–194.  https://doi.org/10.1094/PHYTO-96-0190.CrossRefPubMedGoogle Scholar
  31. Harman, G., Howell, C. R., Viterbo, A., et al. (2004). Trichoderma species — Opportunistic, avirulent plant symbionts. Nature Reviews. Microbiology, 2, 43–56.  https://doi.org/10.1038/nrmicro797.CrossRefPubMedGoogle Scholar
  32. Hashem, A., Abd_Allah, E. F., Alqarawi, A. A., et al. (2014). Alleviation of abiotic salt stress in Ochradenus baccatus (Del.) by Trichoderma hamatum (Bonord.) Bainier. Journal of Plant Interactions, 9, 857–868.  https://doi.org/10.1080/17429145.2014.983568.CrossRefGoogle Scholar
  33. Hatvani, L., Manczinger, L., Kredics, L., & Szekeres, A. (2006). Production of Trichoderma strains with pesticide-polyresistance by mutagenesis and protoplast fusion. Antonie van Leeuwenhoek, 89, 387–393.CrossRefGoogle Scholar
  34. Howell, C. R. (2003). Mechanisms employed by Trichoderma species in the biological control of plant diseases: The history and evolution of current concepts. Plant Disease, 87, 4–10.  https://doi.org/10.1094/PDIS.2003.87.1.4.CrossRefPubMedGoogle Scholar
  35. Howell, C. R. (2006). Understanding the mechanisms employed by Trichoderma virens to effect biological control of cotton diseases. Phytopathology, 96, 178–180.  https://doi.org/10.1094/PHYTO-96-0178.CrossRefPubMedGoogle Scholar
  36. Hur, M., Kim, Y., Song, H.-R., et al. (2011). Effect of genetically modified poplars on soil microbial communities during the phytoremediation of waste mine tailings. Applied and Environmental Microbiology, 77, 7611–7619.  https://doi.org/10.1128/AEM.06102-11.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Inbar, J., Abramsky, M., Cohen, D., & Chet, I. (1994). Plant growth enhancement and disease control by Trichoderma harzianum in vegetable seedlings grown under commercial conditions. European Journal of Plant Pathology, 100, 337–346.  https://doi.org/10.1007/BF01876444.CrossRefGoogle Scholar
  38. Kamizono, A., Nishizawa, M., Teranishi, Y., et al. (1989). Identification of a gene conferring resistance to zinc and cadmium ions in the yeast Saccharomyces cerevisiae. Molecular & General Genetics, 219, 161–167.CrossRefGoogle Scholar
  39. Korolev, N., Rav David, D., & Elad, Y. (2008). The role of phytohormones in basal resistance and Trichoderma-induced systemic resistance to Botrytis cinerea in Arabidopsis thaliana. BioControl, 53, 667–683.  https://doi.org/10.1007/s10526-007-9103-3.CrossRefGoogle Scholar
  40. Kredics, L., Antal, Z., Manczinger, L., & Nagy, E. (2001). Breeding of mycoparasitic Trichoderma strains for heavy metal resistance. Letters in Applied Microbiology, 33, 112–116.  https://doi.org/10.1046/j.1472-765x.2001.00963.x.CrossRefPubMedGoogle Scholar
  41. Kumar, D. P., Singh, R. K., Anupama, P. D., et al. (2012). Studies on Exo-Chitinase production from Trichoderma asperellum UTP-16 and its characterization. Indian Journal of Microbiology, 52, 388–395.  https://doi.org/10.1007/s12088-011-0237-8.CrossRefPubMedGoogle Scholar
  42. Li, X., Han, S., Wang, G., et al. (2017). The fungus Aspergillus aculeatus enhances salt-stress tolerance, metabolite accumulation, and improves forage quality in perennial ryegrass. Frontiers in Microbiology, 8, 1664.  https://doi.org/10.3389/fmicb.2017.01664.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Liu, B., Glenn, D., & Buckley, K. (2008). Trichoderma communities in soils from organic, sustainable, and conventional farms, and their relation with southern blight of tomato. Soil Biology and Biochemistry, 40, 1124–1136.  https://doi.org/10.1016/j.soilbio.2007.12.005.CrossRefGoogle Scholar
  44. López Errasquín, E., & Vázquez, C. (2003). Tolerance and uptake of heavy metals by Trichoderma atroviride isolated from sludge. Chemosphere, 50, 137–143.CrossRefGoogle Scholar
  45. Lorito, M., Woo, S. L., Harman, G., & Monte, E. (2010). Translational research on Trichoderma: From ’Omics to the field. Annual Review of Phytopathology, 48, 395–417.  https://doi.org/10.1146/annurev-phyto-073009-114314.CrossRefPubMedGoogle Scholar
  46. Machido, D., Ezeonuegbu, B., & Yakubu, S. E. (2011). Capacity of isolates of six genera of filamentous fungi to remove Lead, nickel and cadmium from refinery effluent. Journal of Environmental Earth Science, 6, 72–76.Google Scholar
  47. Mastouri, F., & Harman, G. (2009). Beneficial microorganism Trichoderma harzianum induces tolerance to multiple environmental and physiological stresses during germination in seeds. In: ISMPMI 2009 XIV Congress, Quebec, Canada.Google Scholar
  48. Mastouri, F., Björkman, T., & Harman, G. (2010). Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology, 100, 1213–1221.  https://doi.org/10.1094/PHYTO-03-10-0091.CrossRefPubMedGoogle Scholar
  49. Matsubara, M., Lynch, J. M., & De Leij, F. A. A. M. (2006). A simple screening procedure for selecting fungi with potential for use in the bioremediation of contaminated land. Enzyme and Microbial Technology, 39, 1365–1372.  https://doi.org/10.1016/j.enzmictec.2005.04.025.CrossRefGoogle Scholar
  50. Mayo, S., Gutiérrez, S., Malmierca, M. G., et al. (2015). Influence of Rhizoctonia solani and Trichoderma spp. in growth of bean (Phaseolus vulgaris L.) and in the induction of plant defense-related genes. Frontiers in Plant Science, 6, 685.  https://doi.org/10.3389/fpls.2015.00685.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Mohammad, N., Alam, M. Z., Kabbashi, N. A., & Ahsan, A. (2012). Effective composting of oil palm industrial waste by filamentous fungi: A review. Resources, Conservation and Recycling, 58, 69–78.  https://doi.org/10.1016/j.resconrec.2011.10.009.CrossRefGoogle Scholar
  52. Mohsenzadeh, F., & Shahrokhi, F. (2014). Biological removing of cadmium from contaminated media by fungal biomass of Trichoderma species. Journal of Environmental Health Science and Engineering, 12, 102.  https://doi.org/10.1186/2052-336X-12-102.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Mukhlish, M., Najnin, F., & Rahman, M. (2013). Photocatalytic degradation of different dyes using TiO2 with high surface area: A kinetic study. Journal of Science, 5, 301–314.Google Scholar
  54. Nongmaithem, N., Roy, A., & Bhattacharya, P. M. (2016). Screening of Trichoderma isolates for their potential of biosorption of nickel and cadmium. Brazilian Journal of Microbiology, 47, 305–313.  https://doi.org/10.1016/j.bjm.2016.01.008.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Okoth, S., Roimen, H., Mutsotso, B., et al. (2007). Land use systems and distribution of Trichoderma species in Embu region, Kenya. Tropical and Subtropical Agroecosystems, 7, 105–122.Google Scholar
  56. Ousley, M. A., Lynch, J. M., & Whipps, J. M. (1993). Effect of Trichoderma on plant growth: A balance between inhibition and growth promotion. Microbial Ecology, 26, 277–285.  https://doi.org/10.1007/BF00176959.CrossRefPubMedGoogle Scholar
  57. Ousley, M. A., Lynch, J. M., & Whipps, J. M. (1994). Potential of Trichoderma spp. as consistent plant growth stimulators. Biology and Fertility of Soils, 17, 85–90.  https://doi.org/10.1007/BF00337738.CrossRefGoogle Scholar
  58. Patil, H. J., & Solanki, M. K. (2016). Microbial inoculant: Modern era of fertilizers and pesticides. In D. Singh, H. Singh, & R. Prabha (Eds.), Microbial inoculants in sustainable agricultural productivity: Vol. 1: Research perspectives. New Delhi: Springer.Google Scholar
  59. Pelcastre, M., Ibarra, J., Navarrete, A., et al. (2013). Bioremediation perspectives using autochthonous species of Trichoderma sp. for degradation of atrazine in agricultural soil from the Tulancingo Valley, Hidalgo, Mexico. Tropical and Subtropical Agroecosystems, 16, 265–276.Google Scholar
  60. Presta, A., & Stillman, M. J. (1997). Incorporation of copper into the yeast Saccharomyces cerevisiae. Identification of Cu(I)–metallothionein in intact yeast cells. Journal of Inorganic Biochemistry, 66, 231–240.CrossRefGoogle Scholar
  61. Rawat, M. R., & Tewari, L. (2010). Transmission electron microscopic study of the cytological changes in Sclerotium rolfsii parasitized by a biocontrol fungus Trichoderma sp. Mycology, 1, 237–241.  https://doi.org/10.1080/21501203.2010.536172.CrossRefGoogle Scholar
  62. Rawat, L., Singh, Y., Shukla, N., & Kumar, J. (2011). Alleviation of the adverse effects of salinity stress in wheat (Triticum aestivum L.) by seed biopriming with salinity tolerant isolates of Trichoderma harzianum. Plant and Soil, 347, 387–400.  https://doi.org/10.1007/s11104-011-0858-z.CrossRefGoogle Scholar
  63. Rodríguez-González, Á., Mayo, S., González-López, Ó., et al. (2017). Inhibitory activity of Beauveria bassiana and Trichoderma spp. on the insect pests Xylotrechus arvicola (Coleoptera: Cerambycidae) and Acanthoscelides obtectus (Coleoptera: Chrisomelidae: Bruchinae). Environmental Monitoring and Assessment, 189, 12.  https://doi.org/10.1007/s10661-016-5719-z.CrossRefPubMedGoogle Scholar
  64. Sabaratnam, S., & Traquair, J. A. (2002). Formulation of a Streptomyces biocontrol agent for the suppression of Rhizoctonia damping-off in tomato transplants. Biological Control, 23, 245–253.  https://doi.org/10.1006/bcon.2001.1014.CrossRefGoogle Scholar
  65. Safiya, Y., Aziz, A., Azwady, N., et al. (2012). Evaluation of pH and temperature effects on mycoremediation of phenanthrene by Trichoderma sp. Acta Biologica Malaysiana, 3, 35–42.Google Scholar
  66. Sahu, A., Mandal, A., Thakur, J., et al. (2012). Exploring bioaccumulation efficacy of Trichoderma viride: An alternative bioremediation of cadmium and Lead. National Academy Science Letters, 35, 299–302.  https://doi.org/10.1007/s40009-012-0056-4.CrossRefGoogle Scholar
  67. Saud, H., Sariah, M., & Ismail, M. (2013). Potential lignocellulolytic Trichoderma for bioconversion of oil palm empty fruit bunches. Australian Journal of Crop Science, 7, 425–431.Google Scholar
  68. Shanmugam, V., & Kanoujia, N. (2011). Biological management of vascular wilt of tomato caused by Fusarium oxysporum f. sp. lycospersici by plant growth-promoting rhizobacterial mixture. Biological Control, 57, 85–93.  https://doi.org/10.1016/j.biocontrol.2011.02.001.CrossRefGoogle Scholar
  69. Shoresh, M., Harman, G., & Mastouri, F. (2010). Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology, 48, 21–43.  https://doi.org/10.1146/annurev-phyto-073009-114450.CrossRefPubMedGoogle Scholar
  70. Siddiquee, S., Aishah, S., & Azad, S. (2013). Tolerance and biosorption capacity of Zn2+, Pb2+, Ni3+ and Cu2+ by filamentous fungi (Trichoderma harzianum, T. aureoviride and T. virens). Advances in the Biosciences, 4, 570–583.  https://doi.org/10.4236/abb.2013.44075.CrossRefGoogle Scholar
  71. Sing, N. N., Zulkharnain, A., Roslan, H. A., et al. (2014). Bioremediation of PCP by Trichoderma and Cunninghamella strains isolated from sawdust. Brazilian Archives of Biology and Technology, 57, 811–820.  https://doi.org/10.1590/S1516-8913201402852.CrossRefGoogle Scholar
  72. Singh, P., & Nautiyal, C. (2012). A novel method to prepare concentrated conidial biomass formulation of Trichoderma harzianum for seed application. Journal of Applied Microbiology, 113, 1442–1450.  https://doi.org/10.1111/j.1365-2672.2012.05426.x.CrossRefPubMedGoogle Scholar
  73. Singh, L. P., Gill, S. S., & Tuteja, N. (2011). Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signaling & Behavior, 6, 175–191.  https://doi.org/10.4161/PSB.6.2.14146.CrossRefGoogle Scholar
  74. Solanki, M. K., Singh, N., Singh, R. K., et al. (2011). Plant defense activation and management of tomato root rot by a chitin-fortified Trichoderma/Hypocrea formulation. Phytoparasitica, 39, 471–481.  https://doi.org/10.1007/s12600-011-0188-y.CrossRefGoogle Scholar
  75. Tang, J., Liu, L., Huang, X., et al. (2010). Proteomic analysis of Trichoderma atroviride mycelia stressed by organophosphate pesticide dichlorvos. Canadian Journal of Microbiology, 56, 121–127.  https://doi.org/10.1139/W09-110.CrossRefPubMedGoogle Scholar
  76. Teng, Y., Luo, Y., Ma, W., et al. (2015). Trichoderma reesei FS10-C enhances phytoremediation of cd-contaminated soil by sedum plumbizincicola and associated soil microbial activities. Frontiers in Plant Science, 9, 438.  https://doi.org/10.3389/fpls.2015.00438.CrossRefGoogle Scholar
  77. Thakur, M. (2014). Mycoremediation - a potential tool to control soil pollution. Asian Journal of Environmental Science, 9, 24–31.CrossRefGoogle Scholar
  78. Thomas, S., Becker, P., Pinza, M., et al. (1999). Mycoremediation: A method for test to pilot scale application. In: INTERNATIONAL IN SITU AND ON-SITE BIOREMEDIATION SYMPOSIUM, International in situ and on-site bioremediation symposium; phytoremediation and innovative strategies for specialized remedial applications by Battell Press, Columbus, OH, 5, 6: 63–68.Google Scholar
  79. Ting, A. S. Y., & Choong, C. C. (2009). Bioaccumulation and biosorption efficacy of Trichoderma isolate SP2F1 in removing copper (Cu(II)) from aqueous solutions. World Journal of Microbiology and Biotechnology, 25, 1431–1437.  https://doi.org/10.1007/s11274-009-0030-6.CrossRefGoogle Scholar
  80. Trabelsi, D., & Mhamdi, R. (2013). Microbial inoculants and their impact on soil microbial communities: A review. BioMed Research International, 2013, 863240.  https://doi.org/10.1155/2013/863240.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Tripathi, R. D., Srivastava, S., Mishra, S., et al. (2007). Arsenic hazards: Strategies for tolerance and remediation by plants. Trends in Biotechnology, 25, 158–165.  https://doi.org/10.1016/j.tibtech.2007.02.003.CrossRefPubMedGoogle Scholar
  82. Tripathi, P., Singh, P. C., Mishra, A., et al. (2013). Trichoderma: A potential bioremediator for environmental clean up. Clean Technologies and Environmental Policy, 15, 541–550.  https://doi.org/10.1007/s10098-012-0553-7.CrossRefGoogle Scholar
  83. Vadassery, J., Tripathi, S., Prasad, R., et al. (2009). Monodehydroascorbate reductase 2 and dehydroascorbate reductase 5 are crucial for a mutualistic interaction between Piriformospora indica and Arabidopsis. Journal of Plant Physiology, 166, 1263–1274.  https://doi.org/10.1016/j.jplph.2008.12.016.CrossRefPubMedGoogle Scholar
  84. Van Gestel, K., Mergaert, J., Swings, J., et al. (2003). Bioremediation of diesel oil-contaminated soil by composting with biowaste. Environmental Pollution, 125, 361–368.  https://doi.org/10.1016/S0269-7491(03)00109-X.CrossRefPubMedGoogle Scholar
  85. Volesky, B., May, H., & Holan, Z. R. (1993). Cadmium biosorption by Saccharomyces cerevisiae. Biotechnology and Bioengineering, 41, 826–829.  https://doi.org/10.1002/bit.260410809.CrossRefPubMedGoogle Scholar
  86. Wilberforce, E. M., Boddy, L., Griffiths, R., & Griffith, G. W. (2003). Agricultural management affects communities of culturable root-endophytic fungi in temperate grasslands. Soil Biology and Biochemistry, 35, 1143–1154.  https://doi.org/10.1016/S0038-0717(03)00176-7.CrossRefGoogle Scholar
  87. Woo, S. L., Scala, F., Ruocco, M., & Lorito, M. (2006). The molecular biology of the interactions between Trichoderma spp., Phytopathogenic fungi, and plants. Phytopathology, 96, 181–185.  https://doi.org/10.1094/PHYTO-96-0181.CrossRefPubMedGoogle Scholar
  88. Yildirim, E., Taylor, A. G., & Spittler, T. D. (2006). Ameliorative effects of biological treatments on growth of squash plants under salt stress. Scientia Horticulturae (Amsterdam), 111, 1–6.  https://doi.org/10.1016/j.scienta.2006.08.003.CrossRefGoogle Scholar
  89. Zafra, G., Moreno-Montaño, A., & Absalón, Á. (2015). Degradation of polycyclic aromatic hydrocarbons in soil by a tolerant strain of Trichoderma asperellum. Science and Pollution, 22, 1034–1042.  https://doi.org/10.1007/s11356-014-3357-y.CrossRefGoogle Scholar
  90. Zahran, Z., Mohamed Nor, N. M. I., Dieng, H., et al. (2017). Laboratory efficacy of mycoparasitic fungi (Aspergillus tubingensis and Trichoderma harzianum) against tropical bed bugs (Cimex hemipterus) (Hemiptera: Cimicidae). Asian Pacific Journal of Tropical Biomedicine, 7, 288–293.  https://doi.org/10.1016/J.APJTB.2016.12.021.CrossRefGoogle Scholar
  91. Zhou, X., Liu, L., Chen, Y., et al. (2007). Efficient biodegradation of cyanide and ferrocyanide by Na-alginate beads immobilized with fungal cells of Trichoderma koningii. Canadian Journal of Microbiology, 53, 1033–1037.  https://doi.org/10.1139/W07-070.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Manoj Kumar Solanki
    • 1
  • Brijendra Kumar Kashyap
    • 2
  • Anjali Chandrol Solanki
    • 3
  • Mukesh Kumar Malviya
    • 4
  • Kanakala Surapathrudu
    • 5
  1. 1.Department of Food Quality & Safety, Institute for Post-harvest and Food SciencesThe Volcani Center, Agricultural Research OrganizationRishon LeZionIsrael
  2. 2.Department of BiotechnologyInstitute of Engineering and Technology, Bundelkhand UniversityJhansiIndia
  3. 3.Soil Science and Agriculture ChemistryJawaharlal Nehru Agricultural UniversityJabalpurIndia
  4. 4.Guangxi Crop Genetic Improvement and Biotechnology LabGuangxi Academy of Agricultural SciencesNanningChina
  5. 5.Department of Plant Pathology and MicrobiologyIowa State UniversityAmesUSA

Personalised recommendations