Endophytic Bacteria: Prospects and Applications for the Plant Disease Management

  • P. Latha
  • M. Karthikeyan
  • E. Rajeswari


Biological control of plant diseases has metamorphosed into a unique field of science and development, and this field is fast happening in recent years. Bacterial endophytes are a group of microorganism which can colonise in any part of a plant devoid of symptoms or harmful effects in the plant in which they inhabit for their survival. The endophytic bacterial species have been identified by numerous researchers, and they have increasingly been reported to reduce the growth and activity of a plethora of plant pathogens. The interest of the researchers in this field is ever expanding given the potential it possesses to serve as an alternative to synthetic fungicides. The primary aim of this review is to trace the development in endophytic bacterial research and to communicate the researchers with updated information which will serve as a catalyst for their research endeavours. The review started with a prologue about endophytes, their diversity and existence. A systematic review on the colonisation of endophytic bacteria has been given which unravels the processes involved in their entry into the rhizosphere, then cortex and xylem and further their movement to the vegetative and reproductive organs of plants. This has followed the review on the control of various plant diseases through endophytic bacteria, viz. wilt, damping off and rot, foliar fungal diseases and bacterial diseases. The control of postharvest diseases and nematodes by endophytic bacteria has also been discussed. The major processes involved in the mode of action or mechanism of control of diseases have been discussed in different heads, namely, competitive root colonisation, competition for ferric iron ions, antibiosis and antibiotics suppressing pathogens, induced systemic resistance (ISR), signal interference, food and space competition, and minimization of the factors responsible for virulence of pathogens. Quite a few literatures have been discussed on the application of bacterial endophytes through different modes of applications. The review ends with future thrust which will go long way in indicating the future niche research areas on endophytic bacteria.


Endophytic bacterial diversity Colonisation Mode of action Plant disease control 


  1. Amaresan, N., Jayakumar, V., & Thajuddin, N. (2014). Isolation and characterization of endophytic bacteria associated with chilli (Capsicum annuum) grown in coastal agricultural ecosystem. Indian Journal of Biotechnology, 13, 247–255.Google Scholar
  2. Andrews, L. K. (1992). Biological control in the phyllosphere. Annual Review of Phytopathology, 30, 603–635.CrossRefPubMedGoogle Scholar
  3. Ansari, R. A., & Mahmood, I. (2017). Optimization of organic and bio-organic fertilizers on soil properties and growth of pigeon pea. Scientia Horticulturae, 226, 1–9.Google Scholar
  4. Araujo, W. L., Marcon, J., Maccheroni, W., van Elsas, J. D., van Vuurde, J. W. L., & Azevedo, J. L. (2002). Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Applied and Environmental Microbiology, 68, 4906–4914.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Aravind, R., Kumar, A., & Eapen, S. (2012). Pre-plant bacterisation: A strategy for delivery of beneficial endophytic bacteria and production of disease-free plantlets of black pepper (Pipernigrum L.). Archives of Phytopathology and Plant Protection, 45(9), 1115–1126.CrossRefGoogle Scholar
  6. Arnold, A. E., & Lutzoni, F. (2007). Diversity and host range of foliar fungal endophytes: Are tropical leaves biodiversity hotspots? Ecology, 88(3), 541–549. Scholar
  7. Assis, S. M. P., Mariano, R. L. R., Michereff, S. J., & Coelho, R. S. B. (1996). Biocontrol of Xanthomonas campestris pv. campestris on kale with Bacillus spp. and endophytic bacteria. In W. Tang, R. J. Cook, & A. Rovira (Eds.), Advances in biological control of plant diseases (pp. 347–353). Beijing: China Agricultural University Press.Google Scholar
  8. Audenaert, K., Pattery, T., Cornelis, P., & Höfte, M. (2002). Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: Role of salicylic acid, pyochelin and pyocyanin. Molecular Plant-Microbe Interactions, 15, 1147–1156.CrossRefPubMedGoogle Scholar
  9. Aydi Ben Abdallah, R., Jabnoun-Khiareddine, H., Nefzi, A., Mokni-Tlili, S., & Daami-Remadi, M. (2016). Endophytic bacteria from Datura stramonium for Fusarium wilt suppression and tomato growth promotion. Journal of Microbial and Biochemical Technology, 8, 030–041.Google Scholar
  10. Ayyadurai, N., Ravindra Naik, P., Sreehari Rao, M., Sunish Kumar, R., Samrat Manohar, S. K. M., & Sakthivel, N. (2006). Isolation and characterization of a novel banana rhizosphere bacterium as fungal antagonist and microbial ad- juvant in micro propagation of banana. Journal of Applied Microbiology, 100, 926–937.CrossRefPubMedGoogle Scholar
  11. Backman, P. A., Wilson, M., & Murphy, J. F. (1997). Bacteria for biological control of plant diseases. In N. A. Rechcigl & J. E. Rechcigl (Eds.), Environmentally safe approaches to plant disease control (pp. 95–109). Boca Raton: CRC/Lewis Press.Google Scholar
  12. Bacon, C. W., & Hinton, D. M. (2006). Bacterial endophytes: The endophytic niche, its occupants, and its utility. In S. S. Gnanamanickam (Ed.), Plant-associated bacteria (pp. 155–194). Dordrecht: Springer.CrossRefGoogle Scholar
  13. Bais, H. P., Park, S. W., Weir, T. L., Callaway, R. M., & Vivanco, J. M. (2004). How plants communicate using the underground information superhighway. Trends in Plant Science, 9, 26–32.CrossRefGoogle Scholar
  14. Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., & Vivanco, J. M. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 57, 233–266.CrossRefPubMedGoogle Scholar
  15. Bakker, P. A. H. M., Pierterse, C. M. J., & Van Loon, L. C. (2007). Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology, 97, 239–243.CrossRefPubMedGoogle Scholar
  16. Balsanelli, E., Serrato, R. V., de Baura, V., Sassaki, G., Yates, M. G., Rigo, L. U., Pedrosa, F. O., de Souza, E. M., & Monteiro, R. A. (2010). Herbaspirillum seropedicae rfbB and rfbC genes are required for maize colonization. Environmental Microbiology, 12, 2233–2244.PubMedGoogle Scholar
  17. Barac, T., Taghavi, S., Borremans, B., Provoost, A., Oeyen, L., Colpaert, J. V., Vangronsveld, J., & van der Lelie, D. (2004). Engineered endophytic bacteria improve phyto-remediation of water-soluble, volatile, organic pollutants. Nature Biotechnology, 22, 583–588.CrossRefPubMedGoogle Scholar
  18. Bargabus, R. L., Zidack, N. K., Sherwood, J. E., & Jacobsen, B. J. (2002). Characterization of systemic resistance in sugar beet elicited by a nonpathogenic, phyllosphere-colonizing Bacillus mycoides, biological control agent. Physiological and Molecular Plant Pathology, 61, 289–298.CrossRefGoogle Scholar
  19. Bargabus, R. L., Zidack, N. K., Sherwood, J. E., & Jacobsen, B. J. (2004). Screening for the identification of potential biological control agents that induce systemic acquired resistance in sugar beet. Biological Control, 30, 342–350.CrossRefGoogle Scholar
  20. Barka, E. A., Gognies, S., Nowak, J., Audran, J. C., & Belarbi, A. (2002). Inhibitory effect of endophytic bacteria on Botrytis cinerea and itsinfluence to promote the grapevine growth. Biological Control, 24, 135–142.CrossRefGoogle Scholar
  21. Bartz, J. A. (2005). Internalization and infiltration. In G. M. Sapers, J. R. Gorny, & A. E. Yousef (Eds.), Microbiology of fruits and vegetables (pp. 75–94). Boca Raton: CRC Press/Taylor and Francis Group.CrossRefGoogle Scholar
  22. Bashan, Y., & Holguin, G. (1997). Azospirillium plant relationships, environmental and physiological advances (1990-1996). Canadian Journal of Microbialogy, 43, 103–121.CrossRefGoogle Scholar
  23. Becker, J. O., Hedges, R. W., & Messens, E. (1985). Inhibitory effect of pseudobactin on the uptake of iron by higher plants. Applied and Environmental Microbiology, 49, 1090–1093.PubMedPubMedCentralGoogle Scholar
  24. Bell, C. R., Dickie, G. A., Harvey, W. L. G., & Chan, J. W. Y. F. (1995). Endophytic bacteria in grapevine. Canadian Journal of Microbiology, 41, 46–53.CrossRefGoogle Scholar
  25. Benhamou, N., Kloepper, J. W., & Tuzun, S. (1998). Induction of resistance against Fusarium wilt of tomato by combination of chitosan with an endophytic bacterial strain: Ultrastructure and cytochemistry of the host response. Planta, 204, 153–168.CrossRefGoogle Scholar
  26. Benizri, E., Baudoin, E., & Guckert, A. (2001). Root colonization by inoculated plant growth rhizobacteria. Biocontrol Science and Technology, 11, 557–574.CrossRefGoogle Scholar
  27. Berg, G., & Hallmann, J. (2006). Control of plant pathogenic fungi with bacterial endophytes. In B. Schulz, C. Boyle, & T. Sieber (Eds.), Microbial root endophytes (pp. 53–69). Berlin Heidelberg: Springer.CrossRefGoogle Scholar
  28. Berg, G., Krechel, A., Ditz, M., Sikora, R. A., Ulrich, A., & Hallmann, J. (2005). Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiology Ecology, 51, 215–229.CrossRefPubMedGoogle Scholar
  29. Bohm, M., Hurek, T., & Reinhold-Hurek, B. (2007). Twitching motility is essential for endophytic rice colonization by the N2-fixing endophyte Azoarcus sp. strain BH72. Molecular Plant-Microbe Interactions, 20, 526–533.CrossRefPubMedGoogle Scholar
  30. Bonaldo, S. M., Pascholati, S. F., & Romeiro, R. S. (2005). Induc¸a˜o de resisteˆncia: Noc¸o˜es ba’sicas e per-spectivas. In L. S. Cavalcanti, R. M. di Piero, P. Cia, S. F. Pascholati, M. L. V. Resende, & R. S. Romeiro (Eds.), Induc¸a˜o de resisteˆncia em plantas a pato’genos e insetos (pp. 11–28). Piracicaba: FEALQ.Google Scholar
  31. Brooks, D. S., Gonzalez, C. F., Appel, D. N., & File, T. H. (1994). Evaluation of endophytic bacteria as potential biocontrol agents for oak wilt. Biological Control, 4, 373–381.CrossRefGoogle Scholar
  32. Buysens, S., Heungens, K., Poppe, J., & Höfte, M. (1996). Involvement of pyochelin and pyoverdine in suppression of Pythium-induced damping-off of tomato by Pseudomonas aeruginosa 7NSK2. Applied and Environmental Microbiology, 62, 865–871.PubMedPubMedCentralGoogle Scholar
  33. Calvo, J., Calvente, V., DE Orellano, M. E., Benuzzi, D., & DE Tosetti, M. I. S. (2007). Biological control of postharvest spoilage caused by Penicillium expansum and Botrytis cinerea in apple by using the bacterium Rahnella aquatilis. International Journal of Food Microbiology, 113, 251–257.CrossRefPubMedGoogle Scholar
  34. Campbell, C. L., & Madden, L. V. (1990). Introduction to plant disease epidemiology. New York: Wiley.Google Scholar
  35. Cankar, K., Kraigher, H., Ravnikar, M., & Rupnik, M. (2005). Bacterial endophytes from seeds of Norway spruce (Picea abies L. Karst). FEMS Microbiology Letters, 244, 341–345.CrossRefPubMedGoogle Scholar
  36. Carroll, G. (1988). Fungal endophytes in stems and leaves: From latent pathogen to mutualistic symbiont. Ecology, 69, 2–9.CrossRefGoogle Scholar
  37. Chen, C., Bauske, E. M., Musson, G., Rodrfguez-Kabana, R., & Kloepper, J. W. (1995). Biological control of Fusarium wilt on cotton by use of endophytic bacteria. Biological Control, 5, 83–91.CrossRefGoogle Scholar
  38. Chen, C., Belanger, R. R., Benhamou, N., & Paulitz, T. C. (2000a). Defense enzymes induced in cucumber roots by treatment with plant-growth promoting rhizobacteria (PGPR). Physiological and Molecular Plant Pathology, 56, 13–23.CrossRefGoogle Scholar
  39. Chen, J., Abawi, G. S., & Zucherman, B. M. (2000b). Efficacy of Bacillus thuringiensis, Paecilomyces marquandii and Streptomyces costaricanus with organic amendment against Meloidogyne hapla infecting lettuce. Journal of Nematology, 32, 70–77.PubMedPubMedCentralGoogle Scholar
  40. Chen, X., Zhang, Y., Fu, X., Li, Y., & Wang, Q. (2016). Isolation and characterization of Bacillus amyloliquefaciens PG12 for the biological control of apple ring rot. Postharvest Biology and Technology, 115, 113–121.CrossRefGoogle Scholar
  41. Clay, K. (1988). Fungal endophytcs of grasses; a defensive mutualism between plants and fungi. Ecology, 69, 10–16.CrossRefGoogle Scholar
  42. Compant, S., Reiter, B., Sessitsch, A., Nowak, J., Clément, C., & Ait Barka, E. (2005). Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Applied and Environmental Microbiology, 71, 1685–1693.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Compant, S., Duffy, B., Nowak, J., Cl, C., & Barka, E. A. (2005a). Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology, 71, 4951–4959.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Compant, S., Reiter, B., Sessitsch, A., Nowak, J., Clement´, C., & Barka, E. A. (2005b). Endophytic colonization of Vitis vinifera L. by a plant growth-promoting bacterium, Burkholderia sp. strain PsJN. Applied and Environmental Microbiology, 71, 1685–1693.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Compant, S., Kaplan, H., Sessitsch, A., Nowak, J., Ait Barka, E., & Clément, C. (2008). Endophytic colonization of Vitis vinifera L. by Burkholderia phytofirmans strain PsJN: From the rhizosphere to inflorescence tissues. FEMS Microbiology Ecology, 63, 84–93.Google Scholar
  46. Compant, S., Clément, C., & Sessitsch, A. (2010). Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biology and Biochemistry, 42, 669–678.CrossRefGoogle Scholar
  47. Compant, S., Mitter, B., Colli-Mull, J. G., Gangl, H., & Sessitsch, A. (2011). Endophytes of grapevine flowers, berries, and seeds: Identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microbial Ecology, 62, 188–197.CrossRefPubMedGoogle Scholar
  48. Crump, D. H. (1998). Biological control of potato and beet cyst nematodes. Journal of Aspect Applied Biology, 53, 383–386.Google Scholar
  49. Dandurishvili, N., Toklikishvili, N., Ovadis, M., Eliashvili, P., Giorgobiani, N., Keshelava, R., et al. (2011). Broad-range antagonistic rhizobacteria Pseudomonas fluorescens and Serratia plymolithica suppress Agrobacterium crown-gall tumors on tomato plants. Journal of Applied Microbiology, 110, 341–352.CrossRefPubMedGoogle Scholar
  50. Daniel, M., & Purkayastha, R. P. (1995). Handbook of phytoalexin metabolism and action (p. 615). New York: Marcel Dekker.Google Scholar
  51. de Bruijn, I., de Kock, M. J. D., de Waard, P., van Beek, T. A., & Raaijmakers, J. M. (2008). Massetolide A biosynthesis in P. fluorescens. Journal of Bacteriology, 190, 2777–2789.CrossRefPubMedGoogle Scholar
  52. de Freitas, J. R., Banerjee, M. R., & Germida, J. J. (1997). Phosphate-solubilising rhizobacteria enhance the growth and yield but not phosphorous uptake of canola (Brassica rapus L.). Biology and Fertility of Soil, 24, 358–364.CrossRefGoogle Scholar
  53. de Souza, J. T., de Boer, M., de Waard, P., van Beek, T. A., & Raaijmakers, J. M. (2003). Biochemical, genetic, and zoosporicidal properties of cyclic lipopeptide surfactants produced by Pseudomonas fluorescens. Applied and Environmental Microbiology, 69, 7161–7172.CrossRefPubMedPubMedCentralGoogle Scholar
  54. De Weert, S., Kuiper, I., Kamilova, F., Mulders, I. H. M., Bloemberg, G. V., Kravchenko, L., et al. (2007). The role of competitive root tip colonization in the biological control of tomato foot and root rot. In S. B. Chincolkar & K. G. Mukerji (Eds.), Biological control of plant diseases (pp. 103–122). New York/London/Oxford: The Haworth Press.Google Scholar
  55. Dekkers, L. C., Mulders, C. H. M., Phoelich, C. C., Chin-A-Woeng, T. F. C., Wijfjes, A. H. M., & Lugtenberg, B. J. J. (2000). The colonization gene of the tomato-Fusarium f.sp. radicis-lycopersici biocontrol strain Pseudomonas fluorescens WCS365 can improve root colonization of other wild type Pseudomonas spp. bacteria. Molecular Plant-Microbe Interactions, 13, 1177–1183.CrossRefPubMedGoogle Scholar
  56. Deng, Y., Zhu, Y., Wang, P., Zhu, L., Zheng, J., Li, R., Ruan, L., Peng, D., & Sun, M. (2011). Complete genome sequence of Bacillus subtilis BSn5, an endophytic bacterium of Amorphophallus konjac with antimicrobial activity for the plant pathogen Erwinia carotovora subsp. carotovora. Journal of Bacteriology, 193, 2070–2071.CrossRefPubMedPubMedCentralGoogle Scholar
  57. di Vestea, A. (1888). De l’absence des microbes dans les tissus végétaux. Annales de l’lnstitut Pasteur, 670–671.Google Scholar
  58. Diaz, M., Achkor, H., Titarenko, E., & Martinez, M. C. (2003). The gene encoding glutathione-dependent formaldehyde dehydrogenase/GSNO reductase is responsive towounding, jasmonic acid and salicylic acid. FEBS Letters, 543, 136–139.CrossRefPubMedGoogle Scholar
  59. Dikin, A., Sijam, K., Zainal Abidin, M. A., & Idris, A. S. (2003). Biological control of seed borne pathogen of oil palm, Schizopyllum commune Fr. with antagonistic bacteria. International Journal of Agriculture and Biology, 5, 507–512.Google Scholar
  60. Dong, Y.-H., Zhang, X.-F., Xu, J.-L., & Zhang, L.-H. (2004). Insecticidal Bacillus thuringiensis silences Erwinia carotovora virulence by a new form of microbial antagonism, signal interference. Applied and Environmental Microbiology, 70, 954–960.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Dorr, J., Hurek, T., & Reinhold-Hurek, B. (1998). Type IV pili are involved in plant microbe and fungus microbe interactions. Molecular Microbiology, 30, 7–17.CrossRefPubMedGoogle Scholar
  62. Duffy, B. K. (2001). Competition. In O. C. Maloy & T. D. Murray (Eds.), Encyclopedia of plant pathology (pp. 243–244). New York: Wiley.Google Scholar
  63. Duijff, B. J., De Kogel, W. J., Bakker, P. A. H. M., & Schippers, B. (1994). Influence of pseudobactin-358 on the iron nutrition of barley. Soil Biology and Biochemistry, 26, 1681–1688.CrossRefGoogle Scholar
  64. Duijff, B. J., Gianinazzi-Pearsonand, V., & Lemanceau, P. (1997). Involvement of the outer membrane lipopolysaccharides in the endophytic colonization of tomato roots by biocontrol Pseudomonas fluorescens strain WCS417r. The New Phytologist, 135, 325–334.CrossRefGoogle Scholar
  65. Dwivedi, D., & Johri, B. N. (2003). Antifungals from fluorescent pseudomonads: Biosynthesis and regulation. Current Science, 85, 1693–1703.Google Scholar
  66. Elshafei, H. S., Camele, I., Racioppi, R., Scrano, L., Iacobellis, N. S., & Bufo, S. A. (2012). In vitro antifungal activity of Burkholderia gladioli pv. agaricicola against some phytopathogenic fungi. International Journal of Molecular Science, 13, 16291–16302.CrossRefGoogle Scholar
  67. Fahey, J. W., Dimock, M. B., Tomasino, S. F., Taylor, J. M., & Carlson, P. S. (1991). Genetically engineered endophytes as biocontrol agents: A case study from industry. In J. H. Andrews & S. S. Hirano (Eds.), In microbial ecology of leaves (pp. 401–411). Springer, Berlin.Google Scholar
  68. Feng, H., Li, Y., & Liu, Q. (2013). Endophytic bacterial communities in tomato plants with differential resistance to Ralstonia solanacearum. African Journal of Microbiology Research, 7(15), 1311–1318.CrossRefGoogle Scholar
  69. Fiddaman, D. J., & Rossall, S. (1993). The production of antifungal volatiles by Bacillus subtilis. The Journal of Applied Bacteriology, 74, 119–126.CrossRefPubMedGoogle Scholar
  70. Fravel, D. (1988). Role of antibiosis in the biocontrol of plant diseases. Annual Review of Phytopathology, 26, 75–91.CrossRefGoogle Scholar
  71. Fu, Z. Q., Xia, Z. J., Wu, A. M., Yang, Y. H., Zheng, Q., & Gu, B. K. (1999a). The mechanism for controlling cotton wilt (Verticillium dahliae) by endophytic bacteria Jiangsu. The Journal of Agricultural Science, 15, 211–215.Google Scholar
  72. Fu, Z. Q., Xia, Z. J., Wu, A. M., Yang, Y. H., Zheng, Q., & Gu, B. K. (1999b). Inhibition of mycelia growth and toxin production of Verticillium dahliae and growth promotion of cotton by endophytic bacteria. Acta Phytopathologica Sinica, 29, 374–375.Google Scholar
  73. Fürnkranz, M., Lukesch, B., Müller, H., Huss, H., Grube, M., & Berg, G. (2012). Microbial diversity inside pumpkins: Microhabitat-specific communities display a high antagonistic potential against phytopathogens. Microbial Ecology, 63, 418–428.CrossRefPubMedGoogle Scholar
  74. Galippe, V. (1887). Note sur la présence de micro-organismes dans les tissus végétaux (pp. 410–416). Paris: Comptes Rendus Hebdomadaires de la Société de Biologie.Google Scholar
  75. Gamalero, E., Lingua, G., Berta, G., & Lemanceau, P. (2003). Methods for studying root colonization by introduced beneficial bacteria. Agronomie, 23, 407–418.CrossRefGoogle Scholar
  76. Gamalero, E., Lingua, G., Caprì, F. G., Fusconi, A., Berta, G., & Lemanceau, P. (2004). Colonization pattern of primary tomato roots by Pseudomonas fluorescens A6RI characterized by dilution plating, flow cytometry, fluorescence, confocal and scanning electron microscopy. FEMS Microbiology Ecology, 48, 79–87.CrossRefPubMedGoogle Scholar
  77. Ganeshmoorthi, P., Anand, T., Prakasam, V., Bharani, M., & Ragupathi, N. (2008). Plant growth promoting Rhizobacteria (PGPR) bioconsortia mediates induction of defense related proteins against infection of root rot pathogen in mulberry plants. Journal of Plant Interactions, 3, 233–244.CrossRefGoogle Scholar
  78. Gao, Z., Zhang, B., Llu, H., Han, J., & Zhang, Y. (2017). Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea. Biological Control, 105, 27–39.CrossRefGoogle Scholar
  79. García de Salome, I. E., Hynes, R. K., & Nelson, L. M. (2001). Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Canadian Journal of Microbiology, 47, 404–411.CrossRefGoogle Scholar
  80. Garg, N., & Geetanjali. (2007). Symbiotic nitrogen fixation in legume nodules: Process and signaling. A review. Agronomy for Sustainable Development, 27, 59–68.CrossRefGoogle Scholar
  81. Garita, V. S., Bustamante, E., & Shattock, R. (1988). Selection of antagonists for biological control of Phytophthora infestans in tomato. Manejo Integrato de plagas, 48, 25–34.Google Scholar
  82. Gasser, I., Cardinale, M., Müller, H., Heller, S., Eberl, L., Lindenkamp, N., Kaddor, C., Steinbüchel, A., & Berg, G. (2011). Analysis of the endophytic lifestyle and plant growth promotion of Burkholderia terricola ZR2-12. Plant and Soil, 347, 125–136.CrossRefGoogle Scholar
  83. Getha, K., Vikineswary, S., Wong, W. H., Seki, T., Ward, A., & Goodfellow, M. (2005). Evaluation of Streptomyces sp. for suppression of fusarium wilt and rhizosphere colonization in pot grown banana plantlets. Journal of Microbiology and Biotechnology, 32, 24–32.Google Scholar
  84. Goormachtig, S., Capoen, W., James, E., & Holsters, M. (2004). Switch from intracellular to intercellular invasion during water stress-tolerant legume nodulation. The Proceedings of the National Academy of Sciences USA, 101, 6303–6308.CrossRefGoogle Scholar
  85. Govindarajan, M., Balandreau, J., Kwon, S.-W., Weon, H.-Y., & Lakshminarasimhan, C. (2008). Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice. Microbial Ecology, 55, 21–37.CrossRefPubMedGoogle Scholar
  86. Graner, G., Persson, P., Meijer, J., & Alstrom, S. (2003). A study on microbial diversity in different cultivars of Brassica napus in relation to its wilt pathogen, Verticillium longisporum. FEMS Microbiology Letters, 29, 269–276.CrossRefGoogle Scholar
  87. Gregory, P. J. (2006). Plant roots: Growth, activity and interaction with soils (318 pp). Oxford: Black-well Publishing.CrossRefGoogle Scholar
  88. Guetsky, R., Shtienberg, D., Elad, Y., & Dinoor, A. (2001). Com- bining biocontrol agents to reduce the variability of bio- logical control. Phytopathology, 91, 621–627.CrossRefPubMedGoogle Scholar
  89. Gupta, C. P., Dubey, R. C., Kang, S. C., & Maheshwari, D. K. (2001). Antibiosis mediated necrotrophic effect of Pseudomonas GRC2 against two fungal pathogens. Current Science, 81, 91–94.Google Scholar
  90. Haas, D., & Defago, G. (2005). Biological control of soil-borne pathogens by fluorescent pseu-domonads. Nature Reviews Microbiology., , 3, 307.CrossRefGoogle Scholar
  91. Haichar, F. Z., Marol, C., Berge, O., Rangel-Castro, J. I., Prosser, J. I., Balesdent, J., Heulin, T., & Achouak, W. (2008). Plant host habitat and root exudates shape soil bacterial community structure. The ISME Journal, 2, 1221–1230.CrossRefPubMedGoogle Scholar
  92. Halfeld-Vieira, B. A., Vieira, J. R., Jr., Romeiro, R. S., Silva, H. S. A., & Baract-Pereira, M. C. (2006). Induction of systemic resistance in tomato by autochthonous phylloplane resident Bacillus cereus. Pesquisa Agropecuária Brasileira, 41, 1247–1252.CrossRefGoogle Scholar
  93. Hall, T. J., Schreiher, L. R., & Lehen, C. (1986). Effects of xylem-colonizing Bacillus spp. on Verticillium wilt in maples. Plant Disease, 70, 521–524.CrossRefGoogle Scholar
  94. Hallmann, J. (2001). Plant interactions with endophytic bacteria. In M. J. Jeger & N. J. Spence (Eds.), Biotic interactions in Plante pathogen associations (pp. 87–119). Wallingford: CABI Publishing.CrossRefGoogle Scholar
  95. Hallmann, J., & Berg, G. (2006). Spectrum and population dynamics of bacterial root endophytes. In B. Schulz, C. Boyle, & T. Sieber (Eds.), Microbial root endophytes (pp. 15–31). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  96. Hallman, J., Quadt-Hallmann, A., Mahaffee, W. F., & Kloepper, J. W. (1997). Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology, 43, 895–914.CrossRefGoogle Scholar
  97. Hallmann, J., Kloepper, J., Rodriguez-Kabana, R., & Sikora, R. A. (1995). Endophytic rhizobacteria as antagonists of Meloidogyne incognita on cucumber. Phytopathology, 85, 1136.Google Scholar
  98. Hallmann, J., Rodríguez-Kábana, R., & Kloepper, J. W. (1997). Nematode interactions with endophytic bacteria. In A. Ogoshi, K. Kobayashi, Y. Homma, F. Kodama, N. Kondo, & S. Akino (Eds.), Plant growth-promoting Rhizobacteria-present status and future prospects (pp. 243–245). Sapporo: Nakanishi Printing.Google Scholar
  99. Hallmann, J., Quadt-Hallmann, A., Miller, W. G., Sikora, R. A., & Lindow, S. E. (2001). Endophytic colonization of plants by the biocontrol agent Rhizobium etli G12 in relation to Meloidogyne incognita infection. Phytopathology, 91, 415–422.CrossRefPubMedGoogle Scholar
  100. Hardoim, P. R., Van Overbeek, L. S., & Van Elsas, J. D. (2008). Properties of bacterial endophytes and their proposed role in plant growth. Trends in Microbiology, 16, 463–471.CrossRefPubMedPubMedCentralGoogle Scholar
  101. Henry, G., Deleu, M., Jourdan, E., Thonart, P., & Ongena, M. (2011). The bacterial lipopeptide surfactin targets the lipid fraction of the plant plasma membrane to trigger immune- related defence responses. Cellular Microbiology, 13, 1824–1837.CrossRefPubMedGoogle Scholar
  102. Hoffland, E., Hakulinen, J., & van Pelt, J. A. (1995). Comparison of systemic resistance induced by avirulent and nonpathogenic Pseudomonas species. Phytopathology, 86, 757–762.CrossRefGoogle Scholar
  103. Holliday, P. (1989). A dictionary of plant pathology. Cambridge: Cambridge University Press.Google Scholar
  104. Hollis, J. P. (1951). Bacteria in healthy potato tissue. Phytopathology, 41, 320–366.Google Scholar
  105. Hopkins, D. L. (2005). Biological control of Pierce’s disease in the vineyard with strains of Xylella fastidiosa benign to grapevine. Plant Disease, 89, 1348–1352.CrossRefPubMedGoogle Scholar
  106. Humphris, S. N., Bengough, A. G., Griffiths, B. S., Kilham, K., Rodger, S., Stubbs, V., Valentine, T. A., & Young, I. M. (2005). Root cap influences root colonization by Pseudomonas fluorescens SBW25 on maize. FEMS Microbiology Ecology, 54, 123e130.CrossRefGoogle Scholar
  107. Iavicoli, A., Boutet, E., Buchala, A., & Metraux, J. P. (2003). Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Molecular Plant-Microbe Interactions, 16, 851–858.CrossRefPubMedGoogle Scholar
  108. James, E. K., Reis, V. M., Olivares, F. L., Baldani, J. I., & Döbereiner, J. (1994). Infection of sugar cane by the nitrogen-fixing bacterium Acetobacter diazotrophicus. Journal of Experimental Botany, 45, 757–766.CrossRefGoogle Scholar
  109. James, E. K., Gyaneshwar, P., Mathan, N., Barraquio, W. L., Reddy, P. M., Iannetta, P. P., Olivares, F. L., & Ladha, J. K. (2002). Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Molecular Plant-Microbe Interactions, 15, 894–906.CrossRefGoogle Scholar
  110. Jesus, M.-B., & Lugtenberg, B. J. J. (2014). Biotechnological applications of bacterial endophytes. Current Biotechnology, 3, 60–75.CrossRefGoogle Scholar
  111. Jetiyanon K. (1994). Immunization of cabbage for long-term Resistanceto black rot. M.S. Thesis, Plant Pathology, Auburn University, Auburn, Alabama.Google Scholar
  112. Jha, P. N., & Kumar, A. (2007). Endophytic colonization of Typha australis by a plant growth promoting bacterium Klebsiella oxytoca GR 3. Journal of Applied Microbiology, 103, 1311–1320.CrossRefPubMedGoogle Scholar
  113. Ji, X., Lu, G., Gai, Y., Gao, H., Lu, B., Kong, L., & Mu, Z. (2010). Colonization of Morus alba L. by the plant-growth-promoting and antagonistic bacterium Burkholderia cepacia strain Lu10-1. BMC Microbiology, 10, 243.CrossRefPubMedPubMedCentralGoogle Scholar
  114. Joe, M. M., Islam, M. D., Karthikeyan, B., Bradeepa, K., Sivakumaar, P. K., & Sa, T. (2012). Resistance responses of rice to rice blast fungus after seed treatment with the endophytic Achromobacter xylosoxidans AUM54 strains. Crop Protection, 42, 141–148.CrossRefGoogle Scholar
  115. Jurkevitch, E., Hadar, Y., & Chen, Y. (1998). Involvement of bacterial siderophores in the remedy of lime-induced chlorosis on peanut. Soil Science Society of America Journal, 52, 1032–1037.CrossRefGoogle Scholar
  116. Kamilova, F., Validov, S., Azarova, T., Mulders, I., & Lugtenberg, B. (2005). Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environmental Microbiology, 7, 1809–1817.CrossRefPubMedGoogle Scholar
  117. Kamilova, F., Validov, S., Azarova, T., Mulders, I., & Lugtenberg, B. (2006). Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environmental Microbiology, 7, 1809–1817.CrossRefGoogle Scholar
  118. Kang, S. H., Cho, H. S., Cheong, H., Ryu, C. M., Kim, J. F., & Park, S. H. (2007). Two bacterial endophytes eliciting boot plant growth promotion and plant defense on pepper (Capsicum annuum L.). Journal of Microbiology and Biotechnology, 17, 96–103.PubMedGoogle Scholar
  119. Kang, S. M., Joo, G. J., Hamayuan, M., Na, C. I., Shin, D. H., Kim, H. K., Hong, J. K., & Lee, I. J. (2009). Gibberellin production and phosphate solubilisation by newly isolated strain Acinetobacter calcoaceticus and its effect on plant growth. Biotechnology Letters, 31, 277–281.CrossRefGoogle Scholar
  120. Karthikeyan, M., Jayakumar, V., Radhika, R., Bhaskaran, V. R., & Alice, D. (2005). Induction of resistance in host against the infection of leaf blight pathogen (Alternaria palandui) in onion (Allium cepa var ggregatum). Indian Journal of Biochemistry and Biophysics, 42, 371–377.PubMedGoogle Scholar
  121. Katz, E., & Demain, A. L. (1977). The peptide antibiotics of Bacillus: Chemistry, biogenesis, andpossible functions. Bacteriological Reviews, 41, 449–474.PubMedPubMedCentralGoogle Scholar
  122. Khan, A. L., Hussain, J., Al-Harrasi, A., Al-Rawahi, A., & Lee, I.-J. (2015). Endophytic fungi: Resource for gibberellins and crop abiotic stress resistance. Critical Reviews in Biotechnology, 35(1), 62–74.CrossRefPubMedGoogle Scholar
  123. Kim, K. J. A., Yang, Y. J., & Kim, J. (2002). Production of alpha-glucosidase inhibitor by beta-glucosidase inhibitor producing Bacillus lentimorbus B-6. Journal of Microbiology and Biotechnology, 12, 895–900.Google Scholar
  124. Kirchhof, G., Reis, V. M., Baldani, J. I., Eckert, B., Döbereiner, J., & Hartmann, A. (1997). Occurrence, physiological and molecular analysis of endophytic diazotrophic bacteria in gramineous energy plants. Plant and Soil, 194, 45–55.CrossRefGoogle Scholar
  125. Kloepper, J. W., & Ryu, C. M. (2006). Bacterial endophytes as elicitors of induced systemic resistance. In B. Schulz, C. Boyle, & T. Sieber (Eds.), Microbial root endophytes (pp. 33–52). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  126. Kloepper, J. W., Ryu, C. M., & Zhang, S. (2004). Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology, 94, 1259–1266.CrossRefPubMedGoogle Scholar
  127. Kluepfel, D. A., McInnis, T. M., & Zehr, E. I. (1993). Involvement of root-colonizing bacteria in peach orchard soils suppressive of the nematode Criconemella xenoplax. Phytopathology, 83, 1240–1245.CrossRefGoogle Scholar
  128. Knudsen, G. E., & Spur, H. W. (1987). Field persistence and efficacy of five bacterial preparations to control peanut leaf spot. Plant Disease, 71, 442–445.CrossRefGoogle Scholar
  129. Kraus, J., & Loper, J. E. (1992). Lack of evidence for a role of antifungal metabolite production by Pseudomonas fluorescens Pf-5 in biological control of Pythium damping-off of cucumber. Phytopathology, 82, 264–271.CrossRefGoogle Scholar
  130. Krause, A., Ramakumar, A., Bartels, D., et al. (2006). Complete genome of the mutualistic N2-fixing grass endophyte Azoarcus sp. strain BH72. Nature Biotechnology, 24, 1385–1391.CrossRefPubMedGoogle Scholar
  131. Krishna Murthy, K., & Gnanamanickam, S. S. (1997). Biological control of sheath blight of rice: Induction of systemic resistance in rice by plant associated Pseudomonas spp. Current Science, 72, 331–334.Google Scholar
  132. Krishnamurthy, K., & Gnanamanickam, S. S. (1998). Biological control of rice blast by Pseudomonas fluorescens strains Pf7–14: Evaluation of a marker gene and formulations. Biological Control, 13, 158–165.CrossRefGoogle Scholar
  133. Latha, P., Anand, T., Agupathi, N., Prakasam, V., & Samiyappan, R. (2009). Antimicrobial activity of plant extracts and induction of systemic resistance in tomato plants by mixtures of PGPR strains and Zimmu leaf extract against Alternaria solani. Biological Control, 50, 85–93.CrossRefGoogle Scholar
  134. Leeman, M., den Ouden, F. M., van Pelt, J. A., Dirkx, F. P. M., Steijl, H., Bakker, P. A. H. M., & Schippers, B. (1996). Iron availability affects induction of systemic resistance to fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology, 86, 149–155.CrossRefGoogle Scholar
  135. Lemanceau, P., Bakker, P. A. H. M., De Kogel, W. J., Alabouvette, C., & Schippers, B. (1993). Effect of psedobactin 358 production by Pseudomonas putida on suppression of fusarium wilt of carnations by nonpathogenic Fusarium oxysporum Fo47. Applied and Environmental Microbiology, 58, 2978–2982.Google Scholar
  136. Li, W. X., Kodama, O., & Akatsuka, T. (1991). Role of oxygenated fatty acids in rice phytoalexin production. Agricultural and Biological Chemistry, 55, 1041–1147.Google Scholar
  137. Liechti, R., & Farmer, E. E. (2002). The jasmonate pathway. Science, 296, 1649–1650.CrossRefPubMedGoogle Scholar
  138. Ligon, J. M., Hill, D. S., Hammer, P. E., Torkewitz, N. R., Hofmann, D., Kempf, H. J., & van Pee, K. H. (2000). Natural products with antifungal activity from pseudomonas biocontrol bacteria. Pest Management Science, 56, 688–695.CrossRefGoogle Scholar
  139. Lima, G., Ippolilo, A., Nigro, F., & Salemo, M. (1994). Attempting at biological control of citrus mal secco (Phoma tracheiphila) with endophytic bacteria. Difesa-delle-Piante, 17, 43–49.Google Scholar
  140. Lin, T., Zhao, L., Yang, Y., Guan, Q., & Gong, M. (2013). Potential of endophytic bacteria isolated from Sophora alopecuroides nodule in biological control against Verticillium wilt disease. AJCS, 7(1), 139–146.Google Scholar
  141. Liu, L., Kloepper, W., & Tuzun, S. (1995). Induction of systemic resistance in cucumber against fusarium wilt by plant growth-promoting rhizobacteria. Phytopathology, 85, 695–698.CrossRefGoogle Scholar
  142. Lodewyckx, C., Vangronsveld, J., Porteous, F., Moore, E. R. B., Taghavi, S., Mezgeay, M., et al. (2002). Endophytic bacteria and their potential applications. Critical Reviews in Plant Sciences, 21, 583–606.CrossRefGoogle Scholar
  143. Loper, J. E., & Henkels, M. D. (1997). Availability of iron to P. fluorescens in rhizosphere and bulksoil evaluated with an ice nucleation reporter gene. Applied and Environmental Microbiology, 63, 99–105.PubMedPubMedCentralGoogle Scholar
  144. Loy, A., Maixner, F., Wagner, M., & Horn, M. (2007). Probe Base-an online resource for rRNA- targeted oligonucleotide probes: New features 2007. Nucleic Acids Research, 35, D800–D804.CrossRefPubMedGoogle Scholar
  145. Lucas, J. A., Ramos Solano, B., Montes, F., Ojeda, J., Megias, M., & Gutierrez Manero, F. J. (2009). Use of two PGPR strains integrated management of blast disease in rice (Oryza sativa) in Southern Spain. Field Crops Research, 114, 404–410.CrossRefGoogle Scholar
  146. Lugtenberg, B., & Kamilova, F. (2009). Plant-growth-promoting-rhizobacteria. Annual Review of Microbiology, 63, 541–556.CrossRefGoogle Scholar
  147. Lugtenberg, B., Malfanova, N., Kamilova, F., & Berg, G. (2013). Chapter 53: Plant growth promotion by microbes. In F. J. de Bruijn (Ed.), Molecular microbial ecology of the rhizosphere (pp. 561–573). Hoboken: Wiley-Blackwell.Google Scholar
  148. M’Piga, P., Belanger, R. R., Paulitz, T. C., & Benhamou, N. (1997). Increased resistance to Fusarium oxysporum f. sp. radicis-lycopersici in tomato plants tested with the endophytic bacterium Pseudomonas fluorescens strain 63–28. Physiological and Molecular Plant Pathology, 50, 301–320.CrossRefGoogle Scholar
  149. Malfanova NV 2013 Endophytic bacteria with plant growth promoting and biocontrol abilities. Thesis p. 169.Google Scholar
  150. Malfanova, N., Kamilova, F., Validov, S., Chebotar, V., & Lugtenberg, B. (2013). Is L- arabinose important for the endophytic lifestyle of Pseudomonas spp.? Archives of Microbiology, 195, 9–17.CrossRefPubMedGoogle Scholar
  151. Malinowski, D. P., Alloush, G. A., & Belesky, D. P. (2000). Leaf endophyte Neotyphodium coenophialum modifies mineral uptake in tall fescue. Plant and Soil, 227, 115–126.CrossRefGoogle Scholar
  152. Mandimba, G., Heulin, T., Bally, R., Guckert, A., & Balandreau, J. (1986). Chemotaxis of free-living nitrogen-fixing bacteria towards maize mucilage. Plant and Soil, 90, 129–139.CrossRefGoogle Scholar
  153. Mari, M., Francesco, A. D., & Bertolini, P. (2014). Control of fruit postharvest diseases: Old issues and innovative approaches. Stewart Postharvest Review, 10(1), 1–4. Scholar
  154. Marta Cristina, F. C., da Silva, G. B., Silva-Lobo, V. L., Côrtes, M. V. C. B., Moraes, A. J. G., & Prabhu, A. S. (2011). Leaf blast (Magnaporthe oryzae) suppression and growth promotion by rhizobacteria on aerobic rice in Brazil. Biological Control, 58, 160–166.Google Scholar
  155. Martínez, L., Caballero-Mellado, J., Orozco, J., & Martínez-Romero, E. (2003). Diazotrophic bacteria associated with banana (Musa spp.). Plant and Soil, 257, 35–47.CrossRefGoogle Scholar
  156. Melnick, R. L., Zidack, N. K., Bailey, B. A., Maximova, S. N., Guiltinan, M., & Backman, P. A. (2008). Bacterial endophytes: Bacillus spp. from annual crops as potential biological control agents of black pod rot of cacao. Biological Control, 46(1), 46–56.CrossRefGoogle Scholar
  157. Mendoza, A., & Sikora, R. (2009). Biological control of Radopholus similis in banana by combined application of the mutualistic endophyte Fusarium oxysporum strain 162, the egg pathogen Paecilomyces lilacinus strain 251 and the antagonistic bacteria Bacillus firmus. Biological Control, 54(2), 263–272.Google Scholar
  158. Meneses, C. H. S. G., Rouws, L. F. M., Simoes-Araujo, J. L., Vidal, M. S., & Baldani, J. I. (2011). Exopolysaccharide production is required for biofilm formation and plant colonization by the nitrogen-fixing endophyte Gluconacetobacter diazotrophicus. Molecular Plant-Microbe Interactions, 24, 1448–1458.CrossRefPubMedGoogle Scholar
  159. Mercado-Blanco, J., & Bakker, P. A. H. M. (2007). Interactions between plants and beneficial Pseudomonas spp.: Exploiting bacterial traits for crop protection. Antonie Van Leeuwenhoek, 92, 367–389.CrossRefPubMedGoogle Scholar
  160. Meyer, S. L. F., & Roberts, D. P. (2002). Combinations of bio-control agents for management of plant-parasitic nematodes and soil borne plant-pathogenic fungi. Journal of Nematology, 34, 1–8.PubMedPubMedCentralGoogle Scholar
  161. Miche, L., & Balandreau, J. (2001). Effects of rice seed surface sterilization with hypochlorite on inoculated Burkholderia vietnamiensis. Applied and Environmental Microbiology, 67, 3046–3052.CrossRefPubMedPubMedCentralGoogle Scholar
  162. Miche, L., Battistoni, F., Gemmer, S., Belghazi, M., & Reinhold-Hurek, B. (2006). Up regulation of jasmonate-inducible defense proteins and differential colonization of roots of Oryza sativa cultivars with the endophyte Azoarcus sp. Molecular Plant-Microbe Interactions, 19, 502–511.CrossRefPubMedGoogle Scholar
  163. Mikani, A., Hr, E., Pl, S., Gorma, D., Stokes, S., & Alizadeh, A. (2008). Biological control of apple gray mold caused by Botrytis mali with Pseudomonas fluorescens strains. Postharvest Biological Technology, 48, 107–112.CrossRefGoogle Scholar
  164. Misaghi, I. J., & Donndelinger, C. R. (1990). Endophytic bacteria in symptom-free cotton plants. Phytopathology, 80, 808–811.CrossRefGoogle Scholar
  165. Mishra, R. P., Singh, R. K., Jaiswal, H. K., Kumar, V., & Maurya, S. (2006). Rhizobium mediated induction of phenolics and plant growth promotion in rice (Oryza sativa L.). Current Microbiology, 52, 383–389.CrossRefPubMedGoogle Scholar
  166. Mohammadi, P., Tozlu, E., Kotan, R., & KotanŞenol, M. (2017). Potential of some bacteria for biological control of postharvest citrus green mould caused by Penicillium digitatum. Plant Protection Science, 53.Google Scholar
  167. Montanez, A., Rodriguez Blanco, A., Barlocco, C., & Beracochea, M. (2012). Characterization of cultivable putative plant growth promoting bacteria associated with maize cultivars (Zea mays L.) and their inoculation effects in vitro. Applied Soil Ecology, 58, 21–28.CrossRefGoogle Scholar
  168. Mundt, J. O., & Hinkle, N. F. (1976). Bacteria within ovules and seeds. Applied and Environmental Microbiology, 32, 694–698.PubMedPubMedCentralGoogle Scholar
  169. Musson, G., John, M., & Joseph, K. (1995). Development of delivery systems for introducing endophytic bacteria into cotton. Biocontrol Science and Technology, 5, 407–416.CrossRefGoogle Scholar
  170. Muthukumar, A., & Bhaskaran, R. (2007). Efficacy of an-ti-microbial metabolites of Pseudomonas fluorescens (Trevisan) Migula. against Rhizoctonia solani Khun. and Pythium sp. Journal of Biological Control, 21, 105–110.Google Scholar
  171. Muthukumar, A., & Venkatesh, A. (2013). Exploitation of fungal and endophytic bacteria for the management of leaf blight of ribbon plant. Journal of Plant Pathology and Microbiology, 4, 209.Google Scholar
  172. Muthukumar, A., Nakkeeran, S., Eswaran, A., & Sangeetha, G. (2010). In vitro efficacy of bacterial endophytes against the chilli damping-off pathogen Pythium aphanidermatum Phytopathol. Méditerranée, 49, 179–186.Google Scholar
  173. Nagarajkumar, M., Bhaaskaran, R., & Velazhahan, R. (2004). Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath of blight pathogen. Microbiology Research, 159, 73–81.CrossRefGoogle Scholar
  174. Nakayama, T., Homma, Y., Hashidoko, Y., Mizutani, J., & Tahara, S. (1999). Possible role of xanthobaccins produced by Stenotrophomonas sp. strain SB-K88 in suppression of sugar beet damping-off disease. Applied and Environmental Microbiology, 65, 4334–4339.PubMedPubMedCentralGoogle Scholar
  175. Nakkeeran, S., Kavitha, K., Chandrasekar, G., Renukadevi, P., & Fernando, W. G. D. (2006). Induction of plant de-fence compounds by Pseudomonas chlororaphis PA 23 and Bacillus subtilis BSCBE 4 in controlling damping-off of hot pepper caused by Pythium aphanidermatum. Bio-control Science and Technology, 16, 403–416.CrossRefGoogle Scholar
  176. Nejad, P., & Johnson, P. A. (2000). Endophytic bacteria induce growth promotion and wilt disease suppression in oilseed rape and tomato. Biological Control, 18, 208–215.CrossRefGoogle Scholar
  177. Nielsen, T. H., Sorensen, D., Tobiasen, C., Andersen, J. B., Christeophersen, C., Givskov, M., & Sorensen, J. (2002). Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from the sugar beet rhizosphere. Applied and Environmental Microbiology, 68, 3416–3423.CrossRefPubMedPubMedCentralGoogle Scholar
  178. Okunishi, S., Sako, K., Mano, H., Imamura, A., & Morisaki, H. (2005). Bacterial flora of endophytes in the maturing seed of cultivated rice (Oryza sativa). Microbes and Environments, 20, 168–177.CrossRefGoogle Scholar
  179. Ongena, M., & Jacques, P. (2008). Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends in Microbiology, 16, 115–125.CrossRefPubMedGoogle Scholar
  180. Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., Joris, B., Arpigny, J.-L., & Thonart, P. (2007). Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environmental Microbiology, 9, 1084–1090.CrossRefPubMedGoogle Scholar
  181. Parveen, S., Wani, A. H., Bhat, M. Y., & Koka, J. A. (2016). Biological control of postharvest fungal rots of rosaceous fruits using microbial antagonists and plant extracts. Czech Mycology, 68(1), 41–66.CrossRefGoogle Scholar
  182. Pedrosa, F. O., Monteiro, R. A., Wassem, R., Cruz, L. M., Ayub, R. A., Colauto, N. B., Fernandez, M. A., et al. (2011). Genome of Herbaspirillum seropedicae strain SmR1, a specialized diazotrophic endophyte of tropical grasses. PLoS Genetics, 7, 1002064.CrossRefGoogle Scholar
  183. Pérez-García, A., Romero, D., & de Vicente, A. (2011). Plant protection and growth stimulation by microorganisms: Biotechnological application of Bacilli in agriculture. Current Opinion in Biotechnology, 22, 187–193.CrossRefPubMedGoogle Scholar
  184. Perneel, M., D’Hondt, L., De Maeyer, K., Adiobo, A., Rabaey, K., & Hofte, M. (2008). Phenazines andbiosurfactants interact in the biological control of soil-borne diseases caused by Pythium spp. Environmental Microbiology, 10, 778–788.CrossRefPubMedGoogle Scholar
  185. Pierson, L. S., III, & Pierson, E. A. (2010). Metabolism and function of phenazines in bacteria: Impacts on the behavior of bacteria in the environment and biotechnologicalprocesses. Applied Microbiology and Biotechnology, 86, 1659–1670.CrossRefPubMedPubMedCentralGoogle Scholar
  186. Pierson, L. S., & Thomashow, L. S. (1992). Cloning of heterologous expression of phenazinebiosynthesis locus from P. aureofaciens 30–84. Molecular Plant-Microbe Interactions, 53, 330–339.CrossRefGoogle Scholar
  187. Pierson, E. A., & Weller, D. M. (1994). Use of mixtures of fluorescent pseudomonads to suppress take-all and improve the growth of wheat. Journal of Phytopathology, 84, 940–947.CrossRefGoogle Scholar
  188. Pieterse, C. M. J., van Pelt, J. A., Knoester, M., Laan, R., Gerrits, H., Weisbeek, P. J., & van Loon, L. C. A. (1998). Novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell, 10, 1571–1580.CrossRefPubMedPubMedCentralGoogle Scholar
  189. Pirttila, A., Joensuu, P., Pospiech, H., Jalonen, J., & Hohtola, A. (2004). Bud endophytes of Scots pine produce adenine derivatives and other compounds that affect morphology and mitigate browning of callus cultures. Physiologia Plantarum, 121, 305–312.CrossRefPubMedGoogle Scholar
  190. Pliego, C., De Weert, S., Lamers, G., De Vicente, A., Bloemberg, G., Cazorla, F. M., & Ramos, C. (2008). Two similar enhanced root-colonizing Pseudomonas strains differ largely in their colonization strategies of avocado roots and Rosellinia neatrix hyphae. Environmental Microbiology, 10, 3295–3304.CrossRefPubMedGoogle Scholar
  191. Pliego, C., Kamilova, F., & Lugtenberg, B. (2011). Plant growth-promoting bacteria: Fundamentals and exploitation. In D. K. Maheshwari (Ed.), Bacteria in agrobiology: Crop ecosystems (pp. 295–343). Berlin: Springer.CrossRefGoogle Scholar
  192. Porteous-Moore, F., Barac, T., Borremans, B., Oeyen, L., Vangronsveld, J., van der Lelie, D., Campbell, D., & Moore, E. R. B. (2006). Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site: The characterisation of isolates with potential to enhance phytoremediation. Sys App Micro, 29, 539–556.CrossRefGoogle Scholar
  193. Pratella, G., Mari, M., Guizzardi, F., & Folchi, A. (1993). Preliminary studies on the efficiency of endophytes in the biological control of the postharvest pathogens Monilinia laxa and Rhizopus stolonifer in stone fruit. Postharvest Biological Technology, 3, 361–368.CrossRefGoogle Scholar
  194. Pratelli, R., & Pilot, G. (2014). Regulation of amino acid metabolic enzymes and transporters in plants. Journal of Experimental Botany, 65(19), 5535–5556.CrossRefPubMedGoogle Scholar
  195. Raaijmakers, J. M., Vlami, M., & de Souza, J. T. (2002). Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek, 81, 537–547.CrossRefPubMedGoogle Scholar
  196. Raaijmakers, J. M., Paulitz, T. C., Steinberg, C., Alabouvette, C., & Moënne-Loccoz, Y. (2008). The rhizosphere: A playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant and Soil, 321, 341–361.CrossRefGoogle Scholar
  197. Radjacommare, R., Kandan, A., Nandakumar, R., & Samiyappan, R. (2004). Association of the hydrolytic enzyme chitinase against Rhizoctonia solani in rhizobacteria-treated rice plants. Journal of Phytopathology, 152, 365–370.CrossRefGoogle Scholar
  198. Raj, S. N., Chaluvaraju, G., Amruthesh, K. N., & Shetty, H. S. (2003). Induction of growth promotion and resistance against downy mildew on pearl millet (Penninsetum glaucum) by rhizobacteria. Plant Disease, 87, 380–384.CrossRefPubMedGoogle Scholar
  199. Ramkumar, G., Yu, S. M., & Lee, Y. H. (2013). Influence of light qualities on antifungal lipopeptide synthesis in Bacillus amyloliquefaciens JBC36. European Journal of Plant Pathology, 137, 243–248.CrossRefGoogle Scholar
  200. Rao, M. S. L. (2006). Studies on seed borne fungal disease of sunflower and their management. MSc Thesis. University of Agricultural Sciences, Dharwad, India.Google Scholar
  201. Rasche, F., Lueders, T., Schloter, M., Schaefer, S., Buegger, F., Gattinger, A., Hood-Nowotny, R. C., & Sessitsch, A. (2009). DNA-based stable isotope probing enables the identification of active bacterial endophytes in potatoes. New Phytologist, 181, 802–807.CrossRefPubMedGoogle Scholar
  202. Reinhold-Hurek, B., & Hurek, T. (1998). Life in grasses: Diazotrophic endophytes. Trends in Microbiology, 6, 139–144.CrossRefPubMedGoogle Scholar
  203. Reiter, B., Pfeifer, U., Schwab, H., & Sessitsch, A. (2002). Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. atroseptica. Applied and Environmental Microbiology, 68, 2261–2268.CrossRefPubMedPubMedCentralGoogle Scholar
  204. Reitz, M., Rudolph, K., Schroder, I., Hoffmann-Hergarten, S., Hallmann, J., & Sikora, R. A. (2000). Lippolsaccharides of Rhizobium etli strain G12 act in potato roots as an inducing agent of systemic resistance to infection by the cyst nematode Globodeva pallida. Applied and Environmental Mimobiology, 66, 3515–3518.CrossRefGoogle Scholar
  205. Rodriguez, H., Fraga, R., Gonzalez, T., & Bashan, Y. (2006). Genetics of phosphate solubilisation and its potential applications for improving plant growth-promoting bacteria. Plant and Soil, 287, 15–21.CrossRefGoogle Scholar
  206. Romeiro, R. S. (2000). PGPR e induc¸a˜o de resisteˆncia sisteˆmica em plantas a pato’genos. Summa Phytopathologica, 26, 177–184.Google Scholar
  207. Rosenblueth, M., & Martinez-Romero, E. (2006). Bacterial endophytes and their interactions with hosts. Molecular Plant-Microbe Interactions, 19, 827–837.CrossRefPubMedGoogle Scholar
  208. Rudrappa, T., Czymmek, K. J., Paré, P. W., & Bais, H. P. (2008). Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiology, 148, 1547–1556.CrossRefPubMedPubMedCentralGoogle Scholar
  209. Ryan, P. R., Germaine, K., Franks, A., Ryan, D. J., & Dowling, D. N. (2008). Bacterial endophytes: recent developments and applications. FEMS Microbiology Letters, 278, 1–9.CrossRefPubMedGoogle Scholar
  210. Ryu, C. M., Farag, M. A., Hu, C. H., et al. (2003). Bacterial volatiles promote growth of Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 100, 4927–4932.CrossRefPubMedPubMedCentralGoogle Scholar
  211. Sadfi, N., Cherif, M., Fliss, I., Boudabbous, A., & Antoun, H. (2001). Evaluation of bacterial isolates from salty soils and Bacillus thuringiensis strains for the biocontrol of Fusarium dry rot of potato tubers. Journal of Plant Pathology, 83, 101–118.Google Scholar
  212. Saidul, I., Akhiter, M., Bodruddoza, M. A. K., Shahidul Ashik, M. M., & Antimicribial, A. M. (2001). Tox-icological studies of mixed legand transition metal complexes of Schiff bases. OnLine Journal of Biological Sciences, 1, 711–713.CrossRefGoogle Scholar
  213. Saikia, R., Kumar, R., Singh, T., Srivastava, A. K., Arora, D. K., Gogoi, D. K., & Lee, M. W. (2004). Induction of defense related enzymes and pathogenesis related proteins in Pseudomonas fluorescens-treated chickpea in response to infection by Fusarium oxysporum f. sp. ciceri. Mycobiology, 32, 47–52.CrossRefGoogle Scholar
  214. Saikia, R., Kumar, R., Arora, D. K., Gogoi, D. K., & Azad, P. (2006). Pseudomonas aeruginosa inducing rice resistance against Rhizoctonia solani: Production of salicylic acid and peroxidases. Folia Microbiologica, 51, 375–380.CrossRefPubMedGoogle Scholar
  215. Samish, Z., & Dimant, D. (1959). Bacterial population in fresh, healthy cucumbers. Food Manufacture, 34, 17–20.Google Scholar
  216. Sapak, Z., Meon, S., & Ahmad, Z. A. M. (2008). Effect of endophytic bacteria on growth and suppression of Ganoderma infection in oil palm. International Journal of Agriculture and Biology, 10, 127–132.Google Scholar
  217. Sattelmacher, B. (2001). The apoplast and its significance for plant mineral nutrition. New Phytologist, 22, 167–192.CrossRefGoogle Scholar
  218. Savadogo, A., Tapi, A., Chollet, M., Wathelet, B., Traore, A. S., & Jacques, P. (2011). Identification of surfactin producing strains in Soumbala and Bikalga fermented condiments using polymerase chain reaction and matrix assistedlaser desorption/ionization-mass spectrometry methods. International Journal of Food Microbiology, 151, 299–306.CrossRefPubMedGoogle Scholar
  219. Schuhegger, R., Ihring, A., Gantner, S., Bahnweg, G., Knaooe, C., Vogg, G., et al. (2006). Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant, Cell & Environment, 29, 909–918.CrossRefGoogle Scholar
  220. Schulz, B., & Boyle, C. (2006). In S. BJE, B. CJC, & T. N. Sieber (Eds.), What are endophytes? Microbial Root Endophytes (pp. 1–13). Berlin: Springer.CrossRefGoogle Scholar
  221. Schulz, B., Boyle, C., Draeger, S., Rommert, A.-K., & Krohn, K. (2002). Endophytic fungi: A source of novel biologically active secondary metabolites. Mycological Research, 106(9), 996–1004. Scholar
  222. Selim, M. M., Hend Nafisa Gomaa, M., & Essa, A. M. M. (2017). Application of endophytic bacteria for the biocontrol of Rhizoctonia solani (Cantharellales: ceratobasidiaceae) damping-off disease in cotton seedlings. Biocontrol Science and Technology, 27(1), 81–95.CrossRefGoogle Scholar
  223. Senthilkumar, M., Govindasamy, V., & Annapurna, K. (2007). Role of antibiosis in suppressionof charcoal rot disease by soybean endophyte Paenibacillus sp. HKA-15. Current Microbiology, 55, 25–29.CrossRefPubMedGoogle Scholar
  224. Sessitsch, A., Reiter, B., Pfeifer, U., & Wilhelm, E. (2002). Cultivation-independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and Actinomycetes-specific PCR of 16S rRNA genes. FEMS Microbi-ology Ecology, 39, 23–32.CrossRefGoogle Scholar
  225. Sessitsch, A., Hardoim, P., Döring, J., Weilharter, A., Krause, A., Woyke, T., Mitter, B., et al. (2012). Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Molecular Plant-Microbe Interactions, 25, 28–36.CrossRefPubMedGoogle Scholar
  226. Shahzad, R., Waqas, M., Khan, A. L., Asaf, S., Khan, M. A., Kang, S.-M., Yun, B.-W., & Lee, I.-J. (2016). Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa. Plant Physiology and Biochemistry, 106, 236–243.CrossRefPubMedGoogle Scholar
  227. Shahzad, R., Khan, A. L., Bilal, S., Asaf, S., & Lee, I.-J. (2017). Plant growth-promoting endophytic bacteria versus pathogenic infections: an example of Bacillus amyloliquefaciens RWL-1 and Fusarium oxysporum f. sp. lycopersici in tomato. Peer-reviewed Journal, 5, 3107.CrossRefGoogle Scholar
  228. Shanmugaiah, V., Mathivanan, N., & Varghese, B. (2010). Purification, crystal structure and antimicrobial activity of phenazine-1-carboxamide produced by a growth-promoting biocontrol bacterium, Pseudomonas aeruginosa MML2212. Journal of Applied Microbiology, 108, 703–711.CrossRefPubMedGoogle Scholar
  229. Sharifazizi, M., Harighi, B., & Sadeghi, A. (2017). Evaluation of biological control of Erwinia amylovora, causal agent of fire blight disease of pear by antagonistic bacteria. Biological Control, 104, 28–23.CrossRefGoogle Scholar
  230. Sharma, V. K., & Nowak, J. (1998). Enhancement of Verticillium wilt resistance in tomato transplants by in vitro co-culture of seedling with a plant growth promoting rhizobacterium (Pseudomonas sp. strain PsJN). Canadian Journal of Microbiology, 44, 528–536.CrossRefGoogle Scholar
  231. Sharma, A., Johri, B. N., Sharma, A. K., & Glick, B. R. (2003). Plant growth promoting bacterium Pseudomonas sp. strain GRP(3) influences iron acquisition in mung bean (Vigna radiata L. Wilzeck). Soil Biology and Biochemistry, 35, 887–894.CrossRefGoogle Scholar
  232. Shcherbakov, A. V., Bragina, A. V., Kuzmina, E. Y., et al. (2013). Endophytic bacteria of Sphagnum mosses as promising objects of agricultural microbiology. Mikrobiologya, 82, 306–315.Google Scholar
  233. Shiomi, H. F., Silva, H. S. A., de Melo, I. S., Nunes, F. V., & Bettiol, W. (2006). Bioprospecting endophytic bacteria for biological control of coffee leaf rust. Scientia Agricola (Piracicaba, Braz.), 63, 32–39.CrossRefGoogle Scholar
  234. Sian, C. (2013). Isolation of endophytic bacgteria from native western Australian woody plants for biological control of Phytophthora cinnamomi in natural ecosystems Thesis. p. 140.Google Scholar
  235. Siddiqui, I. A., & Ehteshamul-Haque, S. (2001). Suppression of the root rot-root knot disease complex by Pseudomonas aerginosa in tomato: The influence of inoculum density, nematode populations, moisture and other plant-associated bacteria. Plant and Soil, 237, 81–89.Google Scholar
  236. Siddiqui, I. A., Shaukat, S. S., & Hamid, M. (2002). b. Combined application of endophytic Fusarum solani and Pseudomonas aerginosa for the suppression of Meloidogyne javanica in tomato. Phytopathologia Meditevvanea, 41, 138–147.Google Scholar
  237. Silva, H. S. A., Romeiro, R. S., Macagnan, D., Halfeld-vieira, B. A., Pereira, M. C. B., & Mounteer, A. (2004). Rhizobacterial induction of systemic resistance in tomato plants: Non-specific protection and increase in enzyme activities. Biological Control, 29, 288–295.CrossRefGoogle Scholar
  238. Smilanick, J. L., Denis-Arrue, R., Bosch, J. R., Gonzalez, A. R., Henson, D., & Janisiewicz, W. J. (1993). Control of postharvest brown rot of nectarines and peaches by Pseudomonas species. Crop Protection, 12, 513–520.CrossRefGoogle Scholar
  239. Smith, E. F. (1991). Bacteria in rRelation to plant diseases, vol. 2. Carnegie Institute, Washington, USA. Soil Biology and Biochemistry, 30, 925–937.Google Scholar
  240. Smith, L., Keef, D. O., Smith, M., & Hamill, S. (2003). The benefits of applying rhizobacteria to tissue cultured bananas. Banana Topics Newsletter, 33, 1–4.Google Scholar
  241. Smyth, E. (2011). Selection and analysis of bacteria on the basis of their ability to promote plant development and growth. PhD Thesis, University College Dublin.Google Scholar
  242. Spaepen, S., Vanderleyden, J., & Okon, Y. (2009). Plant growth-promoting actions of rhizobacteria. Ann Botan Research, 51, 283–320.Google Scholar
  243. Stadnik, M. J. (2000). Induc¸a˜o de resisteˆncia a Oı’dios. Summa Phytopathologica, 26, 175–177.Google Scholar
  244. Strobel, G., Daisy, B., Castillo, U., & Harper, J. (2004). Natural products from endophytic microorganisms. Journal of Natural Products, 67, 257–268.CrossRefPubMedGoogle Scholar
  245. Sturz, A. V., Christie, B. R., & Matheson, B. G. (1997). Associations of bacterial endophyte populations from red clover and potato crops with potential foe beneficial allelopathy. Canadian Journal of Microbiology, 44, 162–167.CrossRefGoogle Scholar
  246. Sturz, A. V., Christie, H. R., Matheson, B. G., Arsenault, W. J., & Buchman, N. A. (1999). Endophytic bacterial communities in the periderm of potato tubers and their potential to improve resistance to improve resistance to soil borne plant pathogens. Plant Pathology, 48, 360–369.CrossRefGoogle Scholar
  247. Sullivan, T. J., Rodstrom, J., Vandop, J., Librizzi, J., Graham, C., Schardl, C. L., & Bultman, T. L. (2007). Symbiont-mediated change in Lolium arundinaceum inducible defenses: Evidence from changes in gene expression and leaf composition. New Phytologist, 176, 673–679.CrossRefPubMedGoogle Scholar
  248. Sun, G., Yao, T., Feng, C., Chen, L., Li, J., & Wang, L. (2017). Identification and biocontrol potential of antagonistic bacteria strains against Sclerotinia sclerotiorum and their growth-promoting effects on Brassica napus. Biological Control, 104, 35–43.CrossRefGoogle Scholar
  249. Sundara, B., Natarajan, V., & Hari, K. (2002). Influence of phosphorus solubilising bacteria on the changes in soil available phosphorus and sugarcane and sugar yields. Field Crops Research, 77, 43–49.CrossRefGoogle Scholar
  250. Sundaramoorthy, S., Raguchander, T., Ragupathi, N., & Samiyappan, R. (2012). Combinatorial effect of endophytic and plant growth promoting rhizobacteria against wilt disease of Capsicum annum L. caused by Fusarium solani. Biological Control, 60, 59–67.Google Scholar
  251. Tabbene, O., Slimene, I. B., Bouabdallah, F., Mangoni, M. L., Urdaci, M. C., & Limam, F. (2009). Production of anti-methicillin-resistant staphylococcus activity from Bacillus subtilis sp. strain B38 newly isolated from soil. Applied Biochemistry and Biotechnology, 157, 407–419.CrossRefPubMedGoogle Scholar
  252. Taghavi, S., van der Lelie, D., Hoffman, A., Zhang, Y.-B., Walla, M. D., Vangronsveld, J., Newman, L., & Monchy, S. (2010). Genome sequence of the plant growth promoting endophytic bacterium Enterobacter sp. 638. PLoS Genetics, 6, 1000943.CrossRefGoogle Scholar
  253. Thangavelu, R., & Gopi, M. (2015). Field suppression of Fusarium wilt disease in banana by the combined application of native endophytic and rhizospheric bacterial isolates possessing multiple functions. Phytopathologia Mediterranea, 54(2), 241–252.Google Scholar
  254. Torres, M. J., Pérez Brandan, C., Petroselli, G., Erra-Balsells, R., & Audisio, M. C. (2016). Antagonistic effects of Bacillus Subtilis subsp. subtilis and B. amyloliquefaciens against Macrophomina phaseolina: SEM study of fungal changes and UV-MALDI-TOF MS analysis of their bioactive compounds. Microbiological Research, 182, 31–39.CrossRefPubMedGoogle Scholar
  255. Torres, M. J., Brandan, C. P., Sabate, D. C., Petroselli, G., Balsells, R. E., & Audisio, M. C. (2017). Biological activity of the lipopeptide-producing Bacillus amyloliquefaciens PGPBacCA1 on common bean Phaseolus vulgaris L. pathogens. Biological Control, 105, 93–99.CrossRefGoogle Scholar
  256. Toure, Y., Ongena, M., Jacques, P., Guiro, A., & Thonart, P. (2004). Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. Journal of Applied Microbiology, 96, 1151–1160.CrossRefPubMedGoogle Scholar
  257. Toyoda, H., & Utsumi, R. (1991 January). Method for the prevention of Fusarium diseases and microorganisms used for the same. U.S. patent 4, 988, 586.Google Scholar
  258. Trias, R., Baneras, L., Montesinos, E., & Badosa, E. (2010). Lactic acid bacteria from fresh fruit and vegetables as biocontrol agents of phytopathogenic bacteria and fungi. International Microbiology, 11(4), 231–236.Google Scholar
  259. Turnbull, G. A., Morgan, J. A. W., Whipps, J. M., & Saunders, J. R. (2001). The role of bacterial motility in the survival and spread of Pseudomonas fluorescens in soil and in the attachment and colonization of wheat roots. FEMS Microbiology Ecology, 36, 21–31.CrossRefPubMedGoogle Scholar
  260. Turner, J. T., Jeffrey, L. K., & Carlson, P. S. (1993). Endophytes: An alternative genome for crop improvement. In D. R. Buxton, R. Shibles, R. A. Forsberg, B. L. Blad, K. H. Asay, G. Paulsen, & R. F. Wilson (Eds.), International crop science (pp. 555–560). Madison: Crop Science Society of America.Google Scholar
  261. Ulrich, K., Ulrich, A., & Ewald, D. (2008). Diversity of endophytic bacterial communities in poplar grown under field conditions. FEMS Microbiology Ecology, 63, 169–180.CrossRefPubMedGoogle Scholar
  262. Uroz, S., Angelo-Picard, C. D., Carlier, A., Elasri, M., Sicot, C., Petit, A., Oger, P., Faure, D., & Dessaux, Y. (2003). Novel bacteria degrading N-acylhomoserine lactones and their use as quenchers of quorum-sensing-regulated functions of plant-pathogenic bacteria. Microbiology, 149, 1981–1989.CrossRefPubMedGoogle Scholar
  263. Van Loon, L. C. (2007). Plant responses to plant growth-promoting rhizobacteria. European Journal of Plant Pathology, 119, 243–254.CrossRefGoogle Scholar
  264. Van Loon, L. C., & Bakker, P. A. H. M. (2003). In H. De Kroon & V. WJW (Eds.), Root ecology (pp. 297–330). Berlin: Springer.CrossRefGoogle Scholar
  265. van Loon, L. C., & Bakker, P. A. H. M. (2005). Induced systemic resistance as a mechanism of disease suppression by rhizobacteria. In Z. A. Siddiqui (Ed.), PGPR: Biocontrol and biofertilization (pp. 39–66). Dordrecht: Springer.CrossRefGoogle Scholar
  266. Van Overbeek, L., & van Elsas, J. D. (2008). Effects of plant genotype and growth stage on the structure of bacterial communities associated with potato (Solanum tuberosum L.). FEMS Microbiology Ecology, 64, 283–296.CrossRefPubMedGoogle Scholar
  267. Van Peer, R., Niemann, G. J., & Schippers, B. (1991). Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology, 81, 728–734.CrossRefGoogle Scholar
  268. Van Wees, S. C. M., Pieterse, C. M. J., Trijssenaar, A., Van’t Westende, Y. A. M., Hartog, F., & Van Loon, L. C. (1997). Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Molecular Plant-Microbe Interactions, 10, 716–724.CrossRefPubMedGoogle Scholar
  269. van Wees, S. C. M., de Swart, E. A. M., van Pelt, J. A., van Loon, L. C., & Pieterse, C. M. J. (2000). Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 97, 8711–8716.CrossRefPubMedPubMedCentralGoogle Scholar
  270. Van Wees, S. C. M., Van der Ent, S., & Pieterse, C. M. J. (2008). Plant immune responses triggered by beneficial microbes. Current Opinion in Plant Biology, 11, 443–448.CrossRefPubMedGoogle Scholar
  271. Vendan, R. T., Yu, Y. J., Lee, S. H., & Rhee, Y. H. (2010). Diversity of endophytic bacteria in ginseng and their potential for plant growth promotion. Journal of Microbiology, 48, 559–565.CrossRefGoogle Scholar
  272. Vitullo, D., Di Pietro, A., Romano, A., Lanzotti, V., & Lima, G. (2012). Role of new bacterial surfactins in the antifungal interaction between Bacillus amyloliquefaciens and Fusarium oxysporum. Plant Pathology, 61(4), 689–699.CrossRefGoogle Scholar
  273. Vyas, P., & Gulati, A. (2009). Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiology, 9, 174–189.CrossRefPubMedPubMedCentralGoogle Scholar
  274. Wang, Y., Xu, Z., Zhu, P., Liu, Y., Zhang, Z., Mastuda, Y., Toyoda, H., & Xu, L. (2010). Postharvest biological control of melon pathogens using Bacillus subtilis EXWB1. Journal of Plant Pathology, 92(3), 645–652.Google Scholar
  275. Wang, B., Yuan, J., Zhang, J., Shen, Z., Zhang, M., Li, R., et al. (2013). Effect of novel bioorganic fertilizer produced by Bacillus amyloliquefaciens W19 on antagonism of Fusarium wilt of banana. Biology and Fertility of Soils, 49, 435–446.CrossRefGoogle Scholar
  276. Waqas, M., Khan, A. L., Hamayun, M., Shahzad, R., Kim, Y.-H., Choi, K.-S., & Lee, I.-J. (2015). Endophytic infection alleviates biotic stress in sunflower through regulation of defence hormones, antioxidants and functional amino acids. European Journal of Plant Pathology, 141(4), 803–824.CrossRefGoogle Scholar
  277. Wei, G., Kloepper, J. W., & Tuzun, S. (1991). Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology, 81, 1508–1512.CrossRefGoogle Scholar
  278. Weilharter, A., Mitter, B., Shin, M. V., Chain, P. S. G., Nowak, J., & Sessitsch, A. (2011). Complete genome sequence of the plant growth-promoting endophyte Burkholderia phytofirmans strain PsJN. Journal of Bacteriology, 193, 3383–3384.CrossRefPubMedPubMedCentralGoogle Scholar
  279. Weyens, N., Van der Lelie, D., Taghavi, S., & Vangronsveld, J. (2009). Phytoremediation: Plant-endophyte partnerships take the challenge. Current Opinion in Biotechnology, 20, 248–254.CrossRefPubMedGoogle Scholar
  280. Whipps, J. M. (1997). Developments in the biological control of soil-borne plant pathogens. Advances in Botanical Research, 26, 1–133.CrossRefGoogle Scholar
  281. Whipps, J. M. (2001). Microbial interactions and biocontrol in the rhizosphere. Journal of Experimental Botany, 52, 487–511.CrossRefPubMedGoogle Scholar
  282. Wildermuth, M. C., Dewdney, J., Wu, G., & Ausubel, F. M. (2001). Isochorismate synthase is required to synthesize salicylic acid for plant defense. Nature, 414, 562–565.CrossRefGoogle Scholar
  283. Wilhelm, E., Arthofer, W., & Schafleitner, R. (1997). Bacillus subtilis, an endophyte of chestnut (Castanea sativa), as antagonist against chestnut blight (Cryphonectria parasitica). In A. C. Cassells (Ed.), Pathogen and microbial contamination management in micropropagation (pp. 331–337). Dortrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  284. Wilson, D. (1995). Endophyte: The evolution of a term, and clarification of its use and definition. Oikos, 73, 274–276.CrossRefGoogle Scholar
  285. Xia, Z. J., Gu, B. K., & Wu, A. M. (1996). Studies on induced resistance of cotton plants against Verticillium dahliae by endophytic and rhizosphere bacteria. Chinese Journal of Biological Control, 12, 7–10.Google Scholar
  286. Yamamoto, S., Shiraishi, S., & Suzuki, S. (2015). Are cyclic lipopeptides produced by Bacillus amyloliquefaciens S13-3 responsible for the plant defence response in strawberry against Colletotrichum gloeosporioides? Letters in Microbiology, 60, 379–386.CrossRefGoogle Scholar
  287. Yánez-Mendizábal, V., Zeriouh, H., Viñas, I., Torres, R., Usall, J., Vicente, A., Pérez-García, A., et al. (2011). Biological control of peach brown rot (Monilinia spp.) by Bacillus subtilis CPA-8 is based on production of fengycin-like lipopeptides. European Journal of Plant Pathology, 134(4), 609–619. Scholar
  288. Yangui, T., Rhouma, A., Triki, M. A., Gargouri, K., & Bouzid, J. (2008). Control of damping-off caused by Rhizoctonia solani and Fusarium solani using olive mill waste water and some of its indigenous bacterial strains. Crop Protection, 27, 189–197.CrossRefGoogle Scholar
  289. Young, S. A., Guo, A., Guikema, J. A., White, F., & Leach, I. E. (1995). Rice cationic peroxidase accumulation in xylem vessels during incompatible interaction with Xanthomonas oryzae. Plant Physiology, 107, 1333–1341.CrossRefPubMedPubMedCentralGoogle Scholar
  290. Yue, Q., Miller, C. J., White, J. F., & Richardson, M. D. (2000). Isolation and characterization of fungal inhibitors from Epichloe festucae. Journal of Agricultural and Food Chemistry, 48, 4687–4692.CrossRefPubMedGoogle Scholar
  291. Zeriouh, H., Romero, D., García-Gutiérrez, L., Cazorla, F. M., de Vicente, A., & Pérez-García, A. (2011). The iturin-like lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial diseases of cucurbits. Molecular Plant-Microbe Interactions, 24, 1540–1552.CrossRefPubMedGoogle Scholar
  292. Zhang, X., Li, B., Wang, Y., Guo, Q., Lu, X., Li, S., & Ma, P. (2013). Lipopeptides, a novelprotein, and volatile compounds contribute to the antifungal activity of the biocontrol agent Bacillus atrophaeus CAB-1. Applied Microbiology and Biotechnology, 97, 9525–9534.CrossRefPubMedGoogle Scholar
  293. Zouari, I., Jlaiel, L., Tounsi, S., & Trigui, M. (2016). Biocontrol activity of the endophytic Bacillus amyloliquefaciens strain CEIZ-11 against Pythium aphanidermatum and purification of its bioactive compounds. Biological Control, 100, 54–62.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • P. Latha
    • 1
  • M. Karthikeyan
    • 1
  • E. Rajeswari
    • 1
  1. 1.Department of Plant Pathology, Centre for Plant Protection StudiesTamil Nadu Agricultural UniversityCoimbatoreIndia

Personalised recommendations