Significance of Microbial Agents in Augmentation of Plant Health

  • R. N. Lakshmipathi
  • B. Subramanyam
  • B. D. Narotham Prasad


The role of soil microorganisms in establishment of plants is well known. However, it appears that their potential under field conditions is yet to be realized consistently. The main constraint for their ineffectiveness is establishment of introduced microbial populations in soil system, which in native microflora act antagonistically with the introduced ones. Further, use of biofertilizers is limited owing to the factors of reduced shelf life in storage conditions, inconsistent growth responses caused by abiotic stress factors such as higher temperatures during storage, drought, water stagnation in field conditions, etc. An alternative to this could be the development of consortial formulations with beneficial microorganisms having different physiological capabilities to sustain their activity in wide range of field conditions. Entrapment into natural polymers such as alginate and their introduction to soil has been evaluated, and the results have revealed that they protect entrapped organisms from native soil microflora and further enable them to interact synergistically, thus allowing them to finally develop to a stable microbial community in rhizosphere. This could enable them to have higher chances of establishing in soil and cause desirable effect on plant.


Microflora Biofertilizers Consortia Polymers Synergistically 


  1. Alagawadi, A. R., & Gaur, A. G. (1988). Interaction between Azospirillum brasilenseand phosphate solubilizing bacteria and their influence on yield and nutrient uptake of sorghum. Zentrablatt fur Mikrobiologie, 143, 637–643.CrossRefGoogle Scholar
  2. Ananthanaik, T. N., Earanna, & Suresh, C. K. (2007). Influence of Azotobacter chroococcum strains on growth and biomass of Adathodavasica Nees. Karnataka Journal of Agricultural Science, 20, 613–615.Google Scholar
  3. Anjum, M. A., Sajjad, M. R., Akhtar, N., Qureshi, M. A., Iqbal, A., Jami, A. R., & Mahmud-Ul-Hasan. (2007). Response of cotton to plant growth promoting rhizobacteria (PGPR) inoculation under different levels of nitrogen. Journal of Agricultural Research, 45, 135–143.Google Scholar
  4. Ansari, R. A., & Mahmood, I. (2017). Optimization of organic and bio-organic fertilizers on soil properties and growth of pigeon pea. Scientia Horticulturae, 226, 1–9.Google Scholar
  5. Arora, N. K., Kharel, E., Naraian, R., & Maheshwari, D. K. (2008). Sawdust as a superior carrier for production of multipurpose bioinoculant using plant growth promoting rhizobial and pseudomonad strains and their impact on productivity of Trifolium repense. Current Science, 95, 90–94.Google Scholar
  6. Artursson, V. (2005). Bacterial-fungal interactions, highlighted using Microbiomics: Potential application for plant growth enhancement. (Doctoral thesis). Swedish University of Agricultural Sciences, Uppsala.Google Scholar
  7. Askary, M. R., Mostajeran, A., Amooaghaei, R., & Mostajeran, M. (2009). Influence of the co-inoculation Azospirillumbrasilenseand Rhizobium melilotiplus 2,4-D on grain yield and N, P, K content of Triticumaestivum (Cv. Baccros and Mahdavi). Journal of Agriculture and Environmental Science, 5, 296–307.Google Scholar
  8. Bakulin, M. K., Grudtsyna, A. S., & Pletneva, A. (2007). Biological fixation of nitrogen and growth of bacteria of the genus Azotobacter in liquid media in the presence of perfluorocarbons. Applied Biochemistry and Microbiology, 4, 399–402.CrossRefGoogle Scholar
  9. Bandara, W. M. M. S., Seneviratne, G., & Kulasooriya, S. A. (2006). Interactions among endophytic bacteria and fungi: Effects and potentials. Journal of Biosciences, 31, 645–650.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Barea, J. M., Azcon, R., & Azcon-Aguilar, C. (2002). Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Van Leeuwenhoek, 81(1–4), 343–351.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bashan, Y. (1986). Alginate beads as synthetic inoculant carriers for the slow release of bacteria that affect plant growth. Applied and Environmental Microbiology, 51, 1089–1098.PubMedPubMedCentralGoogle Scholar
  12. Bashan, Y., & Holguin, G. (1997). Azospirillum-plant relationships: Environmental and physiological advances (1990–1996). Canadian Journal of Microbiology, 43, 103–121.CrossRefGoogle Scholar
  13. Bashan, Y., Hernandez, J. P., Levya, L. A., & Bacilio, M. (2002). Alginate microbeads as inoculant carriers for plant growth-promoting bacteria. Biology and Fertility of Soils, 35, 359–368.CrossRefGoogle Scholar
  14. Belimov, A. A., Kojemiakov, A. P., & Churaliyera, C. V. (1995). Interaction between barley and mixed culture of nitrogen fixing and phosphate solubilizing bacteria. Plant and Soil, 173, 29–37.CrossRefGoogle Scholar
  15. Bethlenfalvay, G. J. (1992). Mycorrhizae and crop productivity. In G. J. Bethlenfalvay & R. G. Lindermen (Eds.), Mycorrhizae in sustainable agriculture (pp. 1–27). Madison: American Society of Agronomy.Google Scholar
  16. Bolan, N. S. (1991). A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil, 134, 189–207.CrossRefGoogle Scholar
  17. Bowen, G. P., & Rovira, A. D. (1976). Microbial colonization of plant roots. Annual Review of Phytopathology, 14, 121–144.CrossRefGoogle Scholar
  18. Brenner, K., You, L., & Arnold, F. H. (2008). Engineering microbial consortia: A new frontier in synthetic biology. Trends Biotechnology, 26(9), 483–489.CrossRefGoogle Scholar
  19. Chanway, C. P., Turkington, R., & Hall, F. B. (1991). Ecological implications of specificity between plants and rhizosphere microorganisms. Advances in Ecological Research, 21, 121–169.CrossRefGoogle Scholar
  20. Curl, E. H., & Truelove, B. (1986). The rhizosphere (p. 288). New York: Springer.CrossRefGoogle Scholar
  21. Darrah, P. K. (1991). Models of the rhizosphere. Plant Soil, 138, 147–158.CrossRefGoogle Scholar
  22. De Freitas, J. R. (2000). Yield and N assimilation of winter wheat (T. aestivumL., var. Norstar) inoculated with rhizobacteria. Pedobiol, 44, 97–104.CrossRefGoogle Scholar
  23. Deaker, R., Roughley, R. J., & Kennedy, I. R. (2004). Legume seed inoculation technology. Soil Biology and Biochemistry, 36, 1275–1288.CrossRefGoogle Scholar
  24. Devananda, B. J. (2000). Role of plant growth promoting rhizobacteria on growth and yield of pigeonpea (Cajanus cajan L.) cultivars (M. Sc. (Agri.) thesis). University of Agriculture and Science, Dharwad.Google Scholar
  25. Dhruvakumar, J., Sharma, G. D., & Mishra, R. R. (1992). Soil microbiol population numbers and enzymes activities in relation to altitude and forest degradation. Soil Boilogy and Biochemistry, 24, 761–762.CrossRefGoogle Scholar
  26. Dommergues, Y. R. (1978). The plant microorganism system. In Y. R. Dommergues & S. V. Krupa (Eds.), Interaction between non-pathogenic soil microorganisms and plants (pp. 1–25). Amsterdam: Elsiever scientific publishers.Google Scholar
  27. Dube, J. A., Namdeo, S. L., & Johar, M. S. (1975). Coal as a carrier of rhizobia. Current Science, 44, 434.Google Scholar
  28. El-Komy, H. M. A. (2005). Co-immobilization of A. lipoferum and B. megaterium for plant nutrition. Food Technol Biotechnology, 43(1), 19–27.Google Scholar
  29. El-Yazeid, A. A., Abou-Aly, H. A., Mady, M. A., & Moussa, S. A. M. (2007). Enhancing growth, productivity and quality of squash plants using phosphate dissolving microorganisms (bio phosphor) combined with boron foliar spray. Research Journal of Agriculture and Biological Sciences, 3(4), 274–286.Google Scholar
  30. FAGES, J. (1990). An optimized process for manufacturing an Azospirillum inoculant for crops. Applied Microbiology and Biotechnology, 32, 473–478.CrossRefGoogle Scholar
  31. Fan, D. D., Ren, Y. X., Zxu, X. L., Ma, P., & Liang, L. H. (2011). Optimization of culture conditions for phosphate solubilization by Acinetobacter calcoaceticusYC-5a using response surface methodology. African Journal of Microbiology Research, 5(20), 3327–3333.CrossRefGoogle Scholar
  32. Fenice, M., Selbman, L., Federici, F., & Vassilev, N. (2000). Application of encapsulated Pencillium variable P16 in solubilization of rock phosphate. Bioresource Technology, 73, 157–162.CrossRefGoogle Scholar
  33. Franche, K. C., Lindstr, O. M., & Elmerich, C. (2009). Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant and Soil, 321(1–2), 35–59.CrossRefGoogle Scholar
  34. Galal, Y. G. M. (1997). Dual inoculation with strain of Bradyrhizobium japonicum and Azospirillum brasilense to improve growth and biological nitrogen fixation of soybean (Glycine max (L.)). Biology and Fertility of Soils, 24, 317–322.CrossRefGoogle Scholar
  35. Gaskins, M. H., Albrecht, S. L., & Hubble, D. H. (1985). Rhizosphere bacteria and their use to increase productivity. Agriculture Ecosystems and Environment, 12, 99–116.CrossRefGoogle Scholar
  36. Gerdemann, J. W. (1968). Vesicular arbuscular mycorrhizas and plant growth. Annual Review of Phytopathology, 6, 397–418.CrossRefGoogle Scholar
  37. Gothwal, R. K., Nigam, V. K., Mohan, M. K., Sasmal, D., & Ghosh, P. (2007). Screening of nitrogen fixers from rhizospheric bacterial isolates associated with important desert plants. Applied Ecology and Environmental Research, 6(2), 101–109.CrossRefGoogle Scholar
  38. Graham, P. H., Moralas, V. M., & Cavollor, C. (1974). Excipient and adhesive materials for possible use in the inoculation of legumes in Colombia. Tarrialb, 24, 47–50.Google Scholar
  39. Guillon, M., (2006). Current world situation on acceptance and marketing of biological control agents (BCAS). Position Paper by the President of IBMA, International Biocontrol Manufacturers Association.
  40. Gulati, A., Vyas, P., Rahi, P., & Kasana, R. C. (2009). Plant growth-promoting and rhizosphere-competent Acinetobacter rhizosphaerae strain BIHB 723 from the cold deserts of the Himalayas. Current Microbiology, 58, 371–377.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Gulati, A., Sharma, N., Vyas, P., Sood, S., Rahi, P., Pathania, V., & Prasad, R. (2010). Organic acid production and plant growth promotion as a function of phosphate solubilization by Acinetobacter rhizospherae strain BIHB 723 isolated from the cold deserts of the trans-Himalaya. Arch Microbiology, 192(11), 975–983.CrossRefGoogle Scholar
  42. Gupta. (1995). Ph.D. Thesis, Indian Agricultural Research Institute, New Delhi, pp. 150.Google Scholar
  43. Gupta, A. K. (2004). The complete technology book on biofertilizers and organic farming. New Delhi: National Institute of Industrial Research Press.Google Scholar
  44. Habte, M., & Osorio, N. W. (2011). Arbuscularmycorrhizas: Producing and applying arbuscular mycorrhizal inoculum. Manoa: College of Tropical Agriculture and Human Resources (CTAHR), University of Hawaii.Google Scholar
  45. Haggag, W. M., & Saber, M. S. M. (2000). Use of compost formulations fortified with plant growth promoting rhizobacteria to control root–rot diseases in some vegetables grown in plastic-houses.
  46. Higa, T., & Wididana, G. N. (1991). The concept and theories of effective microorganisms. In J. F. Parr, S. B. Hornick, & C. E. Andwhitman (Eds.), Proceedings of the First International Conference on Kyusei Nature Farming (pp. 118–124). Washington DC: U.S. Department of Agriculture.Google Scholar
  47. Hilda, R., & Fraga, R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 17, 319–339.CrossRefGoogle Scholar
  48. Hiltner, L. (1904). Uberneuereerfahrungen und problem auf demgebit der bodenbukteriologic und under besondererberucksichtigung der grundungung und brabe. Arbeiten der Deutschen Landwirtschaftlichen Ger, 98, 59–78.Google Scholar
  49. Hynes, R. K., Craig, K. A., Covert, D., Smith, R. S., & Rennie, R. J. (1995). Liquid rhizobial inoculants for lentil and field pea. Journal of Production Agriculture, 8, 547–552.CrossRefGoogle Scholar
  50. Hynes, R. K., Jans, D. C., Bremer, E., Lupwayi, N. Z., Rice, W. A., Clayton, G. W., & Collins, M. M. (2001). Rhizobium sp. population dynamics in the pea rhizosphere of rhizobial inoculant strain applied in different formulations. Canadian Journal of Microbiology, 47, 595–600.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Indiragandhi, P., Anandham, R., Madhaiyan, M., & Sa, T. M. (2008). Characterization of plant growth–promoting traits of bacteria isolated from larval guts of diamondback moth Plutellaxylostella (Lepidoptera: Plutellidae). Current Microbiology, 56, 327–333.CrossRefGoogle Scholar
  52. Iswaran, V. (1972). Growth and survival of Rhizobium trifolii in coir dust and soybean meal compost. Madras Agricultural Journal, 59, 52–53.Google Scholar
  53. Iswaran, V., Sundar Rao, W. V. B., Magu, S. P., & Jauhri, K. (1969). Indian peat as a carrier of Rhizobium. Current Science, 38, 468.Google Scholar
  54. Ivanova, E., Teunou, E., & Poncelet, D. (2005). Alginate based macrocapsules as inoculants carriers for production of nitrogen biofertilizers. In: Proceedings of Balkan scientific conference of biology in plovdiv, 90–108.Google Scholar
  55. Jeffries, P., Gianinazzi, S., Perotto, S., Turnau, K., & Barea, J. M. (2003). The contribution of arbuscular mycorrhizal fungii on sustainable maintenance of plant health and soil fertility. Biology and Fertility of Soils, 37, 1–16.Google Scholar
  56. Kandasamy, R., & Prasad, N. N. (1971). Lignite as a carrier of rhizobia. Current Science, 40, 496.Google Scholar
  57. Kang, S. M., Joo, G. J., Muhammad, H., Na, C. I., Shin, D. H., Kim, H. Y., Hong, J. K., & Lee, I. J. (2009). Gibberellin production and phosphate solubilization by newly isolated strain of Acinetobacter calcoaceticus and its effect on plant growth. Biotechnology Letters, 31, 277–281.CrossRefGoogle Scholar
  58. Khatri, A. A., Chocksey, M., & D’silva, E. (1973). Rice husk as a medium for legume inoculants. Scientific Cult, 39, 194.Google Scholar
  59. Kloepper, J. W., Lifshitz, R., & Zablotowicz, R. M. (1989). Free-living bacterial inoculant for enhancing crop productivity. Trends Biotechnology, 7, 39–44.CrossRefGoogle Scholar
  60. Konde, B. K., & Shinde, P. A. (1986). Effects of Azotobacterc hroococcumand Azospirillum brasilense inoculation and nitrogenon yield of sorghum, maize, pearl millet and wheat. In S. P. Wani (Ed.), Proceedings of Working group meeting cereal nitrogen fixation (pp. 85–92). Patancheru: ‘ICRISAT.Google Scholar
  61. Kucey, R. M. N. (1983). Phosphate-solubilizing bacteria and fungi in various cultivated and virgin Alberta soils. Canadian Journal of Soil Science, 63, 671–678.CrossRefGoogle Scholar
  62. Kumar Rao, J. V. D. K., Mohan Kumar, K. C., & Patil, R. B. (1982). Alternate carrier material for Rhizobium inoculant production. Mysore Journal of Agricultural Sciences, 16, 252–255.Google Scholar
  63. Kumar, V., Behl, R. K., & Narula, N. (2001). Establishment of phosphate solubilizing strains of Azotobacter chroococcum in the rhizosphere and their effect on wheat cultivars under green house conditions. Microbiological Research, 156, 87–93.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Linderman, R.G. (1997). Vesicular arbuscularmycorrhizae and soil microbial interactions. In Bethlenfalvay, G. J, & Linderman, R. G. (eds.), Mycorrhizae in sustainable Agriculture (eds). ASA special publication No. 54, pp. 45–70.Google Scholar
  65. Madhok, M. R. (1934). The use of soils as a medium for distributing legume organisms materials. Agronomy Journal, 75, 181–184.Google Scholar
  66. Minorsky, P. V. (2008). On the inside. Plant Physiology, 146, 323–324.CrossRefGoogle Scholar
  67. Mirza, S. M., Mehnaz, S., Normand, P., Prigent-Combaret, C., Moënne-Loccoz, Y., Bally, R., & Malik, K. A. (2006). Molecular characterization and PCR detection of a nitrogen-fixing Pseudomonas strain promoting rice growth. Biology and Fertility of Soils, 43, 163–170.CrossRefGoogle Scholar
  68. Moenne-Loccoz, Y., Naughton, M., Higgins, P., Powell, J., Connor, B. O., & O’gara, F. (1999). Effect of inoculum preparation and formulation on survival and biocontrol efficacy of Pseudomonas fluorescens F113. Journal of Applied Microbiology, 86, 108–116.CrossRefGoogle Scholar
  69. Mohammadi, K., Ghalavand, A., Aghaalikhani, M., Heidari, G. R., & Sohrabi, Y. (2011). Introducing the sustainable soil fertility system for chickpea (Cicer arietinum L.). African Journal of Biotechnology, 10(32), 6011–6020.Google Scholar
  70. Mongiardini, E. J., Ausmees, N., Perez-Gimenez, J., Althabegoiti, M. J., QUELAS, J. I., Lopez-Garcia, S. L., & Lodeiro, A. R. (2008). The rhizobial adhesion protein RapA1 is involved in adsorption of rhizobia to plant roots but not in nodulation. FEMS Microbiology Ecology, 65, 279–288.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Paau, A. S. (1988). Formulations useful in applying beneficial microorganisms to seeds. Trends in Biotechnology, 6, 276–279.CrossRefGoogle Scholar
  72. Podile, A. R., & Ki Shore, G. K. (2006). Plant growth-promoting rhizobacteria. In S. S. Gnana-manickam (Ed.), Plant-associated bacteria (pp. 195–230). Amsterdam: Springer.CrossRefGoogle Scholar
  73. Pugashetti, B. K., Gopalgowda, H. S., & Patil, R. B. (1971). Cellulose powder as a legume inoculant base. Current Science, 40, 494–495.Google Scholar
  74. Rajeswari, K., Haridas, R., Karthick, A, & Kalaigandhi, V. (2007). Earthern and pot culture method to check the stability of marine Azotobacter in soil. Posted: May 10th, href=“
  75. Ramazon, C., Kantar, F., & Algus, F. (2004). Effect of dual inoculation of Bacillus polymyxa and Bacillus megaterium on yield of sugarbeet and barely. Journal of Plant Nutrition and Soil Science, 162, 437–442.Google Scholar
  76. Rangaswami, G., & Vasantharajan. (1962). Studies on the rhizosphere microflora of citrus trees, quantitative incidence of microorganism in relation to root and shoot growth. Canadian Journal of Microbiology, 8, 473–477.CrossRefGoogle Scholar
  77. Rodelas, B., González-López, J., Martínez-Toledo, M. V., Pozo, C., & Salmerón, V. (1999). Influence of Rhizobium/Azotobacter and Rhizobium/Azospirillum combined inoculation on mineral composition of fababean (Viciafaba L.). Biology and Fertility of Soils, 2, 165–169.CrossRefGoogle Scholar
  78. Rodrıguez, H., & Fraga, R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 17(4–5), 319–339.Google Scholar
  79. Rokhzadi, A., Asgharzadeh, A., Darvish, F., Nour-Mohammadi, G., & Majidi, E. (2008). Influence of plant growth-promoting rhizobacteria on dry matter accumulation and yield of chickpea (Cicer arietinum L.) under field condition. Journal of Agriculture and Environmental Sciences, 3(2), 253–257.Google Scholar
  80. Sanchez, P. A., & Uehera, G. (1980). In F. E. Khasawneh, E. C. Sample, & E. J. Kampreth (Eds.), Management consideration for acid soils with high phosphorus in agriculture (pp. 471–514). Madison: American Society of Agronomy.Google Scholar
  81. Santaella, C., Schue, M., Berge, O., Heulin, T., & Achouak, W. (2008). The exopolysaccharide of Rhizobium sp. YAS 34 is not necessary for biofilm formation on Arabidopsis thaliana and Brassica napus roots but contributes to root colonization. Environmental Microbiology, 10, 2150–2163.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Sarma, M. V. R. K., Saharan, K., Prakash, A., Bisaria, V. S., & Sahai, V. F. (2009). Application of fluorescent pseudomonads inoculant formulations on Vignamungo through field trial. International Journal of Biology Life Science, 1, 1.Google Scholar
  83. Seneviratn, G., Zavahir, E., Bandar, J. S., & Weerasekar, A. (2008). Fungal-bacterialbiofilms: their development for novel biotechnological applications. World Journal of Microbiology and Biotechnology, 24(6), 739–743.CrossRefGoogle Scholar
  84. Seneviratne, G., & Jayasinghearachchi, H. S. (2005). Arhizobial film with nitrogenase activity alters nutrient availability in a soil. Soil Biology and Biochemistry, 37, 1975–1978.CrossRefGoogle Scholar
  85. Seneviratne, G., Thilakaratne, R. M. M. S., Jaysekara, A. P. D. A., Seneviratne, K. A. C. N., Padmathilake, K. R. E., & De Silva, M. S. D. L. (2009). Developing beneficial microbial biofilms on roots of non legumes: A novel biofertilizing technique. In M. S. Khan (Ed.), Microbial strategies for crop improvement (pp. 51–62). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  86. Smith, R. S. (1992). Legume inoculant formulation and application. Canadian Journal of Microbiology, 38, 485–492.CrossRefGoogle Scholar
  87. Smith, S. R. (1995). Agricultural recycling of sewage sludge and the environment. CAB international.Google Scholar
  88. Smith, S. E., & Gianinazzi Pearson, V. (1988). Physiological interactions between symbionts in vesicular-arbuscularmycorrhizal plants. Annual Review of Plant Physiology and Plant Molecular Biology, 3.Google Scholar
  89. Sparrow, S. D., & Ham, G. E. (1983). Survival of Rhizobium phaseoliin six carrier culture to cultivators. Agriculture and Livestock of India, 4, 670–682.Google Scholar
  90. Strullus, D. G., & Plenchette, C. (1991). The envelopment of Glomus sp in alginate beads and their use as root inoculation. Mycological Research, 93, 1194–1196.CrossRefGoogle Scholar
  91. Tambekar, D. H., Gulhane, S. R., Somkuwar, D. O., Ingle, K. B., & Kanchalwar, S. P. (2009). Potential rhizobium and phosphate solubilizers as a biofertilizers from saline belt of Akola and Buldhana district. India Research Journal of Agricultural Biological Sciences, 5(4), 578–582.Google Scholar
  92. Ude, S., Arnold, D. L., Moon, C. D., Timms-Wilson, T., & Spiers, A. J. (2006). Biofilm formation and cellulose expression among diverse environmental Pseudomonas isolates. Environmental Microbiology, 8(11), 1997–2011.CrossRefPubMedPubMedCentralGoogle Scholar
  93. Vassilev, N., Vassilev, A. M., Azcon, R., & Medina, A. (2001). Application of free and ca-alginate entrapped Glomus deserticola and Yarowiali polytica in soil-plant system. Journal of Biotechnology, 91, 237–242.CrossRefPubMedPubMedCentralGoogle Scholar
  94. Veena, S. C. (1999) Development of inoculum consortia for enhanced growth and nutrient uptake of sorghum (Sorghum bicolor (L.)Moench).M. Sc. (Agri.) Thesis, University of Agricultural Science, Dharwad. India.Google Scholar
  95. Whipps, J. M., & Lynch, J. M. (1985). Energy losses by the plants in rhizodeposition. In K. W. Fuller & J. R. Gallon (Eds.), Plant production and new technology (pp. 59–71). Oxford: Clarendon Press.Google Scholar
  96. Yadegari, M., Rahmani, H. A., Noormohammadi, G., & Ayneband, A. (2008). Evaluation of bean (Phaseolus vulgaris) seeds inoculation with Rhizobium phaseoliand plant growth promoting rhizobacteria on yield and yield components. Pakistan Journal of Biological Sciences, 11, 1935–1940.CrossRefPubMedPubMedCentralGoogle Scholar
  97. Zehnder, G. W., Yao, C., Murphy, J. F., Sikora, E. R., & Kloepper, J. W. (2000). Induction of resistance in tomato against cucumber mosaic cucumovirus by plant growth-promoting rhizobacteria. Biological Control, 45, 127–137.Google Scholar
  98. Zohar-Perez, C., Ritte, E., Chernin, L., Chet, I., & Nussinovitch, A. (2002). Preservation of chitinolytic Pantoae agglomerans in a viable form by cellular dried alginate-based carriers. Biotechnology Progress, 18, 1133–1140.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • R. N. Lakshmipathi
    • 1
    • 2
  • B. Subramanyam
    • 3
  • B. D. Narotham Prasad
    • 4
  1. 1.Department of Agricultural MicrobiologyCollege of SericultureChintamaniIndia
  2. 2.University of Agricultural ScienceBangaloreIndia
  3. 3.Horticulture Research and Extinction Centre, HogalagereUniversity of Horticultural SciencesKolarIndia
  4. 4.College of AgricultureUniversity of Agriculture SciencesBangaloreIndia

Personalised recommendations