Advertisement

Plant Growth and Health Promoting Plant-Microbe Interactions

  • Baby Summuna
  • Sachin Gupta
  • Parveez Ahmed Sheikh
Chapter

Abstract

The interaction of microbes with plants at the molecular biology and molecular genetics level describes a big concern for a broad range of scientific studies. These interactions can be of various types including pathogenic, symbiotic, and associative, all of which have an impact on plant productivity, disease resistance, and stress tolerance. Such plant-microbe interactions determine the plant fitness and soil health. The important functions for the growth of plants are fulfilled by the microorganisms associated with them. Plant fitness depends on the availability of beneficial microbiome and available nutrient status. There are various mechanisms which are either directly or indirectly implicated in the suppression of soilborne pathogens leading to ameliorated plant health. Microorganisms live as complex populations in the soil and not in the form of pure culture. More than one type of organisms is present in every soil particle. Therefore, the sum of abiotic and biotic components of soil comprise the microbial ecosystem of soil. Most of these organisms are dependent upon one another for direct and indirect nutrients. Some organisms are in competition with one another for energy sources and the elements and components used as nutrients. Hence, numerous associations are formed among soil microorganisms. The nature of microbiome is determined by the biological equilibrium which is a result of interaction among the microbial community. The individual microbes may develop various kinds of interactions such as neutral or beneficial or detrimental.

Keywords

Plant growth Plant health Rhizosphere Endophytes 

References

  1. Arroyave, C., Tolrà, R., Chaves, L., de Souza, M. C., Barceló, J., & Poschenrieder, C. (2018). A proteomic approach to the mechanisms underlying activation of aluminium resistance in roots of Urochloa decumbens. Journal of Inorganic Biochemistry, 181, 145–151.CrossRefGoogle Scholar
  2. Badri, D. V., & Vivanco, J. M. (2009). Regulation and function of root exudates. Plant, Cell & Environment, 32(6), 666–681.CrossRefGoogle Scholar
  3. Badri, D. V., Loyola-Vargas, V. M., Broeckling, C. D., De-la-Peña, C., Jasinski, M., Santelia, D., Martinoia, E., Sumner, L., Banta, L. M., Stermitz, F., & Vivanco, J. M. (2008). Altered profile of secondary metabolites in the root exudates of Arabidopsis ATP-binding cassette transporter mutants. Plant Physiology, 146(2), 762–771.  https://doi.org/10.1104/pp.107.109587. PMID:18065561.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Badri, D. V., Chaparro, J. M., Zhang, R., Shen, Q., & Vivanco, J. M. (2013a). Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. The Journal of Biological Chemistry, 288(7), 4502–4512.CrossRefGoogle Scholar
  5. Badri, D. V., Zolla, G., Bakker, M. G., Manter, D. K., & Vivanco, J. M. (2013b). Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior. The New Phytologist, 198(1), 264–273.CrossRefGoogle Scholar
  6. Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., & Vivanco, J. M. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 57(1), 233–266.CrossRefGoogle Scholar
  7. Bardgett, R. D. (2018). Linking aboveground–belowground ecology: A short historical perspective. In Aboveground–belowground community ecology (pp. 1–17). Cham: Springer.Google Scholar
  8. Berg, G. (2009). Plant–microbe interactions promoting plant growth and health: Perspectives for controlled use of microorganisms in agriculture. Applied Microbiology and Biotechnology, 84(1), 11–18.CrossRefGoogle Scholar
  9. Bulgarelli, D., Chlaeppi, K. S., Spaepen, S., Ver Loren Themaat, E., & Schulze-Lefert, P. (2013). Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 64, 807–838.CrossRefGoogle Scholar
  10. Burdman, S., Jurkevitch, E., & Okon, Y. (2000). Recent advance in the use of plant growth promoting rhizobacteria (PGPR) in agriculture. In N. S. Subba Rao & Y. R. Dommergues (Eds.), Microbial interaction in agriculture forestry (Vol. II, pp. 229–250). Enfield: Science Publishers.Google Scholar
  11. Dimkpa, C., Weinand, T., & Asch, F. (2009). Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant, Cell & Environment, 32, 1682–1694.CrossRefGoogle Scholar
  12. Fellbaum, C. R., Gachomo, E. W., Beesetty, Y., Choudhari, S., Strahan, G. D., Pfeffer, P. E., Kiers, E. T., & Bücking, H. (2012). Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences, 109(7), 2666–2671.CrossRefGoogle Scholar
  13. Hallmann, J., & Berg, G. (2006). Spectrum and population dynamics of bacterial root endophytes. In B. Schulz, C. Boyle, & N. Sieber (Eds.), Soil biology (Vol. 9, pp. 15–31). Berlin: Springer.Google Scholar
  14. Hardoim, P. R., Van Overbeek, L. S., & Van Elsas, J. D. (2008). Properties of bacterial endophytes and their proposed role in plant growth. Trends in Microbiology, 16, 463–471.CrossRefGoogle Scholar
  15. Hayat, R., Ahmed, I., & Sheirdil, R. A. (2018). An overview of Plant Growth Promoting Rhizobacteria (PGPR) for sustainable agriculture. In M. Ashraf et al. (Eds.), Crop production for agricultural improvement (pp. 558–571). Dordrecht: Springer.Google Scholar
  16. Hennion, N., Durand, M., Vriet, C., Doidy, J., Maurousset, L., Lemoine, R., & Pourtau, N. (2018). Sugars en route to the roots. Transport, metabolism and storage within plant roots and towards microorganisms of the rhizosphere. Physiologia Plantarum, 165(1), 44–57.Google Scholar
  17. Ishimaru, Y., Kakei, Y., Shimo, H., Bashir, K., Sato, Y., Sato, Y., Uozumi, N., Nakanishi, H., & Nishizawa, N. K. (2011). A rice phenolic efflux transporter is essential for solubilizing precipitated apoplasmic iron in the plant stele. The Journal of Biological Chemistry, 286(28), 24649–24655.CrossRefGoogle Scholar
  18. Jousset, A., Rochat, L., Lanoue, A., Bonkowski, M., Keel, C., & Scheu, S. (2011). Plants respond to pathogen infection by enhancing the antifungal gene expression of root-associated bacteria. Molecular Plant-Microbe Interactions, 24, 352–358.CrossRefGoogle Scholar
  19. Kiers, E. T., Duhamel, M., Beesetty, Y., Mensah, J. A., Franken, O., Verbruggen, E., Fellbaum, C. R., Kowalchuk, G. A., Hart, M. M., Bago, A., Palmer, T. M., West, S. A., Vandenkoornhuyse, P., Jansa, J., & Bücking, H. (2011). Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science, 333(6044), 880–882.CrossRefGoogle Scholar
  20. Lareen, A., Burton, F., & Schäfer, P. (2016). Plant root-microbe communication in shaping root microbiomes. Plant Molecular Biology, 90(6), 575–587.CrossRefGoogle Scholar
  21. Liu, J., Magalhaes, J. V., Shaff, J., & Kochian, L. V. (2009). Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. The Plant Journal, 57(3), 389–399.CrossRefGoogle Scholar
  22. Magalhaes, J. V., Liu, J., Guimarães, C. T., Lana, U. G. P., Alves, V. M. C., Wang, Y.-H., Schaffert, R. E., Hoekenga, O. A., Piñeros, M. A., Shaff, J. E., Klein, P. E., Carneiro, N. P., Coelho, C. M., Trick, H. N., & Kochian, L. V. (2007). A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nature Genetics, 39(9), 1156–1161.CrossRefGoogle Scholar
  23. Mendes, R., Kruijt, M., de Bruijn, I., Dekkers, E., van der Voort, Schneider, J. H., Piceno, Y. M., DeSantis, T. Z., Andersen, G. L., Bakker, P. A., & Raaijmakers, J. M. (2011). Deciphering the rhizosphere microbiome for disease suppressive bacteria. Science, 332(6033), 1097–1100.CrossRefGoogle Scholar
  24. Morgan, J. A. W., Bending, G. D., & White, P. J. (2005). Biological costs and benefits to plant–microbe interactions in the rhizosphere. Journal of Experimental Botany, 56(417), 1729–1739.CrossRefGoogle Scholar
  25. Morrissey, J. P., Dow, J. M., Mark, G. L., & O’Gara, F. (2004). Are microbes at the root of a solution to world food production? EMBO Reports, 5(10), 922–926.CrossRefGoogle Scholar
  26. Newton, A. C., Fitt, B. D. L., Atkins, S. D., Walters, D. R., & Daniell, T. J. (2010). Pathogenesis, parasitism and mutualism in the trophic space of microbe– plant interactions. Trends in Microbiology, 18(8), 365–373.Google Scholar
  27. Nihorimbere, V., Ongena, M., Smargiassi, M., & Thonart, P. (2011). Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnology, Agronomy and Society and Environment, 15, 327–337.Google Scholar
  28. Pedraza, R., Motok, J., Tortora, M., Salazar, S., & Díaz-Ricci, J. (2007). Natural occurrence of Azospirillum brasilense in strawberry plants. Plant and Soil, 295, 169–178.CrossRefGoogle Scholar
  29. Poudel, R., Jumpponen, A., Kennelly, M. M., Rivard, C. L., Gomez-Montano, L., & Garrett, K. A. (2018). Rootstocks shape the rhizobiome: Rhizosphere and endosphere bacterial communities in the grafted tomato system. Applied and Environmental Microbiology. AEM-01765.Google Scholar
  30. Raaijmakers, J., Paulitz, T., Steinberg, C., Alabouvette, C., & Moënne-Loccoz, Y. (2009). The rhizosphere: A playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant and Soil, 321(1–2), 341–361.CrossRefGoogle Scholar
  31. Selvakumar, G., Panneerselvam, P., & Ganeshamurthy, A. N. (2012). Bacterial mediated alleviation of abiotic stress in crops. In D. K. Maheshwari (Ed.), Bacteria in agrobiology: Stress management (pp. 205–224). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  32. Singh, B. K., Millard, P., Whiteley, A. S., & Murrell, J. C. (2004). Unravelling rhizosphere–microbial interactions: Opportunities and limitations. Trends in Microbiology, 12(8), 386–393.CrossRefGoogle Scholar
  33. Smith, S. E., & Read, D. J. (2008). Mycorrhizal symbiosis (3rd ed.). San Diego: Academic Press.Google Scholar
  34. Tortora, M. L., Díaz-Ricci, J. C., & Pedraza, R. O. (2011). Azospirillum brasilense siderophores with antifungal activity against Colletotrichum acutatum. Archives of Microbiology, 193(4), 275–286.CrossRefGoogle Scholar
  35. Verma, A., Kumar, S., Kumar, G., Saini, J. K., Agrawal, R., Satlewal, A., & Ansari, M. W. (2018). Rhizosphere metabolite profiling: An opportunity to understand plant-microbe interactions for crop improvement. In Crop improvement through microbial biotechnology (pp. 343–361). Amsterdam: Elsevier.CrossRefGoogle Scholar
  36. Weston, L. A., Ryan, P. R., & Watt, M. (2012). Mechanisms for cellular transport and release of allelochemicals from plant roots into the rhizosphere. Journal of Experimental Botany, 63, 3445–3454.CrossRefGoogle Scholar
  37. Yadav, A. N. (2018). Biodiversity and biotechnological applications of host-specific endophytic fungi for sustainable agriculture and allied sectors. Acta Scientific Microbiology, 1.5, 1–5.Google Scholar
  38. Yang, J., Kloepper, J. W., & Ryu, C. M. (2009). Rhizosphere bacteria help plants tolerate abiotic stress. Trends in Plant Science, 14, 1–4.CrossRefGoogle Scholar
  39. Zamioudis, C., & Pieterse, C. M. J. (2012). Modulation of host immunity by beneficial microbes. Molecular Plant-Microbe Interactions, 25(2), 139–150.CrossRefGoogle Scholar
  40. Zhang, J., Subramanian, S., Stacey, G., & Yu, O. (2009). Flavones and flavonols play distinct critical roles during nodulation of Medicago truncatula by Sinorhizobium meliloti. The Plant Journal, 57(1), 171–183.CrossRefGoogle Scholar
  41. Zolla, G., Badri, D. V., Bakker, M. G., Manter, D. K., & Vivanco, J. M. (2013). Soil microbiomes vary in their ability to confer drought tolerance to Arabidopsis. Applied Soil Ecology, 68, 1–9.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Baby Summuna
    • 1
  • Sachin Gupta
    • 2
  • Parveez Ahmed Sheikh
    • 3
  1. 1.Division of Plant PathologyFaculty of Agriculture, Wadura, SKUAST-KashmirSrinagarIndia
  2. 2.Division of Plant Pathology ChathaSKUAST-JammuSrinagarIndia
  3. 3.KVK, KulgamSKUAST-KashmirSrinagarIndia

Personalised recommendations