Advertisement

Integrated Fluidic Circuits for Single-Cell Omics and Multi-omics Applications

  • Mark LynchEmail author
  • Naveen Ramalingam
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1129)

Abstract

Single-cell genomics plays a crucial role in several aspects of biology, from developmental biology to mapping every cell in the human body through the Cell Atlas initiative. To meet these various applications, single-cell methods are rapidly evolving to increase throughput; improve sensitivity, quantification accuracy, and usability; and reduce nucleic-acid amplification bias and cost. In addition to improvement in single-cell methods, there is a huge interest in analyzing multiple analytes such as genome, epigenome, transcriptome, and protein from the same single cell. This approach is generalized as single-cell multi-omics. Automation of multi-step single-cell methods is highly desired to achieve a reproducible workflow; reduce human error and avoid contamination; and introduce technical variability to an existing stochastic process. Typically single-cell reactions start with a low level of nucleic acid, in the range of picograms. Miniaturization in microfluidic devices leads to a gain in reaction efficiency in Nanoliter or picoliter reaction volumes and active mixing help ensure that solid-state microfluidic devices provide the broadest flexibility and best sensitivity in single-cell reactions, compared to other methods. In this chapter, we will present integrated fluidic circuit (IFC) microfluidics for various single-cell multi-omics applications, and show how this technology fits into the current single-cell technology portfolio available from various vendors. We will then discuss possible uses for IFCs in multi-omics applications that are on the horizon.

Keywords

Integrated Fluidic Circuits (IFC) Single-cell analysis Fluidigm 

References

  1. Angermueller C, Clark SJ, Lee HJ, Macaulay IC, Teng MJ, Hu TX, Krueger F, Smallwood S, Ponting CP, Voet T, Kelsey G, Stegle O, Reik W. Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat Methods. 2016;13(3):229–32.  https://doi.org/10.1038/nmeth.3728.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bagnoli JW, Ziegenhain C, Janjic A, Wange LE, Vieth B, Parekh S, Geuder J, Hellmann I, Enard W. mcSCRB-seq: sensitive and powerful single-cell RNA sequencing. bioRxiv. 2017.Google Scholar
  3. Bose S, Wan Z, Carr A, Rizvi AH, Vieira G, Pe’er D, Sims PA. Scalable microfluidics for single-cell RNA printing and sequencing. Genome Biol. 2015;16(1):1–16.  https://doi.org/10.1186/s13059-015-0684-3.CrossRefGoogle Scholar
  4. Brady SW, McQuerry JA, Qiao Y, Piccolo SR, Shrestha G, Jenkins DF, Layer RM, Pedersen BS, Miller RH, Esch A, Selitsky SR, Parker JS, Anderson LA, Dalley BK, Factor RE, Reddy CB, Boltax JP, Li DY, Moos PJ, Gray JW, Heiser LM, Buys SS, Cohen AL, Johnson WE, Quinlan AR, Marth G, Werner TL, Bild AH. Combating subclonal evolution of resistant cancer phenotypes. Nat Commun. 2017;8:1231.  https://doi.org/10.1038/s41467-017-01174-3.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Briggs JA, Weinreb C, Wagner DE, Megason S, Peshkin L, Kirschner MW, Klein AM. The dynamics of gene expression in vertebrate embryogenesis at single-cell resolution. Science. 2018;360:eaar5780.CrossRefGoogle Scholar
  6. Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML, Snyder MP, Chang HY, Greenleaf WJ. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature. 2015;523(7561):486–90.  https://doi.org/10.1038/nature14590.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Darmanis S, Gallant CJ, Marinescu VD, Niklasson M, Segerman A, Flamourakis G, Fredriksson S, Assarsson E, Lundberg M, Nelander S, Westermark B, Landegren U. Simultaneous multiplexed measurement of RNA and proteins in single cells. Cell Rep. 2016;14(2):380–9.  https://doi.org/10.1016/j.celrep.2015.12.021.CrossRefPubMedGoogle Scholar
  8. Dey SS, Kester L, Spanjaard B, Bienko M, van Oudenaarden A. Integrated genome and transcriptome sequencing from the same cell. Nat Biotechnol. 2015;33(3):285–9.  https://doi.org/10.1038/nbt.3129.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Dueck HR, Ai R, Camarena A, Ding B, Dominguez R, Evgrafov OV, Fan J-B, Fisher SA, Herstein JS, Kim TK, Kim JM, Lin M-Y, Liu R, Mack WJ, McGroty S, Nguyen JD, Salathia N, Shallcross J, Souaiaia T, Spaethling JM, Walker CP, Wang J, Wang K, Wang W, Wildberg A, Zheng L, Chow RH, Eberwine J, Knowles JA, Zhang K, Kim J. Assessing characteristics of RNA amplification methods for single cell RNA sequencing. BMC Genomics. 2016;17:966.  https://doi.org/10.1186/s12864-016-3300-3.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Fan HC, Fu GK, Fodor SPA. Combinatorial labeling of single cells for gene expression cytometry. Science. 2015;347:1258367.  https://doi.org/10.1126/science.1258367.CrossRefPubMedGoogle Scholar
  11. Farrell JA, Wang Y, Riesenfeld SJ, Shekhar K, Regev A, Schier AF. Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis. Science. 2018;360:eaar3131.CrossRefGoogle Scholar
  12. Frei AP, Bava F-A, Zunder ER, Hsieh EWY, Chen S-Y, Nolan GP, Gherardini PF. Highly multiplexed simultaneous detection of RNAs and proteins in single cells. Nat Methods. 2016;13:269.  https://doi.org/10.1038/nmeth.3742.. https://www.nature.com/articles/nmeth.3742#supplementary-information CrossRefPubMedPubMedCentralGoogle Scholar
  13. Goldstein LD, Chen Y-JJ, Dunne J, Mir A, Hubschle H, Guillory J, Yuan W, Zhang J, Stinson J, Jaiswal B, Pahuja KB, Mann I, Schaal T, Chan L, Anandakrishnan S, Lin C-w, Espinoza P, Husain S, Shapiro H, Swaminathan K, Wei S, Srinivasan M, Seshagiri S, Modrusan Z. Massively parallel nanowell-based single-cell gene expression profiling. BMC Genomics. 2017;18(1):519.  https://doi.org/10.1186/s12864-017-3893-1.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Gong H, Holcomb I, Ooi A, Wang X, Majonis D, Unger MA, Ramakrishnan R. Simple method to prepare oligonucleotide-conjugated antibodies and its application in multiplex protein detection in single cells. Bioconjug Chem. 2016;27(1):217–25.  https://doi.org/10.1021/acs.bioconjchem.5b00613.CrossRefPubMedGoogle Scholar
  15. Gong H, Wang X, Liu B, Boutet S, Holcomb I, Dakshinamoorthy G, Ooi A, Sanada C, Sun G, Ramakrishnan R. Single-cell protein-mRNA correlation analysis enabled by multiplexed dual-analyte co-detection. Sci Rep. 2017;7(1):2776.  https://doi.org/10.1038/s41598-017-03057-5.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Guo H, Zhu P, Wu X, Li X, Wen L, Tang F. Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res. 2013;23(12):2126–35.  https://doi.org/10.1101/gr.161679.113.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hashimshony T, Wagner F, Sher N, Yanai I. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Rep. 2012;2:666–73.CrossRefGoogle Scholar
  18. Hashimshony T, Senderovich N, Avital G, Klochendler A, de Leeuw Y, Anavy L, Gennert D, Li S, Livak KJ, Rozenblatt-Rosen O, Dor Y, Regev A, Yanai I. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq. Genome Biol. 2016;17(1):77.  https://doi.org/10.1186/s13059-016-0938-8.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hou Y, Guo H, Cao C, Li X, Hu B, Zhu P, Wu X, Wen L, Tang F, Huang Y, Peng J. Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas. Cell Res. 2016;26:304.  https://doi.org/10.1038/cr.2016.23.. https://www.nature.com/articles/cr201623#supplementary-information CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hu Y, Huang K, An Q, Du G, Hu G, Xue J, Zhu X, Wang C-Y, Xue Z, Fan G. Simultaneous profiling of transcriptome and DNA methylome from a single cell. Genome Biol. 2016;17(1):88.  https://doi.org/10.1186/s13059-016-0950-z.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Islam S, Kjallquist U, Moliner A, Zajac P, Fan JB, Lonnerberg P. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res. 2011;21:1160–7.  https://doi.org/10.1101/gr.110882.110.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I, Mildner A, Cohen N, Jung S, Tanay A, Amit I. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science. 2014;343(6172):776–9.  https://doi.org/10.1126/science.1247651.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 2015;161:1187–201.  https://doi.org/10.1016/j.cell.2015.04.044.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Lake BB, Ai R, Kaeser GE, Salathia NS, Yung YC, Liu R, Wildberg A, Gao D, Fung H-L, Chen S, Vijayaraghavan R, Wong J, Chen A, Sheng X, Kaper F, Shen R, Ronaghi M, Fan J-B, Wang W, Chun J, Zhang K. Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain. Science. 2016;352(6293):1586–90.CrossRefGoogle Scholar
  25. Macaulay IC, Haerty W, Kumar P, Li YI, Hu TX, Teng MJ, Goolam M, Saurat N, Coupland P, Shirley LM, Smith M, Van der Aa N, Banerjee R, Ellis PD, Quail MA, Swerdlow HP, Zernicka-Goetz M, Livesey FJ, Ponting CP, Voet T. G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. Nat Methods. 2015;12:519.  https://doi.org/10.1038/nmeth.3370.. https://www.nature.com/articles/nmeth.3370#supplementary-information CrossRefPubMedGoogle Scholar
  26. Macosko EZ. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161:1202–14.CrossRefGoogle Scholar
  27. Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E, Dean W, Laue ED, Tanay A, Fraser P. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature. 2013;502:59.  https://doi.org/10.1038/nature12593.. https://www.nature.com/articles/nature12593#supplementary-information CrossRefPubMedGoogle Scholar
  28. Peterson VM, Zhang KX, Kumar N, Wong J, Li L, Wilson DC, Moore R, McClanahan TK, Sadekova S, Klappenbach JA. Multiplexed quantification of proteins and transcripts in single cells. Nat Biotechnol. 2017;35:936.  https://doi.org/10.1038/nbt.3973.. https://www.nature.com/articles/nbt.3973#supplementary-information CrossRefPubMedGoogle Scholar
  29. Picelli S, Björklund ÅK, Faridani OR, Sagasser S, Winberg G, Sandberg R. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods. 2013;10:1096–8.  https://doi.org/10.1038/nmeth.2639.CrossRefPubMedGoogle Scholar
  30. Pollen AA, Nowakowski TJ, Shuga J, Wang X, Leyrat AA, Lui JH, Li N, Szpankowski L, Fowler B, Chen P, Ramalingam N, Sun G, Thu M, Norris M, Lebofsky R, Toppani D, Kemp Ii DW, Wong M, Clerkson B, Jones BN, Wu S, Knutsson L, Alvarado B, Wang J, Weaver LS, May AP, Jones RC, Unger MA, Kriegstein AR, West JAA. Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat Biotechnol. 2014;32(10):1053–8.  https://doi.org/10.1038/nbt.2967.. http://www.nature.com/nbt/journal/v32/n10/abs/nbt.2967.html#supplementary-information CrossRefPubMedPubMedCentralGoogle Scholar
  31. Ramsköld D, Luo S, Wang YC, Li R, Deng Q, Faridani OR. Full-length mrNA-seq from single-cell levels of rNA and individual circulating tumor cells. Nat Biotechnol. 2012;30:777–82.  https://doi.org/10.1038/nbt.2282.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Rosenberg AB, Roco CM, Muscat RA, Kuchina A, Sample P, Yao Z, Gray L, Peeler DJ, Mukherjee S, Chen W, Pun SH, Sellers DL, Tasic B, Seelig G. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science. 2018;360:176–82.CrossRefGoogle Scholar
  33. Rotem A, Ram O, Shoresh N, Sperling RA, Goren A, Weitz DA, Bernstein BE. Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nat Biotechnol. 2015;33(11):1165–72. https://www.nature.com/articles/nbt.3383.
  34. See P, Dutertre C-A, Chen J, Günther P, McGovern N, Irac SE, Gunawan M, Beyer M, Händler K, Duan K, Sumatoh HRB, Ruffin N, Jouve M, Gea-Mallorquí E, Hennekam RCM, Lim T, Yip CC, Wen M, Malleret B, Low I, Shadan NB, Fen CFS, Tay A, Lum J, Zolezzi F, Larbi A, Poidinger M, Chan JKY, Chen Q, Rénia L, Haniffa M, Benaroch P, Schlitzer A, Schultze JL, Newell EW, Ginhoux F. Mapping the human DC lineage through the integration of high-dimensional techniques. Science. 2017;356(6342):eaag3009.CrossRefGoogle Scholar
  35. Shalek AK, Satija R, Shuga J, Trombetta JJ, Gennert D, Lu D. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature. 2014;510:363–9.CrossRefGoogle Scholar
  36. Soumillon M, Cacchiarelli D, Semrau S, van Oudenaarden A, Mikkelsen TS. Characterization of directed differentiation by high-throughput single-cell RNA-Seq. bioRxiv. 2014.Google Scholar
  37. Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B, Chattopadhyay PK, Swerdlow H, Satija R, Smibert P. Simultaneous epitope and transcriptome measurement in single cells. Nat Methods. 2017;14(9):865–8.  https://doi.org/10.1038/nmeth.4380.. http://www.nature.com/nmeth/journal/v14/n9/abs/nmeth.4380.html#supplementary-information CrossRefPubMedPubMedCentralGoogle Scholar
  38. Svensson V, Natarajan KN, Ly L-H, Miragaia RJ, Labalette C, Macaulay IC, Cvejic A, Teichmann SA. Power analysis of single-cell RNA-sequencing experiments. Nat Methods. 2017;14(4):381–7.  https://doi.org/10.1038/nmeth.4220. http://www.nature.com/nmeth/journal/v14/n4/abs/nmeth.4220.html#supplementary-information CrossRefPubMedPubMedCentralGoogle Scholar
  39. Svensson V, Vento-Tormo R, Teichmann SA. Exponential scaling of single-cell RNA-seq in the past decade. Nat Protoc. 2018;13:599.  https://doi.org/10.1038/nprot.2017.149.. https://www.nature.com/articles/nprot.2017.149#supplementary-information CrossRefPubMedGoogle Scholar
  40. Szulwach KE, Chen P, Wang X, Wang J, Weaver LS, Gonzales ML, Sun G, Unger MA, Ramakrishnan R. Single-cell genetic analysis using automated microfluidics to resolve somatic mosaicism. PLoS One. 2015;10(8):e0135007.  https://doi.org/10.1371/journal.pone.0135007.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N. mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods. 2009;6:377–82.  https://doi.org/10.1038/nmeth.1315.CrossRefPubMedGoogle Scholar
  42. Wagner DE, Weinreb C, Collins ZM, Briggs JA, Megason SG, Klein AM. Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo. Science. 2018;360:981–7.CrossRefGoogle Scholar
  43. Wu AR, Neff NF, Kalisky T, Dalerba P, Treutlein B, Rothenberg ME, Mburu FM, Mantalas GL, Sim S, Clarke MF, Quake SR. Quantitative assessment of single-cell RNA-sequencing methods. Nat Methods. 2014;11(1):41–6.  https://doi.org/10.1038/nmeth.2694.CrossRefPubMedGoogle Scholar
  44. Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A, Smets M, Leonhardt H, Heyn H, Hellmann I, Enard W. Comparative analysis of single-cell RNA sequencing methods. Mol Cell. 2017;65(4):631–643.e634.  https://doi.org/10.1016/j.molcel.2017.01.023.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Fluidigm CorporationSouth San FranciscoUSA

Personalised recommendations