Advertisement

Nanomaterials-Based siRNA Delivery: Routes of Administration, Hurdles and Role of Nanocarriers

  • Nitin Gupta
  • Divya Bharti Rai
  • Ashok Kumar Jangid
  • Deep Pooja
  • Hitesh KulhariEmail author
Chapter

Abstract

Ribonucleic acid interference (RNAi) is a potential alternative therapeutic approach to knock down the overexpression of genes in several disorders especially cancers with underlying genetic dysfunctions. For silencing of specific genes involved in cell cycle, small/short interfering ribonucleic acids (siRNAs) are being used clinically. The siRNA-based RNAi is more efficient, specific and safe antisense technology than other RNAi approaches. The route of siRNA administration for siRNA therapy depends on the targeted site. However, certain hurdles like poor stability of siRNA, saturation, off-target effect, immunogenicity, anatomical barriers and non-targeted delivery restrict the successful siRNA therapy. Thus, advancement of an effective, secure, and long-term delivery system is prerequisite to the medical utilization of siRNA. Polycationic nanocarriers mediated targeted delivery system is an ideal system to remove these hurdles and to increase the blood retention time and rate of intracellular permeability. In this chapter, we will mainly discuss the different biocompatible, biodegradable, non-toxic (organic, inorganic and hybrid) nanocarriers that encapsulate and shield the siRNA from the different harsh environment and provides the increased systemic siRNA delivery.

Keywords

Naked siRNA Overexpression of genes Hurdles/barriers Systemic delivery Cationic nanocarriers Targeted delivery 

References

  1. Aagaard, L., & Rossi, J. J. (2007). RNAi therapeutics: Principles, prospects and challenges. Advanced Drug Delivery Reviews, 59(2–3), 75–86.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ahmed, Z., Kalinski, H., Berry, M., Almasieh, M., Ashush, H., Slager, N., Brafman, A., Spivak, I., Prasad, N., Mett, I., et al. (2011). Ocular neuroprotection by SiRNA targeting caspase-2. Cell Death & Disease, 2, e173.CrossRefGoogle Scholar
  3. Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., Joo, S. W., Zarghami, N., Hanifehpour, Y., Samiei, M., Kouhi, M., & Nejati-Koshki, K. (2013). Liposome: Classification, preparation, and applications. Nanoscale Research Letters, 8(1), 1–8.CrossRefGoogle Scholar
  4. Akhtar, S. (2009). Oral delivery of SiRNA and antisense oligonucleotides. Journal of Drug Targeting, 17(7), 491–495.PubMedCrossRefGoogle Scholar
  5. Akinc, A., Querbes, W., De, S., Qin, J., Frank-Kamenetsky, M., Jayaprakash, K. N., Jayaraman, M., Rajeev, K. G., Cantley, W. L., Dorkin, J. R., et al. (2010). Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Molecular Therapy, 18(7), 1357–1364.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Aldawsari, M., Babu, R. J., & Chougule, M. B. (2015). Progress in topical SiRNA delivery approaches for skin disorders. Current Pharmaceutical Design, 21, 4594–4605.PubMedCrossRefGoogle Scholar
  7. Almeida, R., & Allshire, R. C. (2005). RNA silencing and genome regulation. Trends in Cell Biology, 15(5), 251–258.PubMedCrossRefGoogle Scholar
  8. Amarzguioui, M., & Prydz, H. (2004). An algorithm for selection of functional SiRNA sequences. Biochemical and Biophysical Research Communications, 316(4), 1050–1058.PubMedCrossRefGoogle Scholar
  9. Bae, S., Kim, H., Lee, Y., Xu, X., Park, J. S., Zheng, Y., Balakrishnan, J., Lei, T., Ri Kim, H., Song, Y., II, et al. (2010). Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 5(8), 574–578.PubMedCrossRefGoogle Scholar
  10. Bartelmess, J., Quinn, S. J., & Giordani, S. (2015). Carbon nanomaterials: Multi-functional agents for biomedical fluorescence and Raman imaging. Chemical Society Reviews, 44(14), 4672–4698.PubMedCrossRefGoogle Scholar
  11. Benjaminsen, R. V., Mattebjerg, M. A., Henriksen, J. R., Moghimi, S. M., & Andresen, T. L. (2013). The possible “proton Sponge” effect of polyethylenimine (PEI) does not include change in lysosomal PH. Molecular Therapy, 21(1), 149–157.PubMedCrossRefGoogle Scholar
  12. Berezikov, E. (2011). Evolution of microRNA diversity and regulation in animals. Nature Reviews. Genetics, 12(12), 846–860.PubMedCrossRefGoogle Scholar
  13. Bertrand, J. R., Pottier, M., Vekris, A., Opolon, P., Maksimenko, A., & Malvy, C. (2002). Comparison of antisense oligonucleotides and SiRNAs in cell culture and in vivo. Biochemical and Biophysical Research Communications, 296(4), 1000–1004.PubMedCrossRefGoogle Scholar
  14. Birmingham, A., Anderson, E. M., Reynolds, A., Ilsley-Tyree, D., Leake, D., Fedorov, Y., Baskerville, S., Maksimova, E., Robinson, K., Karpilow, J., et al. (2006). 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nature Methods, 3(3), 199–204.PubMedCrossRefGoogle Scholar
  15. Boado, R. J. (2005). RNA interference and nonviral targeted gene therapy of experimental brain cancer. NeuroRx, 2(1), 139–150.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bodor, N., & Buchwald, P. (2005). Ophthalmic drug design based on the metabolic activity of the eye: Soft drugs and chemical delivery systems. The AAPS Journal, 7(4), E820–E833.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bonnet, M. E., Erbacher, P., & Bolcato-Bellemin, A. L. (2008). Systemic delivery of DNA or SiRNA mediated by linear polyethylenimine (L-PEI) does not induce an inflammatory response. Pharmaceutical Research, 25(12), 2972–2982.PubMedCrossRefGoogle Scholar
  18. Campochiaro, P. A. (2006). Potential applications for RNAi to probe pathogenesis and develop new treatments for ocular disorders. Gene Therapy, 13(6), 559–562.PubMedCrossRefGoogle Scholar
  19. Cao, N., Cheng, D., Zou, S., Ai, H., Gao, J., & Shuai, X. (2011). The synergistic effect of hierarchical assemblies of SiRNA and chemotherapeutic drugs co-delivered into hepatic cancer cells. Biomaterials, 32(8), 2222–2232.PubMedCrossRefGoogle Scholar
  20. Carthew, R. W., & Sontheimer, E. J. (2009). Origins and mechanisms of MiRNAs and SiRNAs. Cell, 136(4), 642–655.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cazzin, C., & Ring, C. J. A. (2010). Recent advances in the manipulation of murine gene expression and its utility for the study of human neurological disease. Biochimica et Biophysica Acta, Molecular Basis of Disease, 1802(10), 796–807.CrossRefGoogle Scholar
  22. Chalk, A. M., Wahlestedt, C., & Sonnhammer, E. L. L. (2004). Improved and automated prediction of effective SiRNA. Biochemical and Biophysical Research Communications, 319(1), 264–274.PubMedCrossRefGoogle Scholar
  23. Chang, H., Zhang, Y., Li, L., & Cheng, Y. (2015). Efficient delivery of small interfering RNA into cancer cells using dodecylated dendrimers. Journal of Materials Chemistry B, 3(41), 8197–8202.CrossRefGoogle Scholar
  24. Chen, A. M., Zhang, M., Wei, D., Stueber, D., Taratula, O., Minko, T., & He, H. (2009). Co-delivery of doxorubicin and Bcl-2 SiRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells. Small, 5(23), 2673–2677.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chiu, Y. L., & Rana, T. M. (2003). SiRNA function in RNAi: A chemical modification analysis. RNA, 9(9), 1034–1048.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Chougule, M. B. (2012). Current scene and prospective potentials of SiRNA in cancer therapy. Journal of Pharmacogenomics Pharmacoproteomics, 03(05), 3–5.CrossRefGoogle Scholar
  27. Clark, S. J. (2007). Action at a distance: Epigenetic silencing of large chromosomal regions in carcinogenesis. Human Molecular Genetics, 16(R1), R88–R95.PubMedCrossRefGoogle Scholar
  28. Conley, S. M., & Naash, M. I. (2010). Nanoparticles for retinal gene therapy. Progress in Retinal and Eye Research, 29(5), 376–397.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Cun, D., Krohn, D., Jonas, M., Bunker, M., Whiteside, P., Scurr, D., Foged, C., & Mørck, H. (2011). European journal of pharmaceutics and biopharmaceutics high loading efficiency and sustained release of SiRNA encapsulated in PLGA nanoparticles: Quality by design optimization and characterization. European Journal of Pharmaceutics and Biopharmaceutics, 77(1), 26–35.PubMedCrossRefGoogle Scholar
  30. Czauderna, F. (2003). Structural variations and stabilizing modifications of synthetic SiRNAs in mammalian cells. Nucleic Acids Research, 31(11), 2705–2716.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Czech, M. P., Aouadi, M., & Tesz, G. J. (2011). RNAi-based therapeutic strategies for metabolic disease 3121. Nature Reviews. Endocrinology, 7, 1759–5037. (Electronic)), 473–484.CrossRefGoogle Scholar
  32. Dana, H., Chalbatani, G. M., Mahmoodzadeh, H., Karimloo, R., Rezaiean, O., Moradzadeh, A., Mehmandoost, N., Moazzen, F., Mazraeh, A., Marmari, V., et al. (2017). Molecular mechanisms and biological functions of SiRNA. International Journal of Biomedical Sciences, 13(2), 48–57.Google Scholar
  33. Davis, M. E., Zuckerman, J. E., Choi, C. H. J., Seligson, D., Tolcher, A., Alabi, C. A., Yen, Y., Heidel, J. D., & Ribas, A. (2010). Evidence of RNAi in humans from systemically administered SiRNA via targeted nanoparticles. Nature, 464(7291), 1067–1070.PubMedPubMedCentralCrossRefGoogle Scholar
  34. de la Fuente, M., Raviña, M., Paolicelli, P., Sanchez, A., Seijo, B., & Alonso, M. J. (2010). Chitosan-based nanostructures: A delivery platform for ocular therapeutics. Advanced Drug Delivery Reviews, 62(1), 100–117.PubMedCrossRefPubMedCentralGoogle Scholar
  35. Deng, H., Jankovic, J., Guo, Y., Xie, W., & Le, W. (2005). Small interfering RNA targeting the PINK1 induces apoptosis in dopaminergic cells SH-SY5Y. Biochemical and Biophysical Research Communications, 337(4), 1133–1138.PubMedCrossRefPubMedCentralGoogle Scholar
  36. des Rieux, A., Fievez, V., Garinot, M., Schneider, Y.-J. J., & Préat, V. (2006). Nanoparticles as potential oral delivery systems of proteins and vaccines: A mechanistic approach. Journal of Controlled Release, 116(1), 1–27.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Dorn, G., Patel, S., Wotherspoon, G., Hemmings-Mieszczak, M., Barclay, J., Natt, F. J. C., Martin, P., Bevan, S., Fox, A., Ganju, P., et al. (2004). SiRNA relieves chronic neuropathic pain. Nucleic Acids Research, 32(5), e49–e49.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Draz, M. S., Fang, B. A., Zhang, P., Hu, Z., Gu, S., Weng, K. C., Gray, J. W., & Chen, F. F. (2014). Nanoparticle-mediated systemic delivery of SiRNA for treatment of cancers and viral infections. Theranostics, 4(9), 872–892.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Drummond, D. C., Noble, C. O., Guo, Z., Hayes, M. E., Connolly-Ingram, C., Gabriel, B. S., Hann, B., Liu, B., Park, J. W., Hong, K., et al. (2010). Development of a highly stable and targetable nanoliposomal formulation of topotecan. Journal of Controlled Release, 141(1), 13–21.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Duan, L., Yan, Y., Liu, J., Wang, B., Li, P., Hu, Q., & Chen, W. (2016). Target delivery of small interfering RNAs with vitamin E-coupled nanoparticles for treating hepatitis C. Scientific Reports, 6, 24867.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Durcan, N., Murphy, C., & Cryan, S. A. (2008). Inhalable SiRNA: Potential as a therapeutic agent in the lungs. Molecular Pharmaceutics, 5(4), 559–566.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Euliss, L. E., DuPont, J. A., Gratton, S., & DeSimone, J. (2006). Imparting size, shape, and composition control of materials for nanomedicine. Chemical Society Reviews, 35(11), 1095.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis Elegans. Nature, 391(6669), 806–811.CrossRefGoogle Scholar
  44. Gavrilov, K., & Saltzman, W. M. (2012). Therapeutic SiRNA: Principles, challenges, and strategies. The Yale Journal of Biology and Medicine, 85(2), 187–200.PubMedPubMedCentralGoogle Scholar
  45. Gewirtz, A. M. (2007). On future’s doorstep: RNA interference and the pharmacopeia of tomorrow. The Journal of Clinical Investigation, 117(12), 3612–3614.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Gherardini, L., Bardi, G., Gennaro, M., & Pizzorusso, T. (2014). Novel SiRNA delivery strategy: A new “Strand” in CNS translational medicine? Cellular and Molecular Life Sciences, 71, 1–20.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Giljohann, D. A., Seferos, D. S., Prigodich, A. E., Patel, P. C., & Mirkin, C. A. (2009). Gene regulation with polyvalent SiRNA−nanoparticle conjugates. Journal of the American Chemical Society, 131(6), 2072–2073.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Gottesman, M. M. (2002). Mechanisms of cancer drug resistance. Annual Review of Medicine, 53(1), 615–627.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Griesenbach, U., Kitson, C., Garcia, S. E., Farley, R., Singh, C., Somerton, L., Painter, H., Smith, R. L., Gill, D. R., Hyde, S. C., et al. (2006). Inefficient cationic lipid-mediated SiRNA and antisense oligonucleotide transfer to airway epithelial cells in vivo. Respiratory Research, 7(1), 26.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Gu, J., Al-Bayati, K., & Ho, E. A. (2017). Development of antibody-modified chitosan nanoparticles for the targeted delivery of SiRNA across the blood-brain barrier as a strategy for inhibiting HIV replication in astrocytes. Drug Delivery and Translational Research, 7(4), 497–506.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Guo, P., Coban, O., Snead, N. M., Trebley, J., Hoeprich, S., Guo, S., & Shu, Y. (2010a). Engineering Rna for targeted Sirna delivery and medical application. Advanced Drug Delivery Reviews, 62(6), 650–666.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Guo, S., Huang, Y., Jiang, Q., Sun, Y., Deng, L., Liang, Z., Du, Q., Xing, J., Zhao, Y., Wang, P. C., et al. (2010b). Enhanced gene delivery and SiRNA silencing by gold nanoparticles coated with charge-reversal polyelectrolyte. ACS Nano, 4(9), 5505–5511.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Gutbier, B., Kube, S. M., Reppe, K., Santel, A., Lange, C., Kaufmann, J., Suttorp, N., & Witzenrath, M. (2010). RNAi-mediated suppression of constitutive pulmonary gene expression by small interfering RNA in mice. Pulmonary Pharmacology & Therapeutics, 23(4), 334–344.CrossRefGoogle Scholar
  54. Hammond, S. M., Bernstein, E., Beach, D., & Hannon, G. J. (2000). An RNA-directed nuclease mediates post-transcriptional gene silencing in drosophila cells. Nature, 404, 293.PubMedCrossRefPubMedCentralGoogle Scholar
  55. Han, H. D., Mangala, L. S., Lee, J. W., Shahzad, M. M. K., Kim, H. S., Shen, D., Nam, E. J., Mora, E. M., Stone, R. L., Lu, C., et al. (2010). Targeted gene silencing using RGD-labeled chitosan nanoparticles. Clinical Cancer Research, 16(15), 3910–3922.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Hansen, K. M., Ji, H. F., Wu, G., Datar, R., Cote, R., Majumdar, A., & Thundat, T. (2001). Cantilever-based optical deflection assay for discrimination of DNA single-nucleotide mismatches. Analytical Chemistry, 73(7), 1567–1571.PubMedCrossRefPubMedCentralGoogle Scholar
  57. Harper, S. Q., Staber, P. D., He, X., Eliason, S. L., Martins, I. H., Mao, Q., Yang, L., Kotin, R. M., Paulson, H. L., & Davidson, B. L. (2005). RNA interference improves motor and neuropathological abnormalities in a Huntington’s disease mouse model. Proceedings of the National Academy of Sciences, 102(16), 5820–5825.CrossRefGoogle Scholar
  58. Hatakeyama, H., Akita, H., Ito, E., Hayashi, Y., & Oishi, M. (2011). Biomaterials systemic delivery of SiRNA to tumors using a lipid nanoparticle containing a tumor-Specific cleavable PEG-lipid. Biomaterials, 32(18), 4306–4316.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Heale, B. S. E., Soifer, H. S., Bowers, C., & Rossi, J. J. (2005). SiRNA target site secondary structure predictions using local stable substructures. Nucleic Acids Research, 33(3), 1–10.CrossRefGoogle Scholar
  60. Huang, Y., Cheng, Q., Ji, J.-L., Zheng, S., Du, L., Meng, L., Wu, Y., Zhao, D., Wang, X., Lai, L., et al. (2016). Pharmacokinetic behaviors of intravenously administered SiRNA in glandular tissues. Theranostics, 6(10), 1528–1541.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Illum, L., & Davis, S. S. (1984). The organ uptake of intravenously administered colloidal particles can be altered using a non-ionic surfactant (Poloxamer 338). FEBS Letters, 167(1), 79–82.PubMedCrossRefPubMedCentralGoogle Scholar
  62. Inoue, M., Matsumoto, S., Saito, H., Tsujitani, S., & Ikeguchi, M. (2008). Intraperitoneal administration of a small interfering RNA targeting nuclear factor-kappa B with paclitaxel successfully prolongs the survival of xenograft model mice with peritoneal metastasis of gastric cancer. International Journal of Cancer, 123(11), 2696–2701.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Jagannath, A., & Wood, M. (2007). RNA interference based gene therapy for neurological disease. Briefings in Functional Genomics & Proteomics, 6(1), 40–49.CrossRefGoogle Scholar
  64. Jang, S. H., Wientjes, M. G., Lu, D., & Au, J. L. S. (2003). Drug delivery and transport to solid tumors. Pharmaceutical Research, 20(9), 1337–1350.PubMedCrossRefPubMedCentralGoogle Scholar
  65. Jiang, S., Eltoukhy, A. A., Love, K. T., Langer, R., & Anderson, D. G. (2013). Lipidoid-coated Iron oxide nanoparticles for efficient DNA and SiRNA delivery. Nano Letters, 13(3), 1059–1064.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Joo, J., Kwon, E. J., Kang, J., Skalak, M., Anglin, E. J., Mann, A. P., Ruoslahti, E., Bhatia, S. N., & Sailor, M. J. (2016). Porous silicon-graphene oxide core-shell nanoparticles for targeted delivery of SiRNA to the injured brain. Nanoscale Horizons, 1(5), 407–414.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Jung, C. R., Yoo, J., Ye, J. J., Kim, S., Chu, I. S., Young, I. Y., Jong, Y. C., & Im, D. S. (2006). Adenovirus-mediated transfer of SiRNA against PTTG1 inhibits liver cancer cell growth in vitro and in vivo. Hepatology, 43(5), 1042–1052.CrossRefGoogle Scholar
  68. Khatri, N. I., Rathi, M. N., Kolte, A. A., Kore, G. G., Lalan, M. S., Trehan, S., & Misra, A. R. (2012). Patents review in SiRNA delivery for pulmonary disorders. Recent Patents on Drug Delivery & Formulation, 6, 45–65.CrossRefGoogle Scholar
  69. Kim, N., Jiang, D., Jacobi, A. M., Lennox, K. A., Rose, S. D., Behlke, M. A., & Salem, A. K. (2012). Synthesis and characterization of mannosylated pegylated polyethylenimine as a carrier for SiRNA. International Journal of Pharmaceutics, 427(1), 123–133.PubMedCrossRefPubMedCentralGoogle Scholar
  70. Kulhari, H., Pooja, D., Singh, M. K., & Chauhan, A. S. (2015). Optimization of carboxylate-terminated poly(amidoamine) dendrimer-mediated cisplatin formulation. Drug Development and Industrial Pharmacy, 41(2), 232–238.PubMedCrossRefGoogle Scholar
  71. Cavallaro, G., Sardo, C., Scialabba, C., Licciardi, M., & Giammona, G. (2017). Smart inulin-based polycationic nanodevices for SiRNA delivery. Current Drug Delivery, 14(2), 224–230.Google Scholar
  72. Landen, C. N., Chavez-Reyes, A., Bucana, C., Schmandt, R., Deavers, M. T., Lopez-Berestein, G., & Sood, A. K. (2005). Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Research, 65(15), 6910 LP–6916918.CrossRefGoogle Scholar
  73. Lee, S. H., Bae, K. H., Kim, S. H., Lee, K. R., & Park, T. G. (2008). Amine-functionalized gold nanoparticles as non-cytotoxic and efficient intracellular SiRNA delivery carriers. International Journal of Pharmaceutics, 364(1), 94–101.PubMedCrossRefGoogle Scholar
  74. Lee, S. J., Kim, M. J., Kwon, I. C., & Roberts, T. M. (2016). Delivery strategies and potential targets for SiRNA in major cancer types. Advanced Drug Delivery Reviews, 104, 2–15.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Li, M., Zhang, W., Wang, B., Gao, Y., Song, Z., & Zheng, Q. C. (2016). Ligand-based targeted therapy: A novel strategy for hepatocellular carcinoma. International Journal of Nanomedicine, 11, 5645–5669.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Li, X., Sun, A. N., Liu, Y. J., Zhang, W. J., Pang, N., Cheng, S. X., & Qi, X. R. (2018). Amphiphilic dendrimer engineered nanocarrier systems for co-delivery of SiRNA and paclitaxel to matrix metalloproteinase-rich tumors for synergistic therapy. NPG Asia Materials, 10(4), 238–254.CrossRefGoogle Scholar
  77. Lian, S., Kang, Z., Wang, E., Jiang, M., Hu, C., & Xu, L. (2003). Convenient synthesis of single crystalline magnetic Fe3O4 nanorods. Solid State Communications, 127(9–10), 605–608.CrossRefGoogle Scholar
  78. Licciardi, M., Tang, Y., Billingham, N. C., Armes, S. P., & Lewis, A. L. (2005). Synthesis of novel folic acid-functionalized biocompatible block copolymers by atom transfer radical polymerization for gene delivery and encapsulation of hydrophobic drugs. Biomacromolecules, 6(2), 1085–1096.PubMedCrossRefGoogle Scholar
  79. Lin, P. J. C., Tam, Y. Y. C., Hafez, I., Sandhu, A., Chen, S., Ciufolini, M. A., Nabi, I. R., & Cullis, P. R. (2013). Influence of cationic lipid composition on uptake and intracellular processing of lipid nanoparticle formulations of SiRNA. Nanomedicine: Nanotechnology, Biology and Medicine, 9(2), 233–246.CrossRefGoogle Scholar
  80. Liu, J., Carmell, M. A., Rivas, F. V., Marsden, C. G., Thomson, J. M., Song, J. J., Hammond, S. M., Joshua-Tor, L., & Hannon, G. J. (2004). Argonaute2 is the catalytic engine of mammalian RNAi. Science (80-), 305(5689), 1437–1441.CrossRefGoogle Scholar
  81. Liu, X., Liu, C., Laurini, E., Posocco, P., Pricl, S., Qu, F., Rocchi, P., & Peng, L. (2012). Efficient delivery of sticky SiRNA and potent gene silencing in a prostate cancer model using a generation 5 triethanolamine-core PAMAM dendrimer. Molecular Pharmaceutics, 9(3), 470–481.PubMedCrossRefGoogle Scholar
  82. Lu, J. J., Langer, R., Chen, J. A., & Novel Mechanism, I. (2009). Involved in cationic lipid-mediated functional SiRNA delivery. Molecular Pharmaceutics, 6(3), 763–771.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Ma, J.-B. B., Yuan, Y.-R. R., Meister, G., Pei, Y., Tuschl, T., & Patel, D. J. (2005). Structural basis for 5′ -end-specific recognition of guide RNA by the A. Fulgidus piwi protein. Nature, 434(7033), 666–670.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Madison, K. C. (2003). Barrier function of the skin: “La raison d’Être” of the epidermis. The Journal of Investigative Dermatology, 121(2), 231–241.PubMedCrossRefGoogle Scholar
  85. Maeda, H. (2001). The enhanced permeability and retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting. Advances in Enzyme Regulation, 41(00), 189–207.PubMedCrossRefGoogle Scholar
  86. Malek, A., Czubayko, F., & Aigner, A. P. E. G. (2008). Grafting of polyethylenimine (PEI) exerts different effects on DNA transfection and SiRNA-induced gene targeting efficacy. Journal of Drug Targeting, 16(2), 124–139.PubMedCrossRefGoogle Scholar
  87. Malhotra, M., Tomaro-Duchesneau, C., Saha, S., & Prakash, S. (2013). Systemic SiRNA delivery via peptide-tagged polymeric nanoparticles, targeting PLK1 gene in a mouse xenograft model of colorectal cancer. International Journal of Biomaterials, 2013, 1–13.CrossRefGoogle Scholar
  88. Marques, J. T., & Williams, B. R. G. (2005). Activation of the mammalian immune system by SiRNAs. Nature Biotechnology, 23(11), 1399–1405.PubMedCrossRefGoogle Scholar
  89. Martinez, J., Patkaniowska, A., Urlaub, H., Lührmann, R., & Tuschl, T. (2002). Single-stranded antisense SiRNAs guide target RNA cleavage in RNAi. Cell, 110(5), 563–574.PubMedCrossRefGoogle Scholar
  90. Meister, G., Landthaler, M., Patkaniowska, A., Dorsett, Y., Teng, G., & Tuschl, T. (2004). Human Argonaute2 mediates RNA cleavage targeted by MiRNAs and SiRNAs. Molecular Cell, 15(2), 185–197.PubMedCrossRefGoogle Scholar
  91. Mekaru, H., Lu, J., & Tamanoi, F. (2015). Development of mesoporous silica-based nanoparticles with controlled release capability for cancer therapy. Advanced Drug Delivery Reviews, 95, 40–49.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Meng, H., Liong, M., Xia, T., Li, Z., Ji, Z., Zink, J. I., & Nel, A. E. (2010). Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein SiRNA to overcome drug resistance in a cancer cell line. ACS Nano, 4(8), 4539–4550.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Merkel, O. M., Beyerle, A., Librizzi, D., Pfestroff, A., Behr, T. M., Sproat, B., Barth, P. J., & Kissel, T. (2009). Nonviral SiRNA delivery to the lung: Investigation of PEG-PEI polyplexes and their in vivo performance. Molecular Pharmaceutics, 6(4), 1246–1260.PubMedCrossRefGoogle Scholar
  94. Midoux, P., Pichon, C., Yaouanc, J. J., & Jaffrès, P. A. (2009). Chemical vectors for gene delivery: A current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers. British Journal of Pharmacology, 157(2), 166–178.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Minakuchi, Y., Takeshita, F., Kosaka, N., Sasaki, H., Yamamoto, Y., Kouno, M., Honma, K., Nagahara, S., Hanai, K., Sano, A., et al. (2004). Atelocollagen-mediated synthetic small interfering RNA delivery for effective gene silencing in vitro and in vivo. Nucleic Acids Research, 32(13), e109–e109.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Minami, K., Okamoto, K., Doi, K., Harano, K., Noiri, E., & Nakamura, E. (2014). SiRNA delivery targeting to the lung via agglutination-induced accumulation and clearance of cationic tetraamino fullerene. Scientific Reports, 4, 4916.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Mohammadi, M., Salmasi, Z., Hashemi, M., Mosaffa, F., Abnous, K., & Ramezani, M. (2015). Single-walled carbon nanotubes functionalized with aptamer and piperazine-polyethylenimine derivative for targeted SiRNA delivery into breast cancer cells. International Journal of Pharmaceutics, 485(1–2), 50–60.PubMedCrossRefGoogle Scholar
  98. Mouldy, S. (2006). Single-stranded small interfering RNA are more immunostimulatory than their double-stranded counterparts: A central role for 2′-hydroxyl uridines in immune responses. European Journal of Immunology, 36(5), 1222–1230.CrossRefGoogle Scholar
  99. Naito, Y., & Ui-Tei, K. (2013). Designing functional SiRNA with reduced off-target effects. Methods in Molecular Biology, 942, 57–68.PubMedCrossRefGoogle Scholar
  100. Ngamcherdtrakul, W., Morry, J., Gu, S., Castro, D. J., Goodyear, S. M., Sangvanich, T., Reda, M. M., Lee, R., Mihelic, S. A., Beckman, B. L., et al. (2015). Cationic polymer modified mesoporous silica nanoparticles for targeted SiRNA delivery to HER2 + breast cancer. Advanced Functional Materials, 25(18), 2646–2659.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Nguyen, Q. D., Schachar, R. A., Nduaka, C. I., Sperling, M., Basile, A. S., Klamerus, K. J., Chi-Burris, K., Yan, E., Paggiarino, D. A., Rosenblatt, I., et al. (2012a). Dose-ranging evaluation of intravitreal SiRNA PF-04523655 for diabetic macular edema (the DEGAS study). Investigative Ophthalmology and Visual Science, 53(12), 7666–7674.PubMedCrossRefGoogle Scholar
  102. Nguyen, Q. D., Schachar, R. A., Nduaka, C. I., Sperling, M., Basile, A. S., Klamerus, K. J., Chi-Burris, K., Yan, E., Paggiarino, D. A., Rosenblatt, I., et al. (2012b). Phase 1 dose-escalation study of a SiRNA targeting the RTP801 gene in age-related macular degeneration patients. Eye, 26(8), 1099–1105.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Nimesh, S., & Chandra, R. (2009). Polyethylenimine nanoparticles as an efficient in vitro SiRNA delivery system. European Journal of Pharmaceutics and Biopharmaceutics, 73(1), 43–49.PubMedCrossRefGoogle Scholar
  104. Nishina, K., Unno, T., Uno, Y., Kubodera, T., Kanouchi, T., Mizusawa, H., & Yokota, T. (2008). Efficient in vivo delivery of SiRNA to the liver by conjugation of α-tocopherol. Molecular Therapy, 16(4), 734–740.PubMedCrossRefGoogle Scholar
  105. Noble, C. O., Guo, Z., Hayes, M. E., Marks, J. D., Park, J. W., Benz, C. C., Kirpotin, D. B., & Drummond, D. C. (2009). Characterization of highly stable liposomal and immunoliposomal formulations of vincristine and vinblastine. Cancer Chemotherapy and Pharmacology, 64(4), 741–751.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Norman, M. E., Williams, P., & Illum, L. (1993). Influence of block copolymers on the adsorption of plasma proteins to microspheres. Biomaterials, 14(3), 193–202.PubMedCrossRefGoogle Scholar
  107. Pañeda, C. (2013). SYL040012, a SiRNA for the treatment of glaucoma. Acta Ophthalmologica, 91(s252), 0–0.CrossRefGoogle Scholar
  108. Patil, Y. P., & Jadhav, S. (2014). Novel methods for liposome preparation. Chemistry and Physics of Lipids, 177, 8–18.PubMedCrossRefGoogle Scholar
  109. Patzel, V., Rutz, S., Dietrich, I., Köberle, C., Scheffold, A., & Kaufmann, S. H. E. (2005). Design of SiRNAs producing unstructured guide-RNAs results in improved RNA interference efficiency. Nature Biotechnology, 23(11), 1440–1444.PubMedCrossRefGoogle Scholar
  110. Pecot, C. V., Calin, G. A., Coleman, R. L., Lopez-Berestein, G., & Sood, A. K. (2011). RNA interference in the clinic: Challenges and future directions. Nature Reviews Cancer, 11(1), 59–67.PubMedCrossRefGoogle Scholar
  111. Pellish, R. S., Nasir, A., Ramratnam, B., & Moss, S. F. (2008). Review article: RNA interference – potential therapeutic applications for the gastroenterologist. Alimentary Pharmacology & Therapeutics, 27(9), 715–723.CrossRefGoogle Scholar
  112. Pittella, F., Zhang, M., Lee, Y., Kim, H. J., Tockary, T., Osada, K., Ishii, T., Miyata, K., Nishiyama, N., & Kataoka, K. (2011). Enhanced endosomal escape of SiRNA-incorporating hybrid nanoparticles from calcium phosphate and PEG-block charge-conversional polymer for efficient gene knockdown with negligible cytotoxicity. Biomaterials, 32(11), 3106–3114.PubMedCrossRefGoogle Scholar
  113. Pooja, D., Kulhari, H., Singh, M. K., Mukherjee, S., Rachamalla, S. S., & Sistla, R. (2014). Dendrimer-TPGS mixed micelles for enhanced solubility and cellular toxicity of taxanes. Colloids and Surfaces. B, Biointerfaces, 121, 461–468.PubMedCrossRefGoogle Scholar
  114. Prausnitz, M. R., Mitragotri, S., & Langer, R. (2004). Current status and future potential of transdermal drug delivery. Nature Reviews Drug Discovery, 3, 115–124.PubMedCrossRefGoogle Scholar
  115. Qian, J., & Berkland, C. (2015). PH-sensitive triblock copolymers for efficient SiRNA encapsulation and delivery. Polymer Chemistry, 6(18), 3472–3479.CrossRefGoogle Scholar
  116. Qiu, Y., Lam, J. K. W., Leung, S. W. S., & Liang, W. (2016a). Delivery of RNAi therapeutics to the airways – From bench to bedside. Molecules, 21, E1249.PubMedCrossRefGoogle Scholar
  117. Qiu, C., Wei, W., Sun, J., Zhang, H.-T., Ding, J.-S., Wang, J.-C., & Zhang, Q. (2016b). Systemic delivery of SiRNA by hyaluronan-functionalized calcium phosphate nanoparticles for tumor-targeted therapy. Nanoscale, 8(26), 13033–13044.PubMedCrossRefGoogle Scholar
  118. Ralph, G. S., Radcliffe, P. A., Day, D. M., Carthy, J. M., Leroux, M. A., Lee, D. C. P., Wong, L.-F., Bilsland, L. G., Greensmith, L., Kingsman, S. M., et al. (2005). Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model. Nature Medicine, 11, 429.PubMedCrossRefGoogle Scholar
  119. Rappaport, J., Hanss, B., Kopp, J. B., Copeland, T. D., Bruggeman, L. A., Coffman, T. M., & Klotman, P. E. (1995). Transport of phosphorothioate oligonucleotides in kidney: Implications for molecular therapy. Kidney International, 47(5), 1462–1469.PubMedCrossRefGoogle Scholar
  120. Ren, L., Zhang, Y., Cui, C., Bi, Y., & Ge, X. (2017). Functionalized graphene oxide for anti-VEGF SiRNA delivery: Preparation, characterization and evaluation in vitro and in vivo. RSC Advances, 7(33), 20553–20566.CrossRefGoogle Scholar
  121. Rettig, G. R., & Behlke, M. A. (2012). Progress toward in vivo use of SiRNAs-II. Molecular Therapy, 20(3), 483–512.PubMedCrossRefGoogle Scholar
  122. Rose, S. D., Kim, D. H., Amarzguioui, M., Heidel, J. D., Collingwood, M. A., Davis, M. E., Rossi, J. J., & Behlke, M. A. (2005). Functional polarity is introduced by dicer processing of short substrate RNAs. Nucleic Acids Research, 33(13), 4140–4156.PubMedPubMedCentralCrossRefGoogle Scholar
  123. Rossi, J. J. (2009). Cholesterol paves the way for topically applied viricides. Cell Host & Microbe, 5(1), 6–7.CrossRefGoogle Scholar
  124. Sabbioni, S., Callegari, E., Manservigi, M., Argnani, R., Corallini, A., Negrini, M., & Manservigi, R. (2006). Use of herpes simplex virus type 1-based amplicon vector for delivery of small interfering RNA. Gene Therapy, 14(5), 459–464.PubMedCrossRefGoogle Scholar
  125. Sailor, M. J., & Ji-Ho, P. (2012). Hybrid nanoparticles for detection and treatment of cancer. Advanced Materials, 24(28), 3779–3802.PubMedCrossRefGoogle Scholar
  126. Santel, A., Aleku, M., Keil, O., Endruschat, J., Esche, V., Fisch, G., Dames, S., Löffler, K., Fechtner, M., Arnold, W., et al. (2006). A novel SiRNA-lipoplex technology for RNA interference in the mouse vascular endothelium. Gene Therapy, 13(16), 1222–1234.PubMedCrossRefGoogle Scholar
  127. Sawant, R. R., & Torchilin, V. P. (2012). Multifunctional nanocarriers and intracellular drug delivery. Current Opinion in Solid State & Materials Science, 16(6), 269–275.CrossRefGoogle Scholar
  128. Schedin, F., Geim, A. K., Morozov, S. V., Hill, E. W., Blake, P., Katsnelson, M. I., & Novoselov, K. S. (2007). Detection of individual gas molecules adsorbed on graphene. Nature Materials, 6(9), 652–655.PubMedCrossRefGoogle Scholar
  129. Schwarz, D. S., Hutvágner, G., Du, T., Xu, Z., Aronin, N., & Zamore, P. D. (2003). Asymmetry in the assembly of the RNAi enzyme complex. Cell, 115(2), 199–208.PubMedCrossRefGoogle Scholar
  130. Sinden, R. R., Pearson, C. E., Potaman, V. N., Ussery, D. W. (1998). DNA: Structure and function. In Verma, R. S. (Ed.). Advances in genome biology (Vol. 5, pp. 1–141).Google Scholar
  131. Singer, O., Marr, R. A., Rockenstein, E., Crews, L., Coufal, N. G., Gage, F. H., Verma, I. M., & Masliah, E. (2005). Targeting BACE1 with SiRNAs ameliorates Alzheimer disease neuropathology in a transgenic model. Nature Neuroscience, 8(10), 1343–1349.PubMedCrossRefPubMedCentralGoogle Scholar
  132. Singhania, A., Y Wu, S., & McMillan, N. (2011). Effective delivery of PEGylated SiRNA-containing lipoplexes to extraperitoneal tumours following intraperitoneal administration. Journal of Drug Delivery, 2011, 192562.PubMedPubMedCentralCrossRefGoogle Scholar
  133. Smith, S. B., Cui, Y., & Bustamante, C. (1996). Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules. Science (80), 271(5250), 795–799.CrossRefGoogle Scholar
  134. Song, J.-J., Liu, J., Tolia, N. H., Schneiderman, J., Smith, S. K., Martienssen, R. A., Hannon, G. J., & Joshua-Tor, L. (2003). The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nature Structural Biology, 10, 1026.PubMedCrossRefPubMedCentralGoogle Scholar
  135. Song, J.-J., Smith, S., Hannon, G. J., Joshua-Tor, L., Song, J. J., Smith, S. K., Hannon, G. J., & Joshua-Tor, L. (2004). Crystal structure of Argonaute and its implications for RISC slicer activity. Science, 305, 1434–1437. Vol. 305.PubMedCrossRefPubMedCentralGoogle Scholar
  136. Song, E., Zhu, P., Lee, S.-K., Chowdhury, D., Kussman, S., Dykxhoorn, D. M., Feng, Y., Palliser, D., Weiner, D. B., Shankar, P., et al. (2005). Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nature Biotechnology, 23(6), 709–717.PubMedCrossRefPubMedCentralGoogle Scholar
  137. Svenson, S., & Tomalia, D. A. (2012). Dendrimers in biomedical applications-reflections on the field. Advanced Drug Delivery Reviews, 64(SUPPL), 102–115.CrossRefGoogle Scholar
  138. Tang, G. (2005). SiRNA and MiRNA: An insight into RISCs. Trends in Biochemical Sciences, 30(2), 106–114.PubMedCrossRefPubMedCentralGoogle Scholar
  139. Taratula, O., Garbuzenko, O. B., Kirkpatrick, P., Pandya, I., Savla, R., Pozharov, V. P., He, H., & Minko, T. (2009). Surface-engineered targeted PPI dendrimer for efficient intracellular and intratumoral SiRNA delivery. Journal of Controlled Release, 140(3), 284–293.PubMedPubMedCentralCrossRefGoogle Scholar
  140. Tatiparti, K., Sau, S., Kashaw, S., & Iyer, A. (2017). SiRNA delivery strategies: A comprehensive review of recent developments. Nanomaterials, 7(4), 77.PubMedCentralCrossRefGoogle Scholar
  141. Thomas, M., Lu, J. J., Chen, J., & Klibanov, A. M. (2007). Non-viral SiRNA delivery to the lung. Advanced Drug Delivery Reviews, 59(2–3), 124–133.PubMedCrossRefPubMedCentralGoogle Scholar
  142. Torchilin, V. P. (2014). Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nature Reviews. Drug Discovery, 13(11), 813–827.PubMedPubMedCentralCrossRefGoogle Scholar
  143. Tseng, Y. C., Mozumdar, S., & Huang, L. (2009). Lipid-based systemic delivery of SiRNA. Advanced Drug Delivery Reviews, 61(9), 721–731.PubMedPubMedCentralCrossRefGoogle Scholar
  144. Urbiola, K., Blanco-Fernández, L., Ogris, M., Rödl, W., Wagner, E., & de Ilarduya, C. T. (2018). Novel PAMAM-PEG-peptide conjugates for SiRNA delivery targeted to the transferrin and epidermal growth factor receptors. Journal of Personalized Medicine, 8(1), 4.PubMedCentralCrossRefGoogle Scholar
  145. Varkouhi, A. K., Foillard, S., Lammers, T., Schiffelers, R. M., Doris, E., Hennink, W. E., & Storm, G. (2011). SiRNA delivery with functionalized carbon nanotubes. International Journal of Pharmaceutics, 416(2), 419–425.PubMedCrossRefPubMedCentralGoogle Scholar
  146. Vauthier, C., Zandanel, C., & Ramon, A. L. (2013). Chitosan-based nanoparticles for in vivo delivery of interfering agents including SiRNA. Current Opinion in Colloid & Interface Science, 18(5), 406–418.CrossRefGoogle Scholar
  147. Verma, P., Prajapati, S. K., & Prajapati, R. N. (2012). Performance evaluation of Pamam dendrimer based clotrimazole formulations. International Journal of Pharmaceutics, 2. (October), 203–209.Google Scholar
  148. Wang, J., Lu, Z., Wientjes, M. G., & Au, J. L.-S. (2010). Delivery of SiRNA therapeutics: Barriers and carriers. The AAPS Journal, 12(4), 492–503.PubMedPubMedCentralCrossRefGoogle Scholar
  149. Wang, F., Gao, L., Meng, L. Y., Xie, J. M., Xiong, J. W., & Luo, Y. A. (2016). Neutralized noncharged polyethylenimine-based system for efficient delivery of SiRNA into heart without toxicity. ACS Applied Materials & Interfaces, 8(49), 33529–33538.CrossRefGoogle Scholar
  150. Wartiovaara, J., Öfverstedt, L. G., Khoshnoodi, J., Zhang, J., Mäkelä, E., Sandin, S., Ruotsalainen, V., Cheng, R. H., Jalanko, H., Skoglund, U., et al. (2004). Nephrin strands contribute to a porous slit diaphragm scaffold as revealed by electron tomography. The Journal of Clinical Investigation, 114(10), 1475–1483.PubMedPubMedCentralCrossRefGoogle Scholar
  151. Watanabe, K., Harada-Shiba, M., Suzuki, A., Gokuden, R., Kurihara, R., Sugao, Y., Mori, T., Katayama, Y., & Niidome, T. (2009). In vivo SiRNA delivery with dendritic poly(l-lysine) for the treatment of hypercholesterolemia. Molecular BioSystems, 5(11), 1306.PubMedCrossRefPubMedCentralGoogle Scholar
  152. Whitehead, K. A., Langer, R., & Anderson, D. G. (2009). Knocking down barriers: Advances in SiRNA delivery. Nature Reviews Drug Discovery, 8(2), 129–138.PubMedCrossRefPubMedCentralGoogle Scholar
  153. Wilson, R. C., & Doudna, J. A. (2013). Molecular mechanisms of RNA interference. Annual Review of Biophysics, 42(1), 217–239.PubMedPubMedCentralCrossRefGoogle Scholar
  154. Wolff, J. A., & Rozema, D. B. (2008). Breaking the bonds: Non-viral vectors become chemically dynamic. Molecular Therapy, 16(1), 8–15.PubMedCrossRefPubMedCentralGoogle Scholar
  155. Wolfrum, C., Shi, S., Jayaprakash, K. N., Jayaraman, M., Wang, G., Pandey, R. K., Rajeev, K. G., Nakayama, T., Charrise, K., Ndungo, E. M., et al. (2007). Mechanisms and optimization of in vivo delivery of lipophilic SiRNAs. Nature Biotechnology, 25(10), 1149–1157.PubMedCrossRefPubMedCentralGoogle Scholar
  156. Wu, S. Y., Chang, H. I., Burgess, M., & McMillan, N. A. J. (2011). Vaginal delivery of SiRNA using a novel PEGylated lipoplex-entrapped alginate scaffold system. Journal of Controlled Release, 155(3), 418–426.PubMedCrossRefPubMedCentralGoogle Scholar
  157. Wu, C., Gong, F., Pang, P., Shen, M., Zhu, K., Cheng, D., Liu, Z., & Shan, H. (2013). An RGD-modified MRI-visible polymeric vector for targeted SiRNA delivery to hepatocellular carcinoma in nude mice. PLoS One, 8(6), e66416.PubMedPubMedCentralCrossRefGoogle Scholar
  158. Wu, J., Qu, W., Williford, J. M., Ren, Y., Jiang, X., Jiang, X., Pan, D., Mao, H. Q., & Luijten, E. (2017). Improved SiRNA delivery efficiency via solvent-induced condensation of micellar nanoparticles. Nanotechnology, 28(20), 204002.PubMedPubMedCentralCrossRefGoogle Scholar
  159. Xia, Y., Tian, J., & Chen, X. (2016). Biomaterials effect of surface properties on liposomal SiRNA delivery. Biomaterials, 79, 56–68.PubMedCrossRefPubMedCentralGoogle Scholar
  160. Xia, Y., Lin, Z., Li, Y., Zhao, M., Wang, C., Guo, M., Zhang, B., & Zhu, B. (2017). Targeted delivery of SiRNA using RGDfC-conjugated functionalized selenium nanoparticles for anticancer therapy. Journal of Materials Chemistry B, 5(33), 6941–6952.CrossRefGoogle Scholar
  161. Xu, C. F., & Wang, J. (2015). Delivery systems for SiRNA drug development in cancer therapy. Asian Journal of Pharmaceutical Sciences, 10(1), 1–12.CrossRefGoogle Scholar
  162. Yang, Y., Li, J., Liu, F., & Huang, L. (2012). Systemic delivery of SiRNA via LCP nanoparticle efficiently inhibits lung metastasis. Molecular Therapy, 20(3), 609–615.PubMedCrossRefPubMedCentralGoogle Scholar
  163. Yezhelyev, M. V., Qi, L., O’Regan, R. M., Nie, S., & Gao, X. (2008). Proton-sponge coated quantum dots for SiRNA delivery and intracellular imaging. Journal of the American Chemical Society, 130(28), 9006–9012.PubMedPubMedCentralCrossRefGoogle Scholar
  164. Yin, F., Hu, K., Chen, Y., Yu, M., Wang, D., Wang, Q., Yong, K. T., Lu, F., Liang, Y., & Li, Z. (2017). SiRNA delivery with PEGylated graphene oxide nanosheets for combined photothermal and genetherapy for pancreatic cancer. Theranostics, 7(5), 1133–1148.PubMedPubMedCentralCrossRefGoogle Scholar
  165. Young, S. W. S., Stenzel, M., & Jia-Lin, Y. (2016). Nanoparticle-SiRNA: A potential cancer therapy? Critical Reviews in Oncology/Hematology, 98, 159–169.PubMedCrossRefPubMedCentralGoogle Scholar
  166. Yu, H., Zou, Y., Wang, Y., Huang, X., Huang, G., Sumer, B. D., Boothman, D. A., & Gao, J. (2011). Overcoming endosomal barrier by amphotericin B-loaded dual PH-responsive PDMA- b-PDPA micelleplexes for SiRNA delivery. ACS Nano, 5(11), 9246–9255.PubMedPubMedCentralCrossRefGoogle Scholar
  167. Yu-Wai-Man, C., Tagalakis, A. D., Manunta, M. D., Hart, S. L., & Khaw, P. T. (2016). Receptor-targeted liposome-peptide-SiRNA nanoparticles represent an efficient delivery system for MRTF silencing in conjunctival fibrosis. Scientific Reports, 6, 21881.PubMedPubMedCentralCrossRefGoogle Scholar
  168. Zeng, Y., Yang, Z., Li, H., Hao, Y., Liu, C., Zhu, L., Liu, J., Lu, B., & Li, R. (2017). Multifunctional nanographene oxide for targeted gene-mediated thermochemotherapy of drug-resistant tumour. Scientific Reports, 7, 43506.PubMedPubMedCentralCrossRefGoogle Scholar
  169. Zhang, Y., Cristofaro, P., Silbermann, R., Pusch, O., Boden, D., Konkin, T., Hovanesian, V., Monfils, P. R., Resnick, M., Moss, S. F., et al. (2006). Engineering mucosal RNA interference in vivo. Molecular Therapy, 14(3), 336–342.PubMedCrossRefPubMedCentralGoogle Scholar
  170. Zhang, Y.-M., Yang, Y., Zhang, Y., & Liu, Y. (2016). Polysaccharide nanoparticles for efficient SiRNA targeting in cancer cells by supramolecular PKa shift. Scientific Reports, 6(28848), 1–11.Google Scholar
  171. Zhou, J., Patel, T. R., Fu, M., Bertram, J. P., & Saltzman, W. M. (2012). Octa-functional PLGA nanoparticles for targeted and efficient SiRNA delivery to tumors. Biomaterials, 33(2), 583–591.PubMedCrossRefPubMedCentralGoogle Scholar
  172. Zhou, J., Wu, Y., Wang, C., Cheng, Q., Han, S., Wang, X., Zhang, J., Deng, L., Zhao, D., Du, L., et al. (2016). PH-sensitive nanomicelles for high-efficiency SiRNA delivery in vitro and in vivo: An insight into the design of polycations with robust cytosolic release. Nano Letters, 16(11), 6916–6923.PubMedCrossRefPubMedCentralGoogle Scholar
  173. Zhu, L., Perche, F., Wang, T., & Torchilin, V. P. (2014). Matrix metalloproteinase 2-sensitive multifunctional polymeric micelles for tumor-specific co-delivery of SiRNA and hydrophobic drugs. Biomaterials, 35(13), 4213–4222.PubMedPubMedCentralCrossRefGoogle Scholar
  174. Zhu, H., Liu, W., Cheng, Z., Yao, K., Yang, Y., Xu, B., & Su, G. (2017). Targeted delivery of SiRNA with PH-responsive hybrid gold nanostars for cancer treatment. International Journal of Molecular Sciences, 18(10), 2029.PubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Nitin Gupta
    • 1
  • Divya Bharti Rai
    • 1
  • Ashok Kumar Jangid
    • 1
  • Deep Pooja
    • 2
  • Hitesh Kulhari
    • 1
    Email author
  1. 1.School of Nano SciencesCentral University of GujaratGandhinagarIndia
  2. 2.Applied Biology DivisionCSIR-Indian Institute of Chemical TechnologyHyderabadIndia

Personalised recommendations