Advertisement

Silver-Based Polymeric Nanocomposites as Antimicrobial Coatings for Biomedical Applications

  • Navneet K. Dhiman
  • Shekhar AgnihotriEmail author
  • Ravi ShuklaEmail author
Chapter

Abstract

Hospital-acquired infections (HAIs) pose one of the major challenges to therapeutic applications of biomedical devices under clinically relevant conditions. A paradigm shift in understanding and pathogenesis of biofilm formation has constantly been forcing professionals to adopt some novel and effective, yet affordable anti-adhesive/anti-biofilm technologies for successful long-term implantation of devices without infections. The intriguing physicochemical properties of a biomaterial’s surface is crucial to develop novel coating technologies where the anti-fouling feature of the device must also be accompanied with its long-term antibacterial performance without introducing toxicity to mammalian cells and the drug resistance. One of the best strategies to minimize nosocomial infections is through using biocompatible polymers that exhibit either an innate biocidal characteristic or may be surface-modified to impart antimicrobial features to a biomaterial by introducing biocidal agents, such as antibiotics, antimicrobial peptides, and more recently silver nanoparticles (AgNPs). Nano-silver has been widely accepted as the most efficacious metal that is well-adorned with antimicrobial properties due to its oligodynamic action, multifaceted mechanisms of biocidal action and low cytotoxicity to humans. The present chapter thus provides an exhaustive information about various surface modifications strategies for biomaterial coatings, which can be employed to immobilize silver nanoparticles onto polymeric composites with a few common goals, i.e. broad-spectrum antimicrobial nature, higher efficacy, stability and promoting reuse. Various nano-silver based polymeric composites of both natural and synthetic origin will be discussed as potential coating materials candidates for implants (vascular grafts, endotracheal tubes, and catheters), wound dressings, surgical mesh and other porous scaffolds. The application of AgNPs-polymeric nanocomposites into several forms such as thin films, fibers, hydrogels, and multilayered structures will be correlated with their clinical relevance. Lastly, potential toxicity and safety concerns using these nanocomposites will also be discussed.

Keywords

Surface modification Immobilization Biomedical implants Cytotoxicity Silver release Antibacterial Biocidal 

References

  1. Abraham, A. N., Sharma, T. K., Bansal, V., & Shukla, R. (2018). Phytochemicals as dynamic surface ligands to control nanoparticle–protein interactions. ACS Omega, 3, 2220–2229.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Agarwala, M., Barman, T., Gogoi, D., Choudhury, B., Pal, A. R., & Yadav, R. (2014). Highly effective antibiofilm coating of silver–polymer nanocomposite on polymeric medical devices deposited by one step plasma process. Journal of Biomedical Materials Research Part B Applied Biomaterials, 102, 1223–1235.CrossRefGoogle Scholar
  3. Agnihotri, S., & Dhiman, N. K. (2017). Development of nano-antimicrobial biomaterials for biomedical applications. In A. Tripathi & J. S. Melo (Eds.), Advances in biomaterials for biomedical applications (pp. 479–545). Singapore: Springer.CrossRefGoogle Scholar
  4. Agnihotri, S., Mukherji, S., & Mukherji, S. (2012). Antimicrobial chitosan–PVA hydrogel as a nanoreactor and immobilizing matrix for silver nanoparticles. Applied Nanoscience, 2, 179–188.CrossRefGoogle Scholar
  5. Agnihotri, S., Mukherji, S., & Mukherji, S. (2013). Immobilized silver nanoparticles enhance contact killing and show highest efficacy: Elucidation of the mechanism of bactericidal action of silver. Nanoscale, 5, 7328–7340.PubMedCrossRefGoogle Scholar
  6. Agnihotri, S., Mukherji, S., & Mukherji, S. (2014). Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Advances, 4, 3974–3983.CrossRefGoogle Scholar
  7. Agnihotri, S., Bajaj, G., Mukherji, S., & Mukherji, S. (2015). Arginine-assisted immobilization of silver nanoparticles on ZnO nanorods: An enhanced and reusable antibacterial substrate without human cell cytotoxicity. Nanoscale, 7, 7415–7429.PubMedCrossRefGoogle Scholar
  8. Agnihotri, S., Dhiman, N. K., & Tripathi, A. (2018). Antimicrobial surface modification of polymeric biomaterials. In A. Tiwari (Ed.), Handbook of antimicrobial coatings (pp. 435–486). Amsterdam: Elsevier.CrossRefGoogle Scholar
  9. Ajitha, B., Reddy, Y. A. K., Jeon, H.-J., & Ahn, C. W. (2018). Synthesis of silver nanoparticles in an eco-friendly way using Phyllanthus amarus leaf extract: Antimicrobial and catalytic activity. Advanced Powder Technology, 29, 86–93.CrossRefGoogle Scholar
  10. Alexander, J. W. (2009). History of the medical use of silver. Surgical Infections, 10, 289–292.PubMedCrossRefGoogle Scholar
  11. An, Y. H., & Friedman, R. J. (1998). Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. Journal of Biomedical Materials Research, 43, 338–348.PubMedCrossRefGoogle Scholar
  12. Anjum, S., Sharma, A., Tummalapalli, M., Joy, J., Bhan, S., & Gupta, B. (2015). A novel route for the preparation of silver loaded polyvinyl alcohol nanogels for wound care systems. International Journal of Polymeric Materials and Polymeric Biomaterials, 64, 894–905.CrossRefGoogle Scholar
  13. Aramwit, P., & Sangcakul, A. (2007). The effects of sericin cream on wound healing in rats. Bioscience, Biotechnology, and Biochemistry, 71, 2473–2477.PubMedCrossRefGoogle Scholar
  14. Arockianathan, P. M., Sekar, S., Kumaran, B., & Sastry, T. (2012). Preparation, characterization and evaluation of biocomposite films containing chitosan and sago starch impregnated with silver nanoparticles. International Journal of Biological Macromolecules, 50, 939–946.PubMedCrossRefGoogle Scholar
  15. Arora, S., Jain, J., Rajwade, J., & Paknikar, K. (2008). Cellular responses induced by silver nanoparticles: In vitro studies. Toxicology Letters, 179, 93–100.PubMedCrossRefGoogle Scholar
  16. Asai, T., Lee, M.-H., Arrecubieta, C., von Bayern, M. P., Cespedes, C. A., Baron, H. M., et al. (2007). Cellular coating of the left ventricular assist device textured polyurethane membrane reduces adhesion of Staphylococcus aureus. The Journal of Thoracic and Cardiovascular Surgery, 133, 1147–1153.PubMedCrossRefGoogle Scholar
  17. AshaRani, P., Low Kah Mun, G., Hande, M. P., & Valiyaveettil, S. (2008). Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano, 3, 279–290.CrossRefGoogle Scholar
  18. Atiyeh, B. S., Costagliola, M., Hayek, S. N., & Dibo, S. A. (2007). Effect of silver on burn wound infection control and healing: Review of the literature. Burns, 33, 139–148.PubMedCrossRefGoogle Scholar
  19. Augustine, R., & Rajarathinam, K. (2012). Synthesis and characterization of silver nanoparticles and its immobilization on alginate coated sutures for the prevention of surgical wound infections and the in vitro release studies. International Journal of Nano Dimension, 2, 205.Google Scholar
  20. Baek, K., Liang, J., Lim, W. T., Zhao, H., Kim, D. H., & Kong, H. (2015). In situ assembly of antifouling/bacterial silver nanoparticle-hydrogel composites with controlled particle release and matrix softening. ACS Applied Materials and Interfaces, 7, 15359–15367.PubMedCrossRefGoogle Scholar
  21. Bakare, R., Hawthrone, S., Vails, C., Gugssa, A., Karim, A., Stubbs, J., 3rd, et al. (2016). Antimicrobial and cell viability measurement of bovine serum albumin capped silver nanoparticles (Ag/BSA) loaded collagen immobilized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) film. Journal of Colloid and Interface Science, 465, 140–148.PubMedCrossRefGoogle Scholar
  22. Bal, K., Bal, Y., Cote, G., & Chagnes, A. (2012). Morphology and antimicrobial properties of Luffa cylindrica fibers/chitosan biomaterial as micro-reservoirs for silver delivery. Materials Letters, 79, 238–241.CrossRefGoogle Scholar
  23. Banerjee, I., Pangule, R. C., & Kane, R. S. (2011). Antifouling coatings: Recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Advanced Materials, 23, 690–718.PubMedCrossRefGoogle Scholar
  24. Bang, B. W., Jeong, S., Lee, D. H., Lee, J. I., Lee, S. C., & Kang, S.-G. (2012). The biodurability of covering materials for metallic stents in a bile flow phantom. Digestive Diseases and Sciences, 57, 1056–1063.PubMedCrossRefGoogle Scholar
  25. Bat, E., Zhang, Z., Feijen, J., Grijpma, D. W., & Poot, A. A. (2014). Biodegradable elastomers for biomedical applications and regenerative medicine. Regenerative Medicine, 9, 385–398.PubMedCrossRefGoogle Scholar
  26. Bazaka, K., Jacob, M. V., Crawford, R. J., & Ivanova, E. P. (2012). Efficient surface modification of biomaterial to prevent biofilm formation and the attachment of microorganisms. Applied Microbiology and Biotechnology, 95, 299–311.PubMedCrossRefGoogle Scholar
  27. Beyth, N., Yudovin-Farber, I., Perez-Davidi, M., Domb, A. J., & Weiss, E. I. (2010). Polyethyleneimine nanoparticles incorporated into resin composite cause cell death and trigger biofilm stress in vivo. Proceedings of the National Academy of Sciences of the United States of America, 107, 22038–22043.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Bharti, S., Agnihotri, S., Mukherji, S., & Mukherji, S. (2015). Effectiveness of immobilized silver nanoparticles in inactivation of pathogenic bacteria. Journal of Environmental Research And Development, 9, 849–856.Google Scholar
  29. Bhowmick, S., Mohanty, S., & Koul, V. (2016). Fabrication of transparent quaternized PVA/silver nanocomposite hydrogel and its evaluation as an antimicrobial patch for wound care systems. Journal of Materials Science. Materials in Medicine, 27, 160.PubMedCrossRefGoogle Scholar
  30. Bindhu, M., & Umadevi, M. (2013). Synthesis of monodispersed silver nanoparticles using Hibiscus cannabinus leaf extract and its antimicrobial activity. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 101, 184–190.PubMedCrossRefGoogle Scholar
  31. Blecher, K., Nasir, A., & Friedman, A. (2011). The growing role of nanotechnology in combating infectious disease. Virulence, 2, 395–401.PubMedCrossRefGoogle Scholar
  32. Bosetti, M., Masse, A., Tobin, E., & Cannas, M. (2002). Silver coated materials for external fixation devices: In vitro biocompatibility and genotoxicity. Biomaterials, 23, 887–892.PubMedCrossRefGoogle Scholar
  33. Braydich-Stolle, L., Hussain, S., Schlager, J. J., & Hofmann, M.-C. (2005). In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicological Sciences, 88, 412–419.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Bridges, A. W., & García, A. J. (2008). Anti-inflammatory polymeric coatings for implantable biomaterials and devices. Journal of Diabetes Science and Technology, 2, 984–994.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Bryaskova, R., Pencheva, D., Kale, G. M., Lad, U., & Kantardjiev, T. (2010). Synthesis, characterisation and antibacterial activity of PVA/TEOS/Ag-Np hybrid thin films. Journal of Colloid and Interface Science, 349, 77–85.PubMedCrossRefGoogle Scholar
  36. Burd, A., Kwok, C. H., Hung, S. C., Chan, H. S., Gu, H., Lam, W. K., et al. (2007). A comparative study of the cytotoxicity of silver-based dressings in monolayer cell, tissue explant, and animal models. Wound Repair and Regeneration, 15, 94–104.PubMedCrossRefGoogle Scholar
  37. Bushnell, B. D., McWilliams, A. D., Whitener, G. B., & Messer, T. M. (2008). Early clinical experience with collagen nerve tubes in digital nerve repair. Journal of Hand Surgery-American, 33, 1081–1087.CrossRefGoogle Scholar
  38. Busscher, H. J., Van Der Mei, H. C., Subbiahdoss, G., Jutte, P. C., Van Den Dungen, J. J., Zaat, S. A., et al. (2012). Biomaterial-associated infection: Locating the finish line in the race for the surface. Science Translational Medicine, 4, 153rv110.CrossRefGoogle Scholar
  39. Cai, R., Tao, G., He, H., Guo, P., Yang, M., Ding, C., et al. (2017). In situ synthesis of silver nanoparticles on the polyelectrolyte-coated sericin/PVA film for enhanced antibacterial application. Materials, 10, 967.PubMedCentralCrossRefPubMedGoogle Scholar
  40. Camargo, P. H. C., Satyanarayana, K. G., & Wypych, F. (2009). Nanocomposites: Synthesis, structure, properties and new application opportunities. Materials Research, 12, 1–39.CrossRefGoogle Scholar
  41. Cao, X., Tang, M., Liu, F., Nie, Y., & Zhao, C. (2010). Immobilization of silver nanoparticles onto sulfonated polyethersulfone membranes as antibacterial materials. Colloids and Surfaces. B, Biointerfaces, 81, 555–562.PubMedCrossRefGoogle Scholar
  42. Carlson, G. A., Dragoo, J. L., Samimi, B., Bruckner, D. A., Bernard, G. W., Hedrick, M., et al. (2004). Bacteriostatic properties of biomatrices against common orthopaedic pathogens. Biochemical and Biophysical Research Communications, 321, 472–478.PubMedCrossRefGoogle Scholar
  43. Carvalho, D., Sousa, T., Morais, P., & Piedade, A. (2016). Polymer/metal nanocomposite coating with antimicrobial activity against hospital isolated pathogen. Applied Surface Science, 379, 489–496.CrossRefGoogle Scholar
  44. Chakraborty, D., Sharma, V., Agnihotri, S., Mukherji, S., & Mukherji, S. (2017). Disinfection of water in a batch reactor using chloridized silver surfaces. Journal of Water Process Engineering, 16, 41–49.CrossRefGoogle Scholar
  45. Chan, C., Cheng, H., Djurišić, A. B., Ng, A., Leung, F. C., & Chan, W. K. (2011). Multicomponent antimicrobial transparent polymer coatings. Journal of Applied Polymer Science, 122, 1572–1578.CrossRefGoogle Scholar
  46. Chen, X., & Schluesener, H. (2008). Nanosilver: A nanoproduct in medical application. Toxicology Letters, 176, 1–12.PubMedCrossRefGoogle Scholar
  47. Chen, A., Wang, H., & Li, X. (2005). One-step process to fabricate Ag–polypyrrole coaxial nanocables. Chemical Communications, 14, 1863–1864.CrossRefGoogle Scholar
  48. Chen, W., Liu, Y., Courtney, H., Bettenga, M., Agrawal, C., Bumgardner, J., et al. (2006). In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomaterials, 27, 5512–5517.PubMedCrossRefGoogle Scholar
  49. Chernousova, S., & Epple, M. (2013). Silver as antibacterial agent: Ion, nanoparticle, and metal. Angewandte Chemie International Edition, 52, 1636–1653.PubMedCrossRefGoogle Scholar
  50. Chia, T. W. R., Nguyen, V. T., McMeekin, T., Fegan, N., & Dykes, G. A. (2011). Stochasticity of bacterial attachment and its predictability by the extended Derjaguin-Landau-Verwey-Overbeek theory. Applied and Environmental Microbiology, 77, 3757–3764.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Chitichotpanya, P., Inprasit, T., & Chitichotpanya, C. (2017). In vitro assessment of antibacterial potential and mechanical properties of Ag-TiO2/WPU on medical cotton optimized with response surface methodology. Journal of Natural Fibers, 1–12.Google Scholar
  52. Choi, O. K., & Hu, Z. Q. (2009). Nitrification inhibition by silver nanoparticles. Water Science and Technology, 59, 1699–1702.PubMedCrossRefGoogle Scholar
  53. Choi, J. S., Yang, H.-J., Kim, B. S., Kim, J. D., Kim, J. Y., Yoo, B., et al. (2009). Human extracellular matrix (ECM) powders for injectable cell delivery and adipose tissue engineering. Journal of Controlled Release, 139, 2–7.PubMedCrossRefGoogle Scholar
  54. Choudhury, A. (2009). Polyaniline/silver nanocomposites: Dielectric properties and ethanol vapour sensitivity. Sensors and Actuators B: Chemical, 138, 318–325.CrossRefGoogle Scholar
  55. Chu, P. K., Chen, J., Wang, L., & Huang, N. (2002). Plasma-surface modification of biomaterials. Materials Science and Engineering R: Reports, 36, 143–206.CrossRefGoogle Scholar
  56. Chung, S., Ingle, N. P., Montero, G. A., Kim, S. H., & King, M. W. (2010). Bioresorbable elastomeric vascular tissue engineering scaffolds via melt spinning and electrospinning. Acta Biomaterialia, 6, 1958–1967.PubMedCrossRefGoogle Scholar
  57. Ciobanu, C., Groza, A., Iconaru, S., Popa, C., Chapon, P., Chifiriuc, M., et al. (2015). Antimicrobial activity evaluation on silver doped hydroxyapatite/polydimethylsiloxane composite layer. BioMed Research International, 2015, 926513.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Cloutier, M., Mantovani, D., & Rosei, F. (2015). Antibacterial coatings: Challenges, perspectives, and opportunities. Trends in Biotechnology, 33, 637–652.PubMedCrossRefGoogle Scholar
  59. Coma, V. (2013). Polysaccharide-based biomaterials with antimicrobial and antioxidant properties. Polímeros, 23, 287–297.Google Scholar
  60. Cometa, S., Bonifacio, M. A., Baruzzi, F., de Candia, S., Giangregorio, M. M., Giannossa, L. C., et al. (2017). Silver-loaded chitosan coating as an integrated approach to face titanium implant-associated infections: Analytical characterization and biological activity. Analytical and Bioanalytical Chemistry, 409, 7211–7221.PubMedCrossRefGoogle Scholar
  61. Dahlin, R. L., Kasper, F. K., & Mikos, A. G. (2011). Polymeric nanofibers in tissue engineering. Tissue Engineering Part B, Reviews, 17, 349–364.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Daima, H. K., Selvakannan, P. R., Kandjani, A. E., Shukla, R., Bhargava, S. K., & Bansal, V. (2014). Synergistic influence of polyoxometalate surface corona towards enhancing the antibacterial performance of tyrosine-capped Ag nanoparticles. Nanoscale, 6, 758–765.PubMedCrossRefGoogle Scholar
  63. Dallas, P., Sharma, V. K., & Zboril, R. (2011). Silver polymeric nanocomposites as advanced antimicrobial agents: Classification, synthetic paths, applications, and perspectives. Advances in Colloid and Interface, 166, 119–135.CrossRefGoogle Scholar
  64. Damm, C. (2005). Silver ion release from polymethyl methacrylate silver nanocomposites. Polymers and Polymer Composites, 13, 649.CrossRefGoogle Scholar
  65. Dastjerdi, R., Mojtahedi, M., Shoshtari, A., & Khosroshahi, A. (2010). Investigating the production and properties of Ag/TiO2/PP antibacterial nanocomposite filament yarns. The Journal of the Textile Institute, 101, 204–213.CrossRefGoogle Scholar
  66. Dayyoub, E., Frant, M., Pinnapireddy, S. R., Liefeith, K., & Bakowsky, U. (2017). Antibacterial and anti-encrustation biodegradable polymer coating for urinary catheter. International Journal of Pharmaceutics, 531, 205–214.PubMedCrossRefGoogle Scholar
  67. Domènech Garcia, B., Muñoz Tapia, M., Muraviev, D., & Macanás de Benito, J. (2014). Fabrication of polymer-metal nanocomposites with complex polymeric matrices for bactericidal and catalytic applications. Barcelona: Universitat Autònoma de Barcelona.Google Scholar
  68. Donlan, R. M. (2001). Biofilms and device-associated infections. Emerging Infectious Diseases, 7, 277.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Dowling, D., Donnelly, K., McConnell, M., Eloy, R., & Arnaud, M. (2001). Deposition of anti-bacterial silver coatings on polymeric substrates. Thin Solid Films, 398, 602–606.CrossRefGoogle Scholar
  70. Dubas, S. T., Wacharanad, S., & Potiyaraj, P. (2011). Tunning of the antimicrobial activity of surgical sutures coated with silver nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 380, 25–28.CrossRefGoogle Scholar
  71. Dutta, P. K., Dutta, J., & Tripathi, V. (2004). Chitin and chitosan: Chemistry, properties and applications. Journal of Scientific and Industrial Research, 63, 20–31.Google Scholar
  72. El Hajj, F., Hasan, A., Nakhleh, J., Osta, M., Darwish, G., Karam, P., et al. (2015). Nanosilver loaded GelMA hydrogel for antimicrobial coating of biomedical implants. In IEEE: 2015 International Conference on Advances in Biomedical Engineering (ICABME) (pp. 189–192).Google Scholar
  73. El-Sayed, A. A., El Gabry, L., & Allam, O. (2010). Application of prepared waterborne polyurethane extended with chitosan to impart antibacterial properties to acrylic fabrics. Journal of Materials Science. Materials in Medicine, 21, 507–514.CrossRefGoogle Scholar
  74. El-Sayed, A. A., Salama, M., Salem, T., & Rehan, M. (2016). Synergistic combination of reduction and polymerization reactions to prepare silver/waterborne polyurethane nanocomposite for coating applications. Indian Journal of Science and Technology, 9, 1–10.CrossRefGoogle Scholar
  75. Eraković, S., Janković, A., Veljović, D., Palcevskis, E., Mitrić, M., Stevanović, T., et al. (2012). Corrosion stability and bioactivity in simulated body fluid of silver/hydroxyapatite and silver/hydroxyapatite/lignin coatings on titanium obtained by electrophoretic deposition. The Journal of Physical Chemistry. B, 117, 1633–1643.PubMedCrossRefGoogle Scholar
  76. Feng, W., Gao, X., McClung, G., Zhu, S., Ishihara, K., & Brash, J. L. (2011). Methacrylate polymer layers bearing poly (ethylene oxide) and phosphorylcholine side chains as non-fouling surfaces: In vitro interactions with plasma proteins and platelets. Acta Biomaterialia, 7, 3692–3699.PubMedCrossRefGoogle Scholar
  77. Fischer, M., Vahdatzadeh, M., Konradi, R., Friedrichs, J., Maitz, M. F., Freudenberg, U., et al. (2015). Multilayer hydrogel coatings to combine hemocompatibility and antimicrobial activity. Biomaterials, 56, 198–205.PubMedCrossRefGoogle Scholar
  78. Fortunati, E., Latterini, L., Rinaldi, S., Kenny, J., & Armentano, I. P. L. G. A. (2011). Ag nanocomposites: In vitro degradation study and silver ion release. Journal of Materials Science. Materials in Medicine, 22, 2735–2744.PubMedCrossRefGoogle Scholar
  79. Franci, G., Falanga, A., Galdiero, S., Palomba, L., Rai, M., Morelli, G., et al. (2015). Silver nanoparticles as potential antibacterial agents. Molecules, 20, 8856–8874.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Galya, T., Sedlařík, V., Kuřitka, I., Novotný, R., Sedlaříková, J., & Sáha, P. (2008). Antibacterial poly (vinyl alcohol) film containing silver nanoparticles: Preparation and characterization. Journal of Applied Polymer Science, 110, 3178–3185.CrossRefGoogle Scholar
  81. Gao, Y., & Cranston, R. (2008). Recent advances in antimicrobial treatments of textiles. Textile Research Journal, 78, 60–72.CrossRefGoogle Scholar
  82. Gianolio, D. A., Philbrook, M., Avila, L. Z., Young, L. E., Plate, L., Santos, M. R., et al. (2008). Hyaluronan-tethered opioid depots: Synthetic strategies and release kinetics in vitro and in vivo. Bioconjugate Chemistry, 19, 1767–1774.PubMedCrossRefGoogle Scholar
  83. Gottenbos, B., Van Der Mei, H., Busscher, H., Grijpma, D., & Feijen, J. (1999). Initial adhesion and surface growth of Pseudomonas aeruginosa on negatively and positively charged poly (methacrylates). Journal of Materials Science. Materials in Medicine, 10, 853–855.PubMedCrossRefGoogle Scholar
  84. Gravante, G., Caruso, R., Sorge, R., Nicoli, F., Gentile, P., & Cervelli, V. (2009). Nanocrystalline silver: A systematic review of randomized trials conducted on burned patients and an evidence-based assessment of potential advantages over older silver formulations. Annals of Plastic Surgery, 63, 201–205.PubMedCrossRefGoogle Scholar
  85. Gristina, A. G. (1987). Biomaterial-centered infection: Microbial adhesion versus tissue integration. Science, 237, 1588–1595.PubMedCrossRefGoogle Scholar
  86. Groza, A., Ciobanu, C. S., Popa, C. L., Iconaru, S. L., Chapon, P., Luculescu, C., et al. (2016). Structural properties and antifungal activity against Candida albicans biofilm of different composite layers based on Ag/Zn doped hydroxyapatite-polydimethylsiloxanes. Polymers, 8, 131.CrossRefGoogle Scholar
  87. Gunatillake, P., Mayadunne, R., & Adhikari, R. (2006). Recent developments in biodegradable synthetic polymers. Biotechnology Annual Review, 12, 301–347.PubMedCrossRefGoogle Scholar
  88. Gupta, A., & Silver, S. (1998). Molecular genetics: Silver as a biocide: Will resistance become a problem? Nature Biotechnology, 16, 888–888.PubMedCrossRefGoogle Scholar
  89. Hajipour, M. J., Fromm, K. M., Ashkarran, A. A., de Aberasturi, D. J., de Larramendi, I. R., Rojo, T., et al. (2012). Antibacterial properties of nanoparticles. Trends in Biotechnology, 30, 499–511.PubMedCrossRefGoogle Scholar
  90. Hall-Stoodley, L., & Stoodley, P. (2009). Evolving concepts in biofilm infections. Cellular Microbiology, 11, 1034–1043.PubMedCrossRefGoogle Scholar
  91. Harkes, G., Feijen, J., & Dankert, J. (1991). Adhesion of Escherichia coli on to a series of poly (methacrylates) differing in charge and hydrophobicity. Biomaterials, 12, 853–860.PubMedCrossRefGoogle Scholar
  92. Hazer, D. B., Sakar, M., Dere, Y., Altinkanat, G., Ziyal, M. I., & Hazer, B. (2016). Antimicrobial effect of polymer-based silver nanoparticle coated pedicle screws: Experimental research on biofilm inhibition in rabbits. Spine, 41, E323–E329.PubMedCrossRefGoogle Scholar
  93. He, H., Cai, R., Wang, Y., Tao, G., Guo, P., Zuo, H., et al. (2017). Preparation and characterization of silk sericin/pva blend film with silver nanoparticles for potential antimicrobial application. International Journal of Biological Macromolecules, 104, 457–464.PubMedCrossRefGoogle Scholar
  94. Hegemann, D., Hossain, M. M., & Balazs, D. J. (2007). Nanostructured plasma coatings to obtain multifunctional textile surfaces. Progress in Organic Coating, 58, 237–240.CrossRefGoogle Scholar
  95. Hermansson, M. (1999). The DLVO theory in microbial adhesion. Colloids and Surfaces. B, Biointerfaces, 14, 105–119.CrossRefGoogle Scholar
  96. Hetrick, E. M., & Schoenfisch, M. H. (2006). Reducing implant-related infections: Active release strategies. Chemical Society Reviews, 35, 780–789.PubMedCrossRefGoogle Scholar
  97. Hill, M., Baldwin, L., Slaughter, J., Walsh, W., & Weitkamp, J. (2010). A silver–alginate-coated dressing to reduce peripherally inserted central catheter (PICC) infections in NICU patients: A pilot randomized controlled trial. Journal of Perinatology, 30, 469.PubMedCrossRefGoogle Scholar
  98. Hirakura, T., Yasugi, K., Nemoto, T., Sato, M., Shimoboji, T., Aso, Y., et al. (2010). Hybrid hyaluronan hydrogel encapsulating nanogel as a protein nanocarrier: New system for sustained delivery of protein with a chaperone-like function. Journal of Controlled Release, 142, 483–489.PubMedCrossRefGoogle Scholar
  99. Hofmann, G. (1992). Biodegradable implants in orthopaedic surgery—A review on the state-of-the-art. Clinical Materials, 10, 75–80.PubMedCrossRefGoogle Scholar
  100. Høiby, N., Bjarnsholt, T., Givskov, M., Molin, S., & Ciofu, O. (2010). Antibiotic resistance of bacterial biofilms. International Journal of Antimicrobial Agents, 35, 322–332.PubMedCrossRefGoogle Scholar
  101. Huang, J., Murata, H., Koepsel, R. R., Russell, A. J., & Matyjaszewski, K. (2007). Antibacterial polypropylene via surface-initiated atom transfer radical polymerization. Biomacromolecules, 8, 1396–1399.PubMedCrossRefGoogle Scholar
  102. Huang, Z., Tian, J., Yu, B., Xu, Y., & Feng, Q. (2009). A bone-like nano-hydroxyapatite/collagen loaded injectable scaffold. Biomedical Materials, 4, 055005.PubMedCrossRefGoogle Scholar
  103. Huang, L., Dai, T., Xuan, Y., Tegos, G. P., & Hamblin, M. R. (2011). Synergistic combination of chitosan acetate with nanoparticle silver as a topical antimicrobial: Efficacy against bacterial burn infections. Antimicrobial Agents and Chemotherapy, 55, 3432–3438.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Huh, A. J., & Kwon, Y. J. (2011). “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of Controlled Release, 156, 128–145.PubMedCrossRefGoogle Scholar
  105. Hung, H.-S., & Hsu, S.-H. (2007). Biological performances of poly (ether) urethane–silver nanocomposites. Nanotechnology, 18, 475101.CrossRefGoogle Scholar
  106. Hunt, N. C. (2010). An alginate hydrogel matrix for the localised delivery of a fibroblast/keratinocyte co-culture to expedite wound healing. Birmingham: University of Birmingham.Google Scholar
  107. Hussain, S., Hess, K., Gearhart, J., Geiss, K., & Schlager, J. (2005). In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicology In Vitro, 19, 975–983.PubMedCrossRefGoogle Scholar
  108. Iamphongsai, S., Eshraghi, Y., Totonchi, A., Midler, J., Abdul-Karim, F. W., & Guyuron, B. (2009). Effect of different suture materials on cartilage reshaping. Aesthetic Surgery Journal, 29, 93–97.PubMedCrossRefGoogle Scholar
  109. Ibrahim, H. M. (2015). Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. Journal of Radiation Research and Applied Science, 8, 265–275.CrossRefGoogle Scholar
  110. Iconaru, S., Chifiriuc, M., & Groza, A. (2017). Structural and antimicrobial evaluation of silver doped hydroxyapatite-polydimethylsiloxane thin layers. Journal of Nanomaterials, 2017, 7492515.CrossRefGoogle Scholar
  111. Ifuku, S., Tsukiyama, Y., Yukawa, T., Egusa, M., Kaminaka, H., Izawa, H., et al. (2015). Facile preparation of silver nanoparticles immobilized on chitin nanofiber surfaces to endow antifungal activities. Carbohydrate Polymers, 117, 813–817.PubMedCrossRefGoogle Scholar
  112. Ionescu, A., Brambilla, E., Travan, A., Marsich, E., Donati, I., Gobbi, P., et al. (2015). Silver–polysaccharide antimicrobial nanocomposite coating for methacrylic surfaces reduces Streptococcus mutans biofilm formation in vitro. Journal of Dentistry, 43, 1483–1490.PubMedCrossRefGoogle Scholar
  113. Ito, K., Saito, A., Fujie, T., Miyazaki, H., Kinoshita, M., Saitoh, D., et al. (2016). Development of a ubiquitously transferrable silver-nanoparticle-loaded polymer nanosheet as an antimicrobial coating. Journal of Biomedical Materials Research Part B Applied Biomaterials, 104, 585–593.CrossRefGoogle Scholar
  114. Jagur-Grodzinski, J. (1999). Biomedical application of functional polymers. Reactive and Functional Polymers, 39, 99–138.CrossRefGoogle Scholar
  115. Jagur-Grodzinski, J. (2006). Polymers for tissue engineering, medical devices, and regenerative medicine. Concise general review of recent studies. Polymers for Advanced Technologies, 17, 395–418.CrossRefGoogle Scholar
  116. Jain, J., Arora, S., Rajwade, J. M., Omray, P., Khandelwal, S., & Paknikar, K. M. (2009). Silver nanoparticles in therapeutics: Development of an antimicrobial gel formulation for topical use. Molecular Pharmaceutics, 6, 1388–1401.PubMedCrossRefGoogle Scholar
  117. Jennings, J. A., Pulgarin, D. A. V., Kunwar, D. L., Babu, J., Mishra, S., & Bumgardner, J. (2015). Bacterial inhibition by chitosan coatings loaded with silver-decorated calcium phosphate microspheres. Thin Solid Films, 596, 83–86.CrossRefGoogle Scholar
  118. Jia, Q., Shan, S., Jiang, L., Wang, Y., & Li, D. (2012). Synergistic antimicrobial effects of polyaniline combined with silver nanoparticles. Journal of Applied Polymer Science, 125, 3560–3566.CrossRefGoogle Scholar
  119. Jiang, S., & Teng, C. P. (2017). Fabrication of silver nanowires-loaded polydimethylsiloxane film with antimicrobial activities and cell compatibility. Materials Science and Engineering C, Materials for Biological Applications, 70, 1011–1017.PubMedCrossRefGoogle Scholar
  120. Kaetsu, I., Yoshida, M., & Yamada, A. (1980). Controlled slow release of chemotherapeutic drugs for cancer from matrices prepared by radiation polymerization at low temperatures. Journal of Biomedical Materials Research. Part A, 14, 185–197.CrossRefGoogle Scholar
  121. Kakkar, R., Madgula, K., Nehru, Y. S., & Kakkar, J. (2015). Polyvinyl alcohol-melamine formaldehyde films and coatings with silver nano particles as wound dressings in diabetic foot disease. European Chemical Bulletin, 4, 98–105.Google Scholar
  122. Kanazawa, A., Ikeda, T., & Endo, T. (1993). Novel polycationic biocides: Synthesis and antibacterial activity of polymeric phosphonium salts. Journal of Polymer Science: Part A, 31, 335–343.Google Scholar
  123. Kantouch, F., & El-Sayed, A. A. (2011). Acid dyeable and printable acrylic fabrics treated with cationic aqueous polyurethane. Journal of Applied Polymer Science, 119, 2595–2601.CrossRefGoogle Scholar
  124. Karthikeyan, K., Sekar, S., Devi, M. P., Inbasekaran, S., Lakshminarasaiah, C., & Sastry, T. (2011). Fabrication of novel biofibers by coating silk fibroin with chitosan impregnated with silver nanoparticles. Journal of Materials Science. Materials in Medicine, 22, 2721–2726.PubMedCrossRefGoogle Scholar
  125. Khwanmuang, P., Naparswad, C., Archakunakorn, S., Waicharoen, C., & Chitichotpanya, C. (2017a). Optimization of in situ synthesis of Ag/PU nanocomposites using response surface methodology for self-disinfecting coatings. Progress in Organic Coating, 110, 104–113.CrossRefGoogle Scholar
  126. Khwanmuang, P., Rotjanapan, P., Phuphuakrat, A., Srichatrapimuk, S., & Chitichotpanya, C. (2017b). In vitro assessment of Ag-TiO2/polyurethane nanocomposites for infection control using response surface methodology. Reactive and Functional Polymers, 117, 120–130.CrossRefGoogle Scholar
  127. Kim, S. H., Opdahl, A., Marmo, C., & Somorjai, G. A. (2002). AFM and SFG studies of pHEMA-based hydrogel contact lens surfaces in saline solution: Adhesion, friction, and the presence of non-crosslinked polymer chains at the surface. Biomaterials, 23, 1657–1666.PubMedCrossRefGoogle Scholar
  128. Kim, J. H., Park, H., & Seo, S. W. (2017). In situ synthesis of silver nanoparticles on the surface of PDMS with high antibacterial activity and biosafety toward an implantable medical device. Nano Convergence, 4, 33.PubMedPubMedCentralCrossRefGoogle Scholar
  129. Knetsch, M. L., & Koole, L. H. (2011). New strategies in the development of antimicrobial coatings: The example of increasing usage of silver and silver nanoparticles. Polymers, 3, 340–366.CrossRefGoogle Scholar
  130. Komura, M., Komura, H., Kanamori, Y., Tanaka, Y., Suzuki, K., Sugiyama, M., et al. (2008). An animal model study for tissue-engineered trachea fabricated from a biodegradable scaffold using chondrocytes to augment repair of tracheal stenosis. Journal of Pediatric Surgery, 43, 2141–2146.PubMedCrossRefGoogle Scholar
  131. Kong, H., & Jang, J. (2008). Antibacterial properties of novel poly (methyl methacrylate) nanofiber containing silver nanoparticles. Langmuir, 24, 2051–2056.PubMedCrossRefPubMedCentralGoogle Scholar
  132. Körner, E., Aguirre, M. H., Fortunato, G., Ritter, A., Rühe, J., & Hegemann, D. (2010). Formation and distribution of silver nanoparticles in a functional plasma polymer matrix and related Ag+ release properties. Plasma Processes and Polymers, 7, 619–625.CrossRefGoogle Scholar
  133. Krane, S. M. (2008). The importance of proline residues in the structure, stability and susceptibility to proteolytic degradation of collagens. Amino Acids, 35, 703.PubMedCrossRefPubMedCentralGoogle Scholar
  134. Kucekova, Z., Kasparkova, V., Humpolicek, P., Sevcikova, P., & Stejskal, J. (2013). Antibacterial properties of polyaniline-silver films. Chemical Papers, 67, 1103–1108.CrossRefGoogle Scholar
  135. Kumar, M. N. R. (2000). A review of chitin and chitosan applications. Reactive and Functional Polymers, 46, 1–27.CrossRefGoogle Scholar
  136. Kumar, A., Vemula, P. K., Ajayan, P. M., & John, G. (2008). Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nature Materials, 7, 236–241.PubMedCrossRefPubMedCentralGoogle Scholar
  137. Kumbar, S., Laurencin, C., & Deng, M. (2014). Natural and synthetic biomedical polymers. Amsterdam: Newnes.Google Scholar
  138. Kundu, S. C., Dash, B. C., Dash, R., & Kaplan, D. L. (2008). Natural protective glue protein, sericin bioengineered by silkworms: Potential for biomedical and biotechnological applications. Progress in Polymer Science, 33, 998–1012.CrossRefGoogle Scholar
  139. Lee, H., Mok, H., Lee, S., Oh, Y.-K., & Park, T. G. (2007). Target-specific intracellular delivery of siRNA using degradable hyaluronic acid nanogels. Journal of Controlled Release, 119, 245–252.PubMedCrossRefPubMedCentralGoogle Scholar
  140. Lee, T. H., Jang, B. S., Jung, M. K., Pack, C. G., Choi, J.-H., & Park, D. H. (2016). Fabrication of a silver particle-integrated silicone polymer-covered metal stent against sludge and biofilm formation and stent-induced tissue inflammation. Scientific Reports, 6, 35446.PubMedPubMedCentralCrossRefGoogle Scholar
  141. Lendlein, A. (2010). Polymers in biomedicine. Macromolecular Bioscience, 10, 993–997.PubMedCrossRefPubMedCentralGoogle Scholar
  142. Li, X., & Lenhart, J. J. (2012). Aggregation and dissolution of silver nanoparticles in natural surface water. Environmental Science and Technology, 46, 5378–5386.PubMedCrossRefGoogle Scholar
  143. Li, W., Zhou, J., Gu, J. S., & Yu, H. Y. (2010). Fouling control in a submerged membrane-bioreactor by the membrane surface modification. Journal of Applied Polymer Science, 115, 2302–2309.CrossRefGoogle Scholar
  144. Li, L., Jones, P. M., & Hsia, Y.-T. (2011). Characterization of a nanometer-thick sputtered polytetrafluoroethylene film. Applied Surface Science, 257, 4478–4485.CrossRefGoogle Scholar
  145. Li, P., Zhang, X., Xu, R., Wang, W., Liu, X., Yeung, K. W., et al. (2013). Electrochemically deposited chitosan/Ag complex coatings on biomedical NiTi alloy for antibacterial application. Surface and Coating Technology, 232, 370–375.CrossRefGoogle Scholar
  146. Li, W., Xu, D., Hu, Y., Cai, K., & Lin, Y. (2014). Surface modification of titanium substrates with silver nanoparticles embedded sulfhydrylated chitosan/gelatin polyelectrolyte multilayer films for antibacterial application. Journal of Materials Science. Materials in Medicine, 25, 1435–1448.PubMedCrossRefPubMedCentralGoogle Scholar
  147. Li, L., Wang, Y., & Zhu, Y. (2018). Facile preparation and good performance of nano-Ag/metallocene polyethylene antibacterial coatings. Journal of Coating Technology and Research, 15, 593–602.CrossRefGoogle Scholar
  148. Liao, J., Anchun, M., Zhu, Z., & Quan, Y. (2010). Antibacterial titanium plate deposited by silver nanoparticles exhibits cell compatibility. International Journal of Nanomedicine, 5, 337.PubMedPubMedCentralGoogle Scholar
  149. Lin, J. J., Lin, W. C., Li, S. D., Lin, C. Y., & Hsu, S. H. (2013). Evaluation of the antibacterial activity and biocompatibility for silver nanoparticles immobilized on nano silicate platelets. ACS Applied Materials and Interfaces, 5, 433–443.PubMedCrossRefPubMedCentralGoogle Scholar
  150. Liu, Y., Zheng, Z., Zara, J. N., Hsu, C., Soofer, D. E., Lee, K. S., et al. (2012). The antimicrobial and osteoinductive properties of silver nanoparticle/poly (DL-lactic-co-glycolic acid)-coated stainless steel. Biomaterials, 33, 8745–8756.PubMedCrossRefPubMedCentralGoogle Scholar
  151. Liu, G., Li, K., Luo, Q., Wang, H., & Zhang, Z. (2017). PEGylated chitosan protected silver nanoparticles as water-borne coating for leather with antibacterial property. Journal of Colloid and Interface Science, 490, 642–651.PubMedCrossRefPubMedCentralGoogle Scholar
  152. Lloyd, L., Kennedy, J., Methacanon, P., Paterson, M., & Knill, C. (1998). Carbohydrate polymers as wound management aids. Carbohydrate Polymers, 37, 315–322.CrossRefGoogle Scholar
  153. Loo, C.-Y., Young, P. M., Lee, W.-H., Cavaliere, R., Whitchurch, C. B., & Rohanizadeh, R. (2014). Non-cytotoxic silver nanoparticle-polyvinyl alcohol hydrogels with anti-biofilm activity: Designed as coatings for endotracheal tube materials. Biofouling, 30, 773–788.PubMedCrossRefPubMedCentralGoogle Scholar
  154. Lu, W., Senapati, D., Wang, S., Tovmachenko, O., Singh, A. K., Yu, H., et al. (2010). Effect of surface coating on the toxicity of silver nanomaterials on human skin keratinocytes. Chemical Physics Letters, 487, 92–96.CrossRefGoogle Scholar
  155. Lynch, A. S., & Robertson, G. T. (2008). Bacterial and fungal biofilm infections. Annual Review of Medicine, 59, 415–428.PubMedCrossRefGoogle Scholar
  156. Lyutakov, O., Kalachyova, Y., Solovyev, A., Vytykacova, S., Svanda, J., Siegel, J., et al. (2015). One-step preparation of antimicrobial silver nanoparticles in polymer matrix. Journal of Nanoparticle Research, 17, 120.CrossRefGoogle Scholar
  157. Ma, P. X. (2004). Scaffolds for tissue fabrication. Materials Today, 7, 30–40.CrossRefGoogle Scholar
  158. Ma, K., Gong, L., Cai, X., Huang, P., Cai, J., Huang, D., et al. (2017). A green single-step procedure to synthesize ag-containing nanocomposite coatings with low cytotoxicity and efficient antibacterial properties. International Journal of Nanomedicine, 12, 3665.PubMedPubMedCentralCrossRefGoogle Scholar
  159. Maitz, M. F. (2015). Applications of synthetic polymers in clinical medicine. Biosurface and Biotribology, 1, 161–176.CrossRefGoogle Scholar
  160. Marsich, E., Travan, A., Donati, I., Turco, G., Kulkova, J., Moritz, N., et al. (2013). Biological responses of silver-coated thermosets: An in vitro and in vivo study. Acta Biomaterialia, 9, 5088–5099.PubMedCrossRefPubMedCentralGoogle Scholar
  161. Matsuno, T., Nakamura, T., Kuremoto, K.-I., Notazawa, S., Nakahara, T., Hashimoto, Y., et al. (2006). Development of β-tricalcium phosphate/collagen sponge composite for bone regeneration. Dental Materials Journal, 25, 138–144.PubMedCrossRefGoogle Scholar
  162. McArthur, S. L., McLean, K. M., Kingshott, P., St John, H. A., Chatelier, R. C., & Griesser, H. J. (2000). Effect of polysaccharide structure on protein adsorption. Colloids and Surfaces. B, Biointerfaces, 17, 37–48.CrossRefGoogle Scholar
  163. Mejia, M., Restrepo, G., Marin, J., Sanjines, R., Pulgarín, C., Mielczarski, E., et al. (2010). Magnetron-sputtered Ag surfaces. New evidence for the nature of the Ag ions intervening in bacterial inactivation. ACS Applied Materials and Interfaces, 2, 230–235.PubMedCrossRefGoogle Scholar
  164. Meyers, R. A. (1995). Molecular biology and biotechnology: A comprehensive desk reference. New York: Wiley.Google Scholar
  165. Middleton, J. C., & Tipton, A. J. (2000). Synthetic biodegradable polymers as orthopedic devices. Biomaterials, 21, 2335–2346.PubMedCrossRefPubMedCentralGoogle Scholar
  166. Mishra, S. K., Teotia, A. K., Kumar, A., & Kannan, S. (2017). Mechanically tuned nanocomposite coating on titanium metal with integrated properties of biofilm inhibition, cell proliferation, and sustained drug delivery. Nanomedicine: Nanotechnology, Biology and Medicine, 13, 23–35.CrossRefGoogle Scholar
  167. Mittal, V. (2013). Polymer nanocomposite coatings. Boca Raton: CRC Press, Taylor and Francis.CrossRefGoogle Scholar
  168. Moghimi, S. M., Hunter, A. C., & Murray, J. C. (2001). Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacological Reviews, 53, 283–318.PubMedPubMedCentralGoogle Scholar
  169. Moodley, J. S., Krishna, S. B. N., Pillay, K., & Govender, P. (2018). Green synthesis of silver nanoparticles from Moringa oleifera leaf extracts and its antimicrobial potential. Advances in Natural Sciences: Nanoscience and Nanotechnology, 9, 015011.Google Scholar
  170. Mori, Y., Ono, T., Miyahira, Y., Nguyen, V. Q., Matsui, T., & Ishihara, M. (2013). Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus. Nanoscale Research Letters, 8, 93.PubMedPubMedCentralCrossRefGoogle Scholar
  171. Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., et al. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16, 2346.PubMedCrossRefGoogle Scholar
  172. Mountziaris, P. M., Tzouanas, S. N., & Mikos, A. G. (2010). Dose effect of tumor necrosis factor-α on in vitro osteogenic differentiation of mesenchymal stem cells on biodegradable polymeric microfiber scaffolds. Biomaterials, 31, 1666–1675.PubMedCrossRefPubMedCentralGoogle Scholar
  173. Mukherji, S., Ruparelia, J., & Agnihotri, S. (2012). Antimicrobial activity of silver and copper nanoparticles: Variation in sensitivity across various strains of bacteria and fungi. In N. Cioffi & M. Rai (Eds.), Nano-antimicrobials: Progress and prospects (pp. 225–251). Berlin: Springer.CrossRefGoogle Scholar
  174. Muñoz-Bonilla, A., & Fernández-García, M. (2012). Polymeric materials with antimicrobial activity. Progress in Polymer Science, 37, 281–339.CrossRefGoogle Scholar
  175. Nair, L. S., & Laurencin, C. T. (2007). Biodegradable polymers as biomaterials. Progress in Polymer Science, 32, 762–798.CrossRefGoogle Scholar
  176. Nanlin, S., Xuemei, G., Hemin, J., Jun, G., Chao, S., & Ke, Y. (2009). Antibacterial effect of the conducting polyaniline. Journal of Materials Science and Technology, 22, 289–290.Google Scholar
  177. Nanno, K., Sugiyasu, K., Daimon, T., Yoshikawa, H., & Myoui, A. (2009). Synthetic alginate is a carrier of OP-1 for bone induction. Clinical Orthopaedics and Related Research, 467, 3149.PubMedPubMedCentralCrossRefGoogle Scholar
  178. Nganga, S., Travan, A., Marsich, E., Donati, I., Söderling, E., Moritz, N., et al. (2013). In vitro antimicrobial properties of silver–polysaccharide coatings on porous fiber-reinforced composites for bone implants. Journal of Materials Science. Materials in Medicine, 24, 2775–2785.PubMedCrossRefGoogle Scholar
  179. Nhi, T. T., Khon, H. C., Hoai, N. T. T., Bao, B. C., Quyen, T. N., Van Toi, V., et al. (2016). Fabrication of electrospun polycaprolactone coated withchitosan-silver nanoparticles membranes for wound dressing applications. Journal of Materials Science. Materials in Medicine, 27, 156.PubMedCrossRefGoogle Scholar
  180. Nohr, R. S., & Gavin Macdonald, J. (1994). New biomaterials through surface segregation phenomenon: New quaternary ammonium compounds as antibacterial agents. Journal of Biomaterials Science Polymer Edition, 5, 607–619.PubMedCrossRefGoogle Scholar
  181. Nune, S. K., Chanda, N., Shukla, R., Katti, K., Kulkarni, R. R., Thilakavathi, S., et al. (2009). Green nanotechnology from tea: Phytochemicals in tea as building blocks for production of biocompatible gold nanoparticles. Journal of Materials Chemistry, 19, 2912–2920.PubMedPubMedCentralCrossRefGoogle Scholar
  182. Ocsoy, I., Didar, T., Sumeyye, M., Cagla, C., Ahmet, K., & Funda, U. (2018). Biomolecules incorporated metallic nanoparticles synthesis and their biomedical applications. Materials Letters, 212, 45–50.CrossRefGoogle Scholar
  183. Oktay, B., & Kayaman-Apohan, N. (2013). Polydimethylsiloxane (PDMS)-based antibacterial organic–inorganic hybrid coatings. Journal of Coating Technology and Research, 10, 785–798.CrossRefGoogle Scholar
  184. Orive, G., De Castro, M., Kong, H.-J., Hernández, R. M., Ponce, S., Mooney, D. J., et al. (2009). Bioactive cell-hydrogel microcapsules for cell-based drug delivery. Journal of Controlled Release, 135, 203–210.PubMedCrossRefGoogle Scholar
  185. Orlowski, P., Tomaszewska, E., Gniadek, M., Baska, P., Nowakowska, J., Sokolowska, J., et al. (2014). Tannic acid modified silver nanoparticles show antiviral activity in herpes simplex virus type 2 infection. PLoS One, 9, e104113.PubMedPubMedCentralCrossRefGoogle Scholar
  186. Pal, S., Tak, Y. K., & Song, J. M. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Applied and Environmental Microbiology, 73, 1712–1720.PubMedPubMedCentralCrossRefGoogle Scholar
  187. Pan, X., Redding, J. E., Wiley, P. A., Wen, L., McConnell, J. S., & Zhang, B. (2010). Mutagenicity evaluation of metal oxide nanoparticles by the bacterial reverse mutation assay. Chemosphere, 79, 113–116.PubMedCrossRefGoogle Scholar
  188. Panáček, A., Kvitek, L., Prucek, R., Kolář, M., Večeřová, R., Pizúrová, N., et al. (2006). Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity. The Journal of Physical Chemistry. B, 110, 16248–16253.PubMedCrossRefGoogle Scholar
  189. Pang, X., & Zhitomirsky, I. (2008). Electrodeposition of hydroxyapatite–silver–chitosan nanocomposite coatings. Surface and Coating Technology, 202, 3815–3821.CrossRefGoogle Scholar
  190. Pangas, S. A., Saudye, H., Shea, L. D., & Woodruff, T. K. (2003). Novel approach for the three-dimensional culture of granulosa cell–oocyte complexes. Tissue Engineering, 9, 1013–1021.PubMedCrossRefGoogle Scholar
  191. Panyam, J., & Labhasetwar, V. (2003). Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Advanced Drug Delivery Reviews, 55, 329–347.PubMedCrossRefGoogle Scholar
  192. Pardini, O., & Amalvy, J. (2008). FTIR, 1H-NMR spectra, and thermal characterization of water-based polyurethane/acrylic hybrids. Journal of Applied Polymer Science, 107, 1207–1214.CrossRefGoogle Scholar
  193. Park, K. D., Kim, Y. S., Han, D. K., Kim, Y. H., Lee, E. H. B., Suh, H., et al. (1998). Bacterial adhesion on PEG modified polyurethane surfaces. Biomaterials, 19, 851–859.PubMedCrossRefGoogle Scholar
  194. Park, G. E., Pattison, M. A., Park, K., & Webster, T. J. (2005). Accelerated chondrocyte functions on NaOH-treated PLGA scaffolds. Biomaterials, 26, 3075–3082.PubMedCrossRefGoogle Scholar
  195. Paul, A., Kaverina, E., & Vasiliev, A. (2015). Synthesis of silver/polymer nanocomposites by surface coating using carbodiimide method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 482, 44–49.CrossRefGoogle Scholar
  196. Pavithra, D., & Doble, M. (2008). Biofilm formation, bacterial adhesion and host response on polymeric implants—issues and prevention. Biomedical Materials, 3, 034003.PubMedCrossRefGoogle Scholar
  197. Pelgrift, R. Y., & Friedman, A. J. (2013). Nanotechnology as a therapeutic tool to combat microbial resistance. Advanced Drug Delivery Reviews, 65, 1803–1815.PubMedCrossRefGoogle Scholar
  198. Petrochenko, P. E., Zheng, J., Casey, B. J., Bayati, M. R., Narayan, R. J., & Goering, P. L. (2017). Nanosilver-PMMA composite coating optimized to provide robust antibacterial efficacy while minimizing human bone marrow stromal cell toxicity. Toxicology In Vitro, 44, 248–255.PubMedCrossRefGoogle Scholar
  199. Pishbin, F., Simchi, A., Ryan, M., & Boccaccini, A. (2010). A study of the electrophoretic deposition of bioglass® suspensions using the Taguchi experimental design approach. Journal of the European Ceramic Society, 30, 2963–2970.CrossRefGoogle Scholar
  200. Pishbin, F., Mourino, V., Gilchrist, J. B., McComb, D. W., Kreppel, S., Salih, V., et al. (2013). Single-step electrochemical deposition of antimicrobial orthopaedic coatings based on a bioactive glass/chitosan/nano-silver composite system. Acta Biomaterialia, 9, 7469–7479.PubMedCrossRefGoogle Scholar
  201. Poelaert, J., Depuydt, P., De Wolf, A., Van de Velde, S., Herck, I., & Blot, S. (2008). Polyurethane cuffed endotracheal tubes to prevent early postoperative pneumonia after cardiac surgery: A pilot study. The Journal of Thoracic and Cardiovascular Surgery, 135, 771–776.PubMedCrossRefGoogle Scholar
  202. Polívková, M., Hubáček, T., Staszek, M., Švorčík, V., & Siegel, J. (2017). Antimicrobial treatment of polymeric medical devices by silver nanomaterials and related technology. International Journal of Molecular Sciences, 18, 419.PubMedCentralCrossRefPubMedGoogle Scholar
  203. Prabhakar, P. K., Raj, S., Anuradha, P., Sawant, S. N., & Doble, M. (2011). Biocompatibility studies on polyaniline and polyaniline–silver nanoparticle coated polyurethane composite. Colloids and Surfaces. B, Biointerfaces, 86, 146–153.PubMedCrossRefGoogle Scholar
  204. Pugazhendhi, A., Prabakar, D., Jacob, J. M., Karuppusamy, I., & Saratale, R. G. (2018). Synthesis and characterization of silver nanoparticles using Gelidium amansii and its antimicrobial property against various pathogenic bacteria. Microbial Pathogenesis, 114, 41–45.PubMedCrossRefGoogle Scholar
  205. Rai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27, 76–83.PubMedCrossRefGoogle Scholar
  206. Rajasekaran, E., Jency, S., & Panneerselvam, K. (2011). Carbon profile of commercially important sericin proteins of silkworm, bombyx mori. Journal of Advanced Bioinformatics Applications and Research ISSN, 2, 173–176.Google Scholar
  207. Roosjen, A., van der Mei, H. C., Busscher, H. J., & Norde, W. (2004). Microbial adhesion to poly (ethylene oxide) brushes: Influence of polymer chain length and temperature. Langmuir, 20, 10949–10955.PubMedCrossRefGoogle Scholar
  208. Sadu, R. B., Chen, D. H., Kucknoor, A. S., Guo, Z., & Gomes, A. J. (2014). Silver-doped TiO 2/polyurethane nanocomposites for antibacterial textile coating. BioNanoScience, 4, 136–148.CrossRefGoogle Scholar
  209. Saez, S., Fasciani, C., Stamplecoskie, K. G., Gagnon, L. B.-P., Mah, T.-F., Marin, M. L., et al. (2015). Photochemical synthesis of biocompatible and antibacterial silver nanoparticles embedded within polyurethane polymers. Photochemical and Photobiological Sciences, 14, 661–664.PubMedCrossRefGoogle Scholar
  210. Salwiczek, M., Qu, Y., Gardiner, J., Strugnell, R. A., Lithgow, T., McLean, K. M., et al. (2014). Emerging rules for effective antimicrobial coatings. Trends in Biotechnology, 32, 82–90.PubMedCrossRefGoogle Scholar
  211. Samuel, U., & Guggenbichler, J. (2004). Prevention of catheter-related infections: The potential of a new nano-silver impregnated catheter. International Journal of Antimicrobial Agents, 23, 75–78.CrossRefGoogle Scholar
  212. Sanyasi, S., Majhi, R. K., Kumar, S., Mishra, M., Ghosh, A., Suar, M., et al. (2016). Polysaccharide-capped silver nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells. Scientific Reports, 6, 24929.PubMedPubMedCentralCrossRefGoogle Scholar
  213. Sardella, E., Favia, P., Gristina, R., Nardulli, M., & d’Agostino, R. (2006). Plasma-aided micro-and nanopatterning processes for biomedical applications. Plasma Processes and Polymers, 3, 456–469.CrossRefGoogle Scholar
  214. Sawant, S. N., Selvaraj, V., Prabhawathi, V., & Doble, M. (2013). Antibiofilm properties of silver and gold incorporated PU, PCLm, PC and PMMA nanocomposites under two shear conditions. PLoS One, 8, e63311.PubMedPubMedCentralCrossRefGoogle Scholar
  215. Seshadri, D. T., & Bhat, N. V. (2005). Use of polyaniline as an antimicrobial agent in textiles. Indian Journal of Fibre and Textile Research, 30, 204–206.Google Scholar
  216. Shameli, K., Ahmad, M. B., Yunus, W. M. Z. W., Ibrahim, N. A., Rahman, R. A., Jokar, M., et al. (2010). Silver/poly (lactic acid) nanocomposites: Preparation, characterization, and antibacterial activity. International Journal of Nanomedicine, 5, 573.PubMedPubMedCentralCrossRefGoogle Scholar
  217. Shantiaee, Y., Dianat, S. O., Mohammad Khani, H., & Akbarzadeh Baghban, A. (2011). Cytotoxicity comparison of nanosilver coated gutta-percha with Guttaflow and normal gutta-percha on L929 fibroblast with MTT assay. Shahid Beheshti University Dental Journal, 29, 62–68.Google Scholar
  218. Shi, Z., Zhou, H., Qing, X., Dai, T., & Lu, Y. (2012). Facile fabrication and characterization of poly (tetrafluoroethylene)@ polypyrrole/nano-silver composite membranes with conducting and antibacterial property. Applied Surface Science, 258, 6359–6365.CrossRefGoogle Scholar
  219. Shukla, R., Nune, S. K., Chanda, N., Katti, K., Mekapothula, S., Kulkarni, R. R., et al. (2008). Soybeans as a phytochemical reservoir for the production and stabilization of biocompatible gold nanoparticles. Small, 4, 1425–1436.PubMedCrossRefGoogle Scholar
  220. Shukla, R., Chanda, N., Zambre, A., Upendran, A., Katti, K., Kulkarni, R. R., et al. (2012). Laminin receptor specific therapeutic gold nanoparticles (198AuNP-EGCg) show efficacy in treating prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 109, 12426–12431.PubMedPubMedCentralCrossRefGoogle Scholar
  221. Siddiqui, N., Bhardwaj, A., Hada, R., Yadav, V. S., & Goyal, D. (2018). Synthesis, characterization and antimicrobial study of poly (methyl methacrylate)/Ag nanocomposites. Vacuum, 153, 6–11.CrossRefGoogle Scholar
  222. Silvestry-Rodriguez, N., Sicairos-Ruelas, E. E., Gerba, C. P., & Bright, K. R. (2007). Silver as a disinfectant. Reviews of environmental contamination and toxicology (pp. 23–45). New York: Springer.CrossRefGoogle Scholar
  223. Smith, R. S., Zhang, Z., Bouchard, M., Li, J., Lapp, H. S., Brotske, G. R., et al. (2012). Vascular catheters with a nonleaching poly-sulfobetaine surface modification reduce thrombus formation and microbial attachment. Science Translational Medicine, 4, 153ra132–153ra132.PubMedGoogle Scholar
  224. Smolinske, S. C. (1992). CRC handbook of food, drug, and cosmetic excipients. Boca Raton: CRC press.Google Scholar
  225. Son, H. Y., Ryu, J. H., Lee, H., & Nam, Y. S. (2013). Silver-polydopamine hybrid coatings of electrospun poly (vinyl alcohol) nanofibers. Macromolecular Materials and Engineering, 298, 547–554.CrossRefGoogle Scholar
  226. Sondi, I., & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for gram-negative bacteria. Journal of Colloid and Interface Science, 275, 177–182.PubMedCrossRefGoogle Scholar
  227. Sotiriou, G. A., & Pratsinis, S. E. (2010). Antibacterial activity of nanosilver ions and particles. Environmental Science and Technology, 44, 5649–5654.PubMedCrossRefGoogle Scholar
  228. Sousa, C., Teixeira, P., & Oliveira, R. (2009). Influence of surface properties on the adhesion of Staphylococcus epidermidis to acrylic and silicone. International Journal of Biomaterials, 2009, 718017.PubMedPubMedCentralCrossRefGoogle Scholar
  229. Stejskal, J., Sapurina, I., & Trchová, M. (2010). Polyaniline nanostructures and the role of aniline oligomers in their formation. Progress in Polymer Science, 35, 1420–1481.CrossRefGoogle Scholar
  230. Sun, L., Singh, A. K., Vig, K., Pillai, S. R., & Singh, S. R. (2008a). Silver nanoparticles inhibit replication of respiratory syncytial virus. Journal of Biomedical Nanotechnology, 4, 149–158.Google Scholar
  231. Sun, B., Ranganathan, B., & Feng, S.-S. (2008b). Multifunctional poly (D, L-lactide-co-glycolide)/montmorillonite (PLGA/MMT) nanoparticles decorated by Trastuzumab for targeted chemotherapy of breast cancer. Biomaterials, 29, 475–486.PubMedCrossRefGoogle Scholar
  232. Sundrarajan, M., & Rukmani, A. (2013). Durable antibacterial finishing on cotton by impregnation of limonene microcapsules. Advance Chemistry Letters, 1, 40–43.CrossRefGoogle Scholar
  233. Sung, J. H., Ji, J. H., Yoon, J. U., Kim, D. S., Song, M. Y., Jeong, J., et al. (2008). Lung function changes in Sprague-Dawley rats after prolonged inhalation exposure to silver nanoparticles. Inhalation Toxicology, 20, 567–574.PubMedCrossRefGoogle Scholar
  234. Sussman, E. M., Casey, B. J., Dutta, D., & Dair, B. J. (2015). Different cytotoxicity responses to antimicrobial nanosilver coatings when comparing extract-based and direct-contact assays. Journal of Applied Toxicology, 35, 631–639.PubMedCrossRefGoogle Scholar
  235. Tanaka, M., & Mochizuki, A. (2010). Clarification of the blood compatibility mechanism by controlling the water structure at the blood–poly (meth) acrylate interface. Journal of Biomaterials Science. Polymer Edition, 21, 1849–1863.PubMedCrossRefGoogle Scholar
  236. Tang, C., Sun, W., Lu, J., & Yan, W. (2014). Role of the anions in the hydrothermally formed silver nanowires and their antibacterial property. Journal of Colloid and Interface Science, 416, 86–94.PubMedCrossRefGoogle Scholar
  237. Thallinger, B., Prasetyo, E. N., Nyanhongo, G. S., & Guebitz, G. M. (2013). Antimicrobial enzymes: An emerging strategy to fight microbes and microbial biofilms. Biotechnology Journal, 8, 97–109.PubMedCrossRefGoogle Scholar
  238. Thirumurugan, G., Shaheedha, S., & Dhanaraju, M. (2009). In vitro evaluation of antibacterial activity of silver nanoparticles synthesised by using Phytophthora infestans. International Journal of ChemTech Research, 1, 714–716.Google Scholar
  239. Thorsteinsson, T., Loftsson, T., & Masson, M. (2003). Soft antibacterial agents. Current Medicinal Chemistry, 10, 1129–1136.PubMedCrossRefGoogle Scholar
  240. Tran, N., Kelley, M. N., Tran, P. A., Garcia, D. R., Jarrell, J. D., Hayda, R. A., et al. (2015). Silver doped titanium oxide–PDMS hybrid coating inhibits staphylococcus aureus and Staphylococcus epidermidis growth on PEEK. Materials Science and Engineering C, Materials for Biological Applications, 49, 201–209.PubMedCrossRefGoogle Scholar
  241. Trefry, J. C., & Wooley, D. P. (2012). Rapid assessment of antiviral activity and cytotoxicity of silver nanoparticles using a novel application of the tetrazolium-based colorimetric assay. Journal of Virological Methods, 183, 19–24.PubMedCrossRefGoogle Scholar
  242. Triandafillu, K., Balazs, D., Aronsson, B.-O., Descouts, P., Quoc, P. T., Van Delden, C., et al. (2003). Adhesion of Pseudomonas aeruginosa strains to untreated and oxygen-plasma treated poly(vinyl chloride) (PVC) from endotracheal intubation devices. Biomaterials, 24, 1507–1518.PubMedCrossRefGoogle Scholar
  243. Uttayarat, P., Perets, A., Li, M., Pimton, P., Stachelek, S. J., Alferiev, I., et al. (2010). Micropatterning of three-dimensional electrospun polyurethane vascular grafts. Acta Biomaterialia, 6, 4229–4237.PubMedCrossRefGoogle Scholar
  244. Vishwasrao, C., Momin, B., & Ananthanarayan, L. (2018). Green synthesis of silver nanoparticles using sapota fruit waste and evaluation of their antimicrobial activity. Waste and Biomass Valorization, 1–11.Google Scholar
  245. Von Eiff, C., Jansen, B., Kohnen, W., & Becker, K. (2005). Infections associated with medical devices. Drugs, 65, 179–214.CrossRefGoogle Scholar
  246. Wang, Y., Challa, P., Epstein, D. L., & Yuan, F. (2004). Controlled release of ethacrynic acid from poly (lactide-co-glycolide) films for glaucoma treatment. Biomaterials, 25, 4279–4285.PubMedCrossRefGoogle Scholar
  247. Wang, S., Lawson, R., Ray, P. C., & Yu, H. (2011). Toxic effects of gold nanoparticles on Salmonella typhimurium bacteria. Toxicology and Industrial Health, 27, 547–554.PubMedPubMedCentralCrossRefGoogle Scholar
  248. Wang, B.-L., Liu, X.-S., Ji, Y., Ren, K.-F., & Ji, J. (2012). Fast and long-acting antibacterial properties of chitosan-Ag/polyvinylpyrrolidone nanocomposite films. Carbohydrate Polymers, 90, 8–15.PubMedCrossRefGoogle Scholar
  249. Wang, R., Neoh, K. G., Kang, E. T., Tambyah, P. A., & Chiong, E. (2015a). Antifouling coating with controllable and sustained silver release for long-term inhibition of infection and encrustation in urinary catheters. Journal of Biomedical Materials Research Part B Applied Biomaterials, 103, 519–528.CrossRefGoogle Scholar
  250. Wang, Y., Guo, X., Pan, R., Han, D., Chen, T., Geng, Z., et al. (2015b). Electrodeposition of chitosan/gelatin/nanosilver: A new method for constructing biopolymer/nanoparticle composite films with conductivity and antibacterial activity. Materials Science and Engineering C, Materials for Biological Applications, 53, 222–228.PubMedCrossRefGoogle Scholar
  251. Wattanodorn, Y., Jenkan, R., Atorngitjawat, P., & Wirasate, S. (2014). Antibacterial anionic waterborne polyurethanes/Ag nanocomposites with enhanced mechanical properties. Polymer Testing, 40, 163–169.CrossRefGoogle Scholar
  252. Wypij, M., Czarnecka, J., Świecimska, M., Dahm, H., Rai, M., & Golinska, P. (2018). Synthesis, characterization and evaluation of antimicrobial and cytotoxic activities of biogenic silver nanoparticles synthesized from Streptomyces xinghaiensis OF1 strain. World Journal of Microbiology and Biotechnology, 34, 23.PubMedCrossRefPubMedCentralGoogle Scholar
  253. Xu, X., Yang, Q., Wang, Y., Yu, H., Chen, X., & Jing, X. (2006). Biodegradable electrospun poly (L-lactide) fibers containing antibacterial silver nanoparticles. European Polymer Journal, 42, 2081–2087.CrossRefGoogle Scholar
  254. Xu, H. H., Weir, M. D., & Simon, C. G. (2008). Injectable and strong nano-apatite scaffolds for cell/growth factor delivery and bone regeneration. Dental Materials, 24, 1212–1222.PubMedPubMedCentralCrossRefGoogle Scholar
  255. Xu, D., Su, Y., Zhao, L., Meng, F., Liu, C., Guan, Y., et al. (2017). Antibacterial and antifouling properties of a polyurethane surface modified with perfluoroalkyl and silver nanoparticles. Journal of Biomedical Materials Research. Part A, 105, 531–538.PubMedCrossRefPubMedCentralGoogle Scholar
  256. Yan, Y., Zhang, X., Li, C., Huang, Y., Ding, Q., & Pang, X. (2015). Preparation and characterization of chitosan-silver/hydroxyapatite composite coatings onTiO2 nanotube for biomedical applications. Applied Surface Science, 332, 62–69.CrossRefGoogle Scholar
  257. Yang, X. X., Li, C. M., & Huang, C. Z. (2016). Curcumin modified silver nanoparticles for highly efficient inhibition of respiratory syncytial virus infection. Nanoscale, 8, 3040–3048.PubMedCrossRefPubMedCentralGoogle Scholar
  258. Yilgör, İ., & McGrath, J. E. (1988). Polysiloxane containing copolymers: A survey of recent developments. Polysiloxane copolymers/anionic polymerization (pp. 1–86). Berlin: Springer.CrossRefGoogle Scholar
  259. Yoksan, R., & Chirachanchai, S. (2010). Silver nanoparticle-loaded chitosan–starch based films: Fabrication and evaluation of tensile, barrier and antimicrobial properties. Materials Science and Engineering C, Materials for Biological Applications, 30, 891–897.CrossRefGoogle Scholar
  260. Yu, W.-Z., Zhang, Y., Liu, X., Xiang, Y., Li, Z., & Wu, S. (2018). Synergistic antibacterial activity of multi components in lysozyme/chitosan/silver/hydroxyapatite hybrid coating. Materials and Design, 139, 351–362.CrossRefGoogle Scholar
  261. Yuan, W., Fu, J., Su, K., & Ji, J. (2010). Self-assembled chitosan/heparin multilayer film as a novel template for in situ synthesis of silver nanoparticles. Colloids and Surfaces. B, Biointerfaces, 76, 549–555.PubMedCrossRefPubMedCentralGoogle Scholar
  262. Zahran, M., Ahmed, H. B., & El-Rafie, M. (2014). Surface modification of cotton fabrics for antibacterial application by coating with AgNPs–alginate composite. Carbohydrate Polymers, 108, 145–152.PubMedCrossRefPubMedCentralGoogle Scholar
  263. Zaporojtchenko, V., Podschun, R., Schürmann, U., Kulkarni, A., & Faupel, F. (2006). Physico-chemical and antimicrobial properties of co-sputtered Ag–Au/PTFE nanocomposite coatings. Nanotechnology, 17, 4904.CrossRefGoogle Scholar
  264. Zezin, A. B., Rogacheva, V. B., Feldman, V. I., Afanasiev, P., & Zezin, A. A. (2010). From triple interpolyelectrolyte-metal complexes to polymer-metal nanocomposites. Advances in Colloid and Interface, 158, 84–93.CrossRefGoogle Scholar
  265. Zhang, X., Li, Z., Yuan, X., Cui, Z., Bao, H., Li, X., et al. (2013). Cytotoxicity and antibacterial property of titanium alloy coated with silver nanoparticle-containing polyelectrolyte multilayer. Materials Science and Engineering C, Materials for Biological Applications, 33, 2816–2820.PubMedCrossRefGoogle Scholar
  266. Zhang, B. G., Myers, D. E., Wallace, G. G., Brandt, M., & Choong, P. F. (2014). Bioactive coatings for orthopaedic implants – recent trends in development of implant coatings. International Journal of Molecular Sciences, 15, 11878–11921.PubMedPubMedCentralCrossRefGoogle Scholar
  267. Zhang, X., Zhu, M., Wang, W., & Yu, D. (2018). Silver/waterborne polyurethane-acrylate’s antibacterial coating on cotton fabric based on click reaction via ultraviolet radiation. Progress in Organic Coating, 120, 10–18.CrossRefGoogle Scholar
  268. Zhao, B., & Brittain, W. J. (2000). Polymer brushes: Surface-immobilized macromolecules. Progress in Polymer Science, 25, 677–710.CrossRefGoogle Scholar
  269. Zhao, Q., Liu, Y., & Wang, C. (2005). Development and evaluation of electroless Ag-PTFE composite coatings with anti-microbial and anti-corrosion properties. Applied Surface Science, 252, 1620–1627.CrossRefGoogle Scholar
  270. Zhao, C., Deng, B., Chen, G., Lei, B., Hua, H., Peng, H., et al. (2016). Large-area chemical vapor deposition-grown monolayer graphene-wrapped silver nanowires for broad-spectrum and robust antimicrobial coating. Nano Research, 9, 963–973.CrossRefGoogle Scholar
  271. Zheng, Y., Cai, C., Zhang, F., Monty, J., Linhardt, R. J., & Simmons, T. J. (2016). Can natural fibers be a silver bullet? Antibacterial cellulose fibers through the covalent bonding of silver nanoparticles to electrospun fibers. Nanotechnology, 27, 055102.PubMedCrossRefPubMedCentralGoogle Scholar
  272. Zhou, N.-1., Liu, Y., Li, L., Meng, N., Huang, Y.-X., Zhang, J., et al. (2007). A new nanocomposite biomedical material of polymer/clay–Cts–Ag nanocomposites. Current Applied Physics, 7, e58–e62.CrossRefGoogle Scholar
  273. Zhou, X., Zhang, T., Guo, D., & Gu, N. (2014a). A facile preparation of poly (ethylene oxide)-modified medical polyurethane to improve hemocompatibility. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 441, 34–42.CrossRefGoogle Scholar
  274. Zhou, B., Li, Y., Deng, H., Hu, Y., & Li, B. (2014b). Antibacterial multilayer films fabricated by layer-by-layer immobilizing lysozyme and gold nanoparticles on nanofibers. Colloids and Surfaces. B, Biointerfaces, 116, 432–438.PubMedCrossRefGoogle Scholar
  275. Zou, X., Deng, P., Zhou, C., Hou, Y., Chen, R., Liang, F., et al. (2017). Preparation of a novel antibacterial chitosan-poly (ethylene glycol) cryogel/silver nanoparticles composites. Journal of Biomaterials Science, Polymer Edition, 28, 1324–1337.CrossRefGoogle Scholar
  276. Zuo, Y., Yang, F., Wolke, J. G., Li, Y., & Jansen, J. A. (2010). Incorporation of biodegradable electrospun fibers into calcium phosphate cement for bone regeneration. Acta Biomaterialia, 6, 1238–1247.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of BiotechnologyThapar Institute of Engineering and TechnologyPatialaIndia
  2. 2.TIFAC-CORE in Agro & Industrial BiotechnologyThapar Institute of Engineering and TechnologyPatialaIndia
  3. 3.Nanobiotechnology Research Laboratory and Centre for Advanced Materials & Industrial Chemistry, School of ScienceRMIT UniversityMelbourneAustralia

Personalised recommendations