Mechanical Behavior of Epoxy-Based Green Composites

  • Divya Zindani
  • Kaushik KumarEmail author
  • J. Paulo Davim
Part of the Materials Horizons: From Nature to Nanomaterials book series (MHFNN)


Keeping in view the environmental concerns and depleting petroleum-based resources, the present work proposes to develop epoxy-based green composites based on bagasse filler. The fabricated composite has been investigated for static mechanical properties, i.e., tensile strength, flexural strength, and fracture toughness. Properties have been investigated for varying percentage of filler loading and crosshead speeds. The investigation has revealed an improvement in static mechanical properties, thereby suggesting its application for a wide range of engineering applications.


Green composites Bagasse filler Epoxy Tensile strength Flexural strength Fracture toughness Void content 


  1. 1.
    May-Pat A, Valadez-González A, Herrera-Franco PJ (2013) Effect of fiber surface treatments on the essential work of fracture of HDPE-continuous henequen fiber-reinforced composites. Polym Test 32(6):1114–1122CrossRefGoogle Scholar
  2. 2.
    Liang R, Hota G (2013) Fiber-reinforced polymer (FRP) composites in environmental engineering applications. In: Developments in fiber-reinforced polymer (FRP) composites for civil engineering, pp 410–468Google Scholar
  3. 3.
    Ticoalu A, Aravinthan T, Cardona F (2010) A review of current development in natural fiber composites for structural and infrastructure applications. In: Proceedings of the southern region engineering conference (SREC 2010), pp 113–117. Engineers AustraliaGoogle Scholar
  4. 4.
    Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37(11):1552–1596CrossRefGoogle Scholar
  5. 5.
    Shalwan A, Yousif BF (2013) In state of art: mechanical and tribological behaviour of polymeric composites based on natural fibres. Mater Des 48:14–24CrossRefGoogle Scholar
  6. 6.
    Xie Y, Hill CA, Xiao Z, Militz H, Mai C (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Compos A Appl Sci Manuf 41(7):806–819CrossRefGoogle Scholar
  7. 7.
    Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50(8):962–1079CrossRefGoogle Scholar
  8. 8.
    Shinoj S, Visvanathan R, Panigrahi S, Kochubabu M (2011) Oil palm fiber (OPF) and its composites: a review. Ind Crops Prod 33(1):7–22CrossRefGoogle Scholar
  9. 9.
    Elsunni M, Collier J (1996) Processing of sugarcane rind into non-woven fibers. Am Soc Sugar Cane Technol 16:94–110Google Scholar
  10. 10.
    Pandey A, Soccol CR, Nigam P, Soccol VT (2000) Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresource technology. Biores Technol 74(1):69–80CrossRefGoogle Scholar
  11. 11.
    Trejo-Hernandez MR, Ortiz A, Okoh AI, Morales D, Quintero R (2007) Biodegradation of heavy crude oil Maya using spent compost and sugar cane bagasse wastes. Chemosphere 68(5):848–855CrossRefGoogle Scholar
  12. 12.
    Mulinari DR, Voorwald HJ, Cioffi MOH, Da Silva MLC, da Cruz TG, Saron C (2009) Sugarcane bagasse cellulose/HDPE composites obtained by extrusion. Compos Sci Technol 69(2):214–219CrossRefGoogle Scholar
  13. 13.
    Hernández-Salas JM, Villa-Ramírez MS, Veloz-Rendón JS, Rivera-Hernández KN, González-César RA, Plascencia-Espinosa MA, Trejo-Estrada SR (2009) Comparative hydrolysis and fermentation of sugarcane and agave bagasse. Biores Technol 100(3):1238–1245CrossRefGoogle Scholar
  14. 14.
    Walford SN (2008) Sugarcane bagasse: how easy is it to measure its constituents? Proc S Afr Sugar Technol Assoc 81:266–273Google Scholar
  15. 15.
    Reddy MR, Chandrasekharaiah M, Govindaiah T, Reddy GVN (1993) Effect of physical processing on the nutritive value of sugarcane bagasse in goats and sheep. Small Rumin Res 10(1):25–31CrossRefGoogle Scholar
  16. 16.
    Paturau JM (1989) By-products of the cane sugar industry. An introduction to their industrial utilization. Elsevier Science Publishers BVGoogle Scholar
  17. 17.
    Rassiah K, Nagapan SRMJ, Jidin RM (2012) The effect of sodium hydroxide (NAOH) on water absorption and biodegradability of low density polyethylene (LDPE)/sugarcane bagasse (SCB) composites. Can J Mech Sci Eng 3(1):19–24Google Scholar
  18. 18.
    Zizumbo A, Licea-Claveríe A, Lugo-Medina E, García-Hernández E, Madrigal D, Zitzumbo R (2011) Polystyrene composites prepared with polystyrene grafted-fibers of sugarcane bagasse as reinforcing material. J Mex Chem Soc 55(1):33–41Google Scholar
  19. 19.
    Wirawan R, Sapuan SM, Robiah Y, Khalina A (2010) Flexural properties of sugarcane bagasse pith and rind reinforced poly (vinyl chloride). IOP Conf Ser Mater Sci Eng 11(1):012011 IOP PublishingCrossRefGoogle Scholar
  20. 20.
    Mahapatra SS, Chaturvedi V (2009) Modelling and analysis of abrasive wear performance of composites using Taguchi approach. Int J Eng Sci Technol 1(1):123–135Google Scholar
  21. 21.
    El-Tayeb NSM (2008) A study on the potential of sugarcane fibers/polyester composite for tribological applications. Wear 265(1–2):223–235CrossRefGoogle Scholar
  22. 22.
    Stael GC, Tavares MIB, d’Almeida JRM (2001) Evaluation of sugar cane bagasse waste as reinforcement in EVA matrix composite materials. Polym-Plast Technol Eng 40(2):217–223CrossRefGoogle Scholar
  23. 23.
    Cao Y, Shibata S, Fukumoto I (2006) Mechanical properties of biodegradable composites reinforced with bagasse fibre before and after alkali treatments. Compos A Appl Sci Manuf 37(3):423–429CrossRefGoogle Scholar
  24. 24.
    Luz SMD, Goncalves AR, Del’Arco AP Jr (2007) Mechanical behavior and microstructural analysis of sugarcane bagasse fibers reinforced polypropylene composites. Compos A Appl Sci Manuf 38(6):1455–1461CrossRefGoogle Scholar
  25. 25.
    Luz SM, Del Tio J, Rocha GJM, Gonçalves AR, Del’Arco AP Jr (2008) Cellulose and cellulignin from sugarcane bagasse reinforced polypropylene composites: effect of acetylation on mechanical and thermal properties. Compos A Appl Sci Manuf 39(9):1362–1369CrossRefGoogle Scholar
  26. 26.
    Mulinari DR, Voorwald HJ, Cioffi MOH, da Silva MLC, Luz SM (2009) Preparation and properties of HDPE/sugarcane bagasse cellulose composites obtained for thermokinetic mixer. Carbohydr Polym 75(2):317–321CrossRefGoogle Scholar
  27. 27.
    Aigbodion VS, Hassan SB, Dauda ET, Mohammed RA (2010) The development of mathematical model for the prediction of ageing behaviour for Al-Cu-Mg/bagasse ash particulate composites. J Miner Mater Charact Eng 9(10):907Google Scholar
  28. 28.
    Bras J, Hassan ML, Bruzesse C, Hassan EA, El-Wakil NA, Dufresne A (2010) Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites. Ind Crops Prod 32(3):627–633CrossRefGoogle Scholar
  29. 29.
    Mishra P, Acharya SK (2010) Anisotropy abrasive wear behavior of bagasse fiber reinforced polymer composite. Int J Eng Sci Technol 2(11)Google Scholar
  30. 30.
    Bozlur RM, Sibata S, Diba SF, Uono M (2010) Effect of holding time and the amount of fiber content on the flexural properties of bagasse/bamboo fiber reinforced biodegradable composite. In: Proceedings of international conference on environmental aspects of Bangladesh (ICEAB10), JapanGoogle Scholar
  31. 31.
    Mishra P, Acharya SK (2010) Solid particle erosion of bagasse fiber reinforced epoxy composite. Int J Phys Sci 5(2):109–115Google Scholar
  32. 32.
    Cerqueira EF, Baptista CARP, Mulinari DR (2011) Mechanical behaviour of polypropylene reinforced sugarcane bagasse fibers composites. Procedia Eng 10:2046–2051CrossRefGoogle Scholar
  33. 33.
    Cavdar AD, Kalaycioglu H, Mengeloğlu F (2015) Technological properties of thermoplastic composites filled with fire retardant and tea mill waste fiber. J Compos Mater 50(12):1627–1634Google Scholar
  34. 34.
    Ndiaye D, Fanton E, Morlat-Therias S, Vidal L, Tidjani A, Gardette J (2008) Durability of wood polymer composites: Part 1. Influence of wood on the photochemical properties. J Compos Sci Techn 68:2779–2784Google Scholar
  35. 35.
    Ndiaye D, Verney V, Askanian H, Commereuc S, Tidjani A (2013) Morphology, thermal behavior and dynamic rheological properties of wood polypropylene composites. Mater Sci Appl 4(11):730–738Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNational Institute of Technology, SilcharSilcharIndia
  2. 2.Department of Mechanical EngineeringBirla Institute of Technology MesraRanchiIndia
  3. 3.Department of Mechanical EngineeringUniversity of AveiroAveiroPortugal

Personalised recommendations