Recent Trends of Nano-material as Antimicrobial Agents

  • Taru Aggarwal
  • Ridhima Wadhwa
  • Noopur Thapliyal
  • Riya Gupta
  • Philip Michael Hansbro
  • Kamal Dua
  • Pawan Kumar MauryaEmail author


Nanomaterial has been employed as an alternative to antibiotics, diagnostic tools and delivery of therapeutics. In particular, nanomaterial has grabbed the attention of researchers due to their antimicrobial properties due to the emergence of multi-drug resistance of several micro-organisms. The present chapter highlights the antimicrobial nanomaterials with their mechanism of action along with their broad spectrum applications such as silver nanomaterial is antimicrobial in nature and is effective in drug delivery. Metallic, non-metallic and natural/ biodegradable nanomaterials have been discussed as potential antimicrobial and their mode of action. The mechanism of antimicrobial nanomaterial is poorly understood, but oxidative stress, non-oxidative action, inhibition of cell adhesion, decline in biofilm formation, obstructed quoram sensing and metal ion release are attributed to be as the major reasons. In addition, the limitation and toxicity with the clinical and environmental applications are also described.


Nanomaterial Antimicrobial Drug resistance Toxicity Oxidative stress Biofilm 


  1. Abdel-Raouf, N., Al-Enazi, N. M., & Ibraheem, I. B. (2017). Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity. Arabian Journal of Chemistry, 10, S3029–S3039.CrossRefGoogle Scholar
  2. Akhtar, M. J., Ahamed, M., Kumar, S., Khan, M. M., Ahmad, J., & Alrokayan, S. A. (2012). Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. International Journal of Nanomedicine, 7, 845.PubMedPubMedCentralGoogle Scholar
  3. Allahverdiyev, A. M., Abamor, E. S., Bagirova, M., & Rafailovich, M. (2011). Antimicrobial effects of TiO2 and Ag2O nanoparticles against drug-resistant bacteria and leishmania parasites. Future Microbiology, 6(8), 933–940.CrossRefGoogle Scholar
  4. Andreini, C., Bertini, I., Cavallaro, G., Holliday, G. L., & Thornton, J. M. (2008). Metal ions in biological catalysis: From enzyme databases to general principles. Journal of Biological Inorganic Chemistry, 13(8), 1205–1218.CrossRefGoogle Scholar
  5. Armentano, I., Arciola, C. R., Fortunati, E., Ferrari, D., Mattioli, S., Amoroso, C. F., … Visai, L. (2014). The interaction of bacteria with engineered nanostructured polymeric materials: A review. The Scientific World Journal, 2014.Google Scholar
  6. Ansari, H., Shabanian, M., & Khonakdar, H. A. (2017). Using a β-Cyclodextrin-functional Fe3O4 as a Reinforcement of PLA: Synthesis, Thermal, and Combustion Properties. Polymer-Plastics Technology and Engineering, 56(12), 1366–1373.CrossRefGoogle Scholar
  7. Avalos, A., Haza, A. I., Mateo, D., & Morales, P. (2016). Interactions of manufactured silver nanoparticles of different sizes with normal human dermal fibroblasts. International Wound Journal, 13(1), 101–109.CrossRefGoogle Scholar
  8. Bahri-Laleh, N., Correa, A., Mehdipour-Ataei, S., Arabi, H., Haghighi, M. N., Zohuri, G., …Cavallo, L. (2011). Moving up and down the titanium oxidation state in Ziegler− Natta catalysis. Macromolecules, 44(4), 778–783.CrossRefGoogle Scholar
  9. Baranwal, A., Srivastava, A., Kumar, P., Bajpai, V. K., Maurya, P. K., & Chandra, P. (2018). Prospects of nanostructure materials and their composites as antimicrobial agents. Frontiers in Microbiology, 9, 422.CrossRefGoogle Scholar
  10. Blecher, K., Nasir, A., & Friedman, A. (2011). The growing role of nanotechnology in combating infectious disease. Virulence, 2(5), 395–401.CrossRefGoogle Scholar
  11. Chang, Y.-N., Zhang, M., Xia, L., Zhang, J., & Xing, G. (2012). The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials, 5(12), 2850–2871.CrossRefGoogle Scholar
  12. Chen, P. C., Mwakwari, S. C., & Oyelere, A. K. (2008). Gold nanoparticles: From nanomedicine to nanosensing. Nanotechnology, Science and Applications, 1, 45.CrossRefGoogle Scholar
  13. Cheng, G., Dai, M., Ahmed, S., Hao, H., Wang, X., & Yuan, Z. (2016). Antimicrobial drugs in fighting against antimicrobial resistance. Frontiers in Microbiology, 7, 470.PubMedPubMedCentralGoogle Scholar
  14. Chupani, L., Zusková, E., Niksirat, H., Panáček, A., Lünsmann, V., Haange, S.-B., … Jehmlich, N. (2017). Effects of chronic dietary exposure of zinc oxide nanoparticles on the serum protein profile of juvenile common carp (Cyprinus carpio L.). Science of the Total Environment, 579, 1504–1511.Google Scholar
  15. Chwalibog, A., Sawosz, E., Hotowy, A., Szeliga, J., Mitura, S., Mitura, K., … Sokolowska, A. (2010). Visualization of interaction between inorganic nanoparticles and bacteria or fungi. International Journal of Nanomedicine, 5, 1085.Google Scholar
  16. Dizaj, S. M., Lotfipour, F., Barzegar-Jalali, M., Zarrintan, M. H., & Adibkia, K. (2014). Antimicrobial activity of the metals and metal oxide nanoparticles. Materials Science and Engineering: C, 44, 278–284.CrossRefGoogle Scholar
  17. Drake, P. L., & Hazelwood, K. J. (2005). Exposure-related health effects of silver and silver compounds: A review. The Annals of Occupational Hygiene, 49(7), 575–585.PubMedGoogle Scholar
  18. Egger, S., Lehmann, R. P., Height, M. J., Loessner, M. J., & Schuppler, M. (2009). Antimicrobial properties of a novel silver-silica nanocomposite material. Applied and Environmental Microbiology, 75(9), 2973–2976.CrossRefGoogle Scholar
  19. Espitia, P. J. P., Soares, N. D. F. F., Teófilo, R. F., dos Reis Coimbra, J. S., Vitor, D. M., Batista, R. A., … Medeiros, E. A. A. (2013). Physical–mechanical and antimicrobial properties of nanocomposite films with pediocin and ZnO nanoparticles. Carbohydrate Polymers, 94(1), 199–208.Google Scholar
  20. Fabian, E., Landsiedel, R., Ma-Hock, L., Wiench, K., Wohlleben, W., & Van Ravenzwaay, B. (2008). Tissue distribution and toxicity of intravenously administered titanium dioxide nanoparticles in rats. Archives of Toxicology, 82(3), 151–157.CrossRefGoogle Scholar
  21. Fernando, S., Gunasekara, T., & Holton, J. (2018). Antimicrobial nanoparticles: Applications and mechanisms of action. Sri Lankan Journal of Infectious Diseases, 8(1), 2–11.CrossRefGoogle Scholar
  22. Franklin, N. M., Rogers, N. J., Apte, S. C., Batley, G. E., Gadd, G. E., & Casey, P. S. (2007). Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): The importance of particle solubility. Environmental Science & Technology, 41(24), 8484–8490.CrossRefGoogle Scholar
  23. Friedman, A. J., Han, G., Navati, M. S., Chacko, M., Gunther, L., Alfieri, A., & Friedman, J. M. (2008). Sustained release nitric oxide releasing nanoparticles: Characterization of a novel delivery platform based on nitrite containing hydrogel/glass composites. Nitric Oxide, 19(1), 12–20.CrossRefGoogle Scholar
  24. Friedman, A. J., Blecher, K., Schairer, D., Tuckman-Vernon, C., Nacharaju, P., Sanchez, D., … Nosanchuk, J. D. (2011). Improved antimicrobial efficacy with nitric oxide releasing nanoparticle generated S-nitrosoglutathione. Nitric Oxide, 25(4), 381–386.Google Scholar
  25. Friedman, A. J., Phan, J., Schairer, D. O., Champer, J., Qin, M., Pirouz, A., … Modlin, R. L. (2013). Antimicrobial and anti-inflammatory activity of chitosan–alginate nanoparticles: A targeted therapy for cutaneous pathogens. Journal of Investigative Dermatology, 133(5), 1231–1239.Google Scholar
  26. Girardi, F. A., Bruch, G. E., Peixoto, C. S., Dal Bosco, L., Sahoo, S. K., Gonçalves, C. O., … Barros, D. M. (2017). Toxicity of single-wall carbon nanotubes functionalized with polyethylene glycol in zebrafish (Danio rerio) embryos. Journal of Applied Toxicology, 37(2), 214–221.Google Scholar
  27. Goodman, C. M., McCusker, C. D., Yilmaz, T., & Rotello, V. M. (2004). Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjugate Chemistry, 15(4), 897–900.CrossRefGoogle Scholar
  28. Grassian, V. H., O’Shaughnessy, P. T., Adamcakova-Dodd, A., Pettibone, J. M., & Thorne, P. S. (2007). Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environmental Health Perspectives, 115(3), 397.CrossRefGoogle Scholar
  29. Griffith, L. G., & Swartz, M. A. (2006). Capturing complex 3D tissue physiology in vitro. Nature Reviews Molecular Cell Biology, 7(3), 211.CrossRefGoogle Scholar
  30. Griffitt, R. J., Weil, R., Hyndman, K. A., Denslow, N. D., Powers, K., Taylor, D., & Barber, D. S. (2007). Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environmental Science & Technology, 41(23), 8178–8186.CrossRefGoogle Scholar
  31. Gunalan, S., Sivaraj, R., & Rajendran, V. (2012). Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Progress in Natural Science: Materials International, 22(6), 693–700.CrossRefGoogle Scholar
  32. Hajipour, M. J., Fromm, K. M., Ashkarran, A. A., de Aberasturi, D. J., de Larramendi, I. R., Rojo, T., … Mahmoudi, M. (2012). Antibacterial properties of nanoparticles. Trends in Biotechnology, 30(10), 499–511.Google Scholar
  33. Han, G., Martinez, L. R., Mihu, M. R., Friedman, A. J., Friedman, J. M., & Nosanchuk, J. D. (2009). Nitric oxide releasing nanoparticles are therapeutic for Staphylococcus aureus abscesses in a murine model of infection. PLoS One, 4(11), e7804.CrossRefGoogle Scholar
  34. Hsueh, P.-R. (2010). New Delhi metallo-β-lactamase-1 (NDM-1): An emerging threat among Enterobacteriaceae. Journal of the Formosan Medical Association, 109(10), 685–687.CrossRefGoogle Scholar
  35. Huang, L., Dai, T., Xuan, Y., Tegos, G. P., & Hamblin, M. R. (2011). Synergistic combination of chitosan acetate with nanoparticle silver as a topical antimicrobial: Efficacy against bacterial burn infections. Antimicrobial Agents and Chemotherapy, 55(7), 3432–3438.CrossRefGoogle Scholar
  36. Huh, A. J., & Kwon, Y. J. (2011). “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of Controlled Release, 156(2), 128–145.CrossRefGoogle Scholar
  37. Jadhav, S., Gaikwad, S., Nimse, M., & Rajbhoj, A. (2011). Copper oxide nanoparticles: synthesis, characterization and their antibacterial activity. Journal of Cluster Science, 22(2), 121–129.CrossRefGoogle Scholar
  38. Jeong, M. S., Park, J. S., Song, S. H., & Jang, S. B. (2007). Characterization of antibacterial nanoparticles from the scallop, Ptinopecten yessoensis. Bioscience, Biotechnology, and Biochemistry, 71(9), 2242–2247.CrossRefGoogle Scholar
  39. Jiang, W., Mashayekhi, H., & Xing, B. (2009). Bacterial toxicity comparison between nano-and micro-scaled oxide particles. Environmental pollution, 157(5), 1619–1625.CrossRefGoogle Scholar
  40. Karlsson, H. L., Cronholm, P., Gustafsson, J., & Moller, L. (2008). Copper oxide nanoparticles are highly toxic: A comparison between metal oxide nanoparticles and carbon nanotubes. Chemical Research in Toxicology, 21(9), 1726–1732.CrossRefGoogle Scholar
  41. Kumar, B. N. P., Mahaboobi, S., & Satyam, S. (2017). Chitosan in Medicine–A Mini Review. J Mol Pharm Org Process Res, 5(134), 2.Google Scholar
  42. Lakshminarayanan, R., Ye, E., Young, D. J., Li, Z., Loh, X. J. (2018). Recent advances in the development of antimicrobial nanoparticles for combating resistant pathogens. Advanced Healthcare Materials, 1701400.Google Scholar
  43. Lam, S. J., Wong, E. H., Boyer, C., & Qiao, G. G. (2017). Antimicrobial polymeric nanoparticles. Progress in Polymer Science, 63, 561–570.Google Scholar
  44. Lara, H. H., Ayala-Núñez, N. V., Turrent, L. D. C. I., & Padilla, C. R. (2010). Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World Journal of Microbiology and Biotechnology, 26(4), 615–621.CrossRefGoogle Scholar
  45. Lee, J., Mahendra, S., & Alvarez, P. J. (2010). Nanomaterials in the construction industry: A review of their applications and environmental health and safety considerations. ACS Nano, 4(7), 3580–3590.CrossRefGoogle Scholar
  46. Lin, D., & Xing, B. (2008). Root uptake and phytotoxicity of ZnO nanoparticles. Environmental Science & Technology, 42(15), 5580–5585.CrossRefGoogle Scholar
  47. Liu, Z., Young, A. W., Hu, P., Rice, A. J., Zhou, C., Zhang, Y., & Kallenbach, N. R. (2007). Tuning the membrane selectivity of antimicrobial peptides by using multivalent design. ChemBioChem, 8(17), 2063–2065.CrossRefGoogle Scholar
  48. Liu, Y., He, L., Mustapha, A., Li, H., Hu, Z. Q., & Lin, M. (2009). Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157: H7. Journal of applied microbiology, 107(4), 1193–1201.CrossRefGoogle Scholar
  49. Liu, C., Xie, X., & Cui, Y. (2012). Antimicrobial nanomaterials for water disinfection. In Nano-antimicrobials (pp. 465–494). Heidelberg: Springer.CrossRefGoogle Scholar
  50. Luganini, A., Giuliani, A., Pirri, G., Pizzuto, L., Landolfo, S., & Gribaudo, G. (2010). Peptide-derivatized dendrimers inhibit human cytomegalovirus infection by blocking virus binding to cell surface heparan sulfate. Antiviral Research, 85(3), 532–540.CrossRefGoogle Scholar
  51. Luo, Y., Hossain, M., Wang, C., Qiao, Y., An, J., Ma, L., & Su, M. (2013). Targeted nanoparticles for enhanced X-ray radiation killing of multidrug-resistant bacteria. Nanoscale, 5(2), 687–694.CrossRefGoogle Scholar
  52. Lyon, D. Y., Adams, L. K., Falkner, J. C., & Alvarez, P. J. (2006). Antibacterial activity of fullerene water suspensions: Effects of preparation method and particle size. Environmental Science & Technology, 40(14), 4360–4366.CrossRefGoogle Scholar
  53. Magrez, A., Kasas, S., Salicio, V., Pasquier, N., Seo, J. W., Celio, M., … Forró, L. (2006). Cellular toxicity of carbon-based nanomaterials. Nano Letters, 6(6), 1121–1125.Google Scholar
  54. Ocsoy, I., Temiz, M., Celik, C., Altinsoy, B., Yilmaz, V., & Duman, F. (2017). A green approach for formation of silver nanoparticles on magnetic graphene oxide and highly effective antimicrobial activity and reusability. Journal of Molecular Liquids, 227, 147–152.CrossRefGoogle Scholar
  55. Organization, W. H. (2016). Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection: Recommendations for a public health approach. Geneva: World Health Organization.Google Scholar
  56. Organization, W. H. (2018). High levels of antibiotic resistance found worldwide, new data shows. Saudi Medical Journal, 39(4), 430–431.Google Scholar
  57. Patra, H. K., Banerjee, S., Chaudhuri, U., Lahiri, P., & Dasgupta, A. K. (2007). Cell selective response to gold nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 3(2), 111–119.CrossRefGoogle Scholar
  58. Pires, J., Siriwardena, T. N., Stach, M., Tinguely, R., Kasraian, S., Luzzaro, F., … Endimiani, A. (2015). In vitro activity of the novel antimicrobial peptide dendrimer G3KL against multidrug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 59(12), 7915–7918.Google Scholar
  59. Pushparaj Selvadoss, P., Nellore, J., Balaraman Ravindrran, M., Sekar, U., & Tippabathani, J. (2018). Enhancement of antimicrobial activity by liposomal oleic acid-loaded antibiotics for the treatment of multidrug-resistant Pseudomonas aeruginosa. Artificial Cells, Nanomedicine, and Biotechnology, 46(2), 268–273.CrossRefGoogle Scholar
  60. Qi, L., Xu, Z., Jiang, X., Hu, C., & Zou, X. (2004). Preparation and antibacterial activity of chitosan nanoparticles. Carbohydrate research, 339(16), 2693–2700.CrossRefGoogle Scholar
  61. Qiu, Z., Yu, Y., Chen, Z., Jin, M., Yang, D., Zhao, Z., … Qian, D. (2012). Nanoalumina promotes the horizontal transfer of multiresistance genes mediated by plasmids across genera. Proceedings of the National Academy of Sciences, 109(13), 4944–4949.Google Scholar
  62. Riley, R. S., & Day, E. S. (2017). Gold nanoparticle-mediated photothermal therapy: Applications and opportunities for multimodal cancer treatment. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 9(4), e1449.Google Scholar
  63. Schwartz, B., Bell, D. M., & Hughes, J. M. (1997). Preventing the emergence of antimicrobial resistance: A call for action by clinicians, public health officials, and patients. JAMA, 278(11), 944–945.CrossRefGoogle Scholar
  64. Scorciapino, M. A., Serra, I., Manzo, G., & Rinaldi, A. C. (2017). Antimicrobial dendrimeric peptides: structure, activity and new therapeutic applications. International journal of molecular sciences, 18(3), 542.CrossRefGoogle Scholar
  65. Shiohara, A., Hoshino, A., Hanaki, K., Suzuki, K., & Yamamoto, K. (2004). On the cytotoxicity caused by quantum dots. Microbiology and Immunology, 48, 669–675.CrossRefGoogle Scholar
  66. Silva, L. F., Oliveira, M. L., Neace, E. R., O’Keefe, J. M., Henke, K. R., & Hower, J. C. (2011). Nanominerals and ultrafine particles in sublimates from the Ruth Mullins coal fire, Perry County, Eastern Kentucky, USA. International Journal of Coal Geology, 85(2), 237–245.CrossRefGoogle Scholar
  67. Simon-Deckers, A., Loo, S., Mayne-L’hermite, M., Herlin-Boime, N., Menguy, N., Reynaud, C., …Carriere, M. (2009). Size-, composition-and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria. Environmental science & technology, 43(21), 8423–8429.CrossRefGoogle Scholar
  68. Sperling, R. A., & Parak, W. J. (2010). Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 368(1915), 1333–1383.CrossRefGoogle Scholar
  69. Srisitthiratkul, C., Pongsorrarith, V., & Intasanta, N. (2011). The potential use of nanosilver-decorated titanium dioxide nanofibers for toxin decomposition with antimicrobial and self-cleaning properties. Applied Surface Science, 257(21), 8850–8856.CrossRefGoogle Scholar
  70. Wang, H., Kou, X., Pei, Z., Xiao, J. Q., Shan, X., & Xing, B. (2011). Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicology, 5(1), 30–42.CrossRefGoogle Scholar
  71. Xia, T., Kovochich, M., Brant, J., Hotze, M., Sempf, J., Oberley, T., … Nel, A. E. (2006). Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Letters, 6(8), 1794–1807.Google Scholar
  72. Zeyons, O., Thill, A., Chauvat, F., Menguy, N., Cassier-Chauvat, C., Oréar, C., … Spalla, O. (2009). Direct and indirect CeO2 nanoparticles toxicity for Escherichia coli and Synechocystis. Nanotoxicology, 3(4), 284–295.Google Scholar
  73. Zhang, L. W., William, W. Y., Colvin, V. L., & Monteiro-Riviere, N. A. (2008). Biological interactions of quantum dot nanoparticles in skin and in human epidermal keratinocytes. Toxicology and Applied Pharmacology, 228(2), 200–211.CrossRefGoogle Scholar
  74. Zhang, L., Pornpattananangkul, D., Hu, C.-M., & Huang, C.-M. (2010). Development of nanoparticles for antimicrobial drug delivery. Current Medicinal Chemistry, 17(6), 585–594.CrossRefGoogle Scholar
  75. Zhu, L., Chang, D. W., Dai, L., & Hong, Y. (2007). DNA damage induced by multiwalled carbon nanotubes in mouse embryonic stem cells. Nano Letters, 7(12), 3592–3597.CrossRefGoogle Scholar
  76. Zhu, X., Chang, Y., & Chen, Y. (2010). Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere, 78(3), 209–215.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Taru Aggarwal
    • 1
  • Ridhima Wadhwa
    • 2
  • Noopur Thapliyal
    • 3
  • Riya Gupta
    • 3
  • Philip Michael Hansbro
    • 4
    • 5
    • 6
  • Kamal Dua
    • 4
    • 5
    • 7
  • Pawan Kumar Maurya
    • 8
    Email author
  1. 1.ICAR-National Research Centre on Plant BiotechnologyLal-Bahadur Shastri Centre, IARINew DelhiIndia
  2. 2.Faculty of Life Science and BiotechnologySouth Asian UniversityNew DelhiIndia
  3. 3.Amity Institute of BiotechnologyAmity UniversityNoidaIndia
  4. 4.Priority Research Centre for Healthy LungsUniversity of Newcastle & Hunter Medical Research InstituteNewcastleAustralia
  5. 5.Centre for Inflammation, Centenary InstituteSydneyAustralia
  6. 6.Faculty of ScienceUniversity of Technology SydneyUltimoAustralia
  7. 7.Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoAustralia
  8. 8.Department of BiochemistryCentral University of HaryanaMahendergarhIndia

Personalised recommendations