Gold Nanostructures for Photothermal Therapy

  • Prem Singh
  • Shounak Roy
  • Pallab Sanpui
  • Aditi BanerjeeEmail author
  • Amit JaiswalEmail author


Gold nanostructures – due to their ease of synthesis and functionalization, unique tunable optical properties and stability – are widely being explored for their applicability in sensing, diagnostics, drug delivery and cancer therapy. Engineering different gold nanostructures with varying shape and size enable us to tune the localized surface plasmon resonance (LSPR) peak from visible to near infra-red (NIR) region of the electromagnetic spectrum, which can be exploited for biomedical applications. For example, gold nanorods show two peaks in their extinction spectra, corresponding to the transverse and longitudinal mode of surface electron oscillation on the influence of light. Similarly, other gold nanostructures with different morphologies like nanoshells, nanorattles, nanostars, nanopopcorns, nanoaggregates, etc. too have extinction band in the NIR region, which has a better tissue penetration depth. This strong optical absorbance of the gold nanostructures, especially in the NIR region and subsequent dissipation of energy in a nonradiative process can suitably be exploited for plasmonic photothermal therapy (PPTT). In this regard, NIR light stimulated heat can be generated from the targeted gold nanostructures and this can potentially be used to kill cancer cells. The present chapter discusses about the design and applicability of gold based nanostructures of different morphologies for efficient photothermal therapy.


Gold nanoparticles Photothermal therapy NIR Cancer therapy Plasmonic nanoparticles 



AJ gratefully acknowledge the financial support from Indian Institute of Technology Mandi, Department of Science and Technology (DST) under project number: SERB/F/5627/2015-16 and Department of Biotechnology (DBT), Government of India, under project number: BT/PR14749/NNT/28/954/2015. SR would like to acknowledge DST INSPIRE Fellowship programme [IF160513] for providing doctoral fellowship.


  1. Abadeer, N. S., & Murphy, C. J. (2016). Recent progress in cancer thermal therapy using gold nanoparticles. The Journal of Physical Chemistry C, 120(9), 4691–4716.CrossRefGoogle Scholar
  2. Ai, X., Mu, J., & Xing, B. (2016). Recent advances of light-mediated theranostics. Theranostics, 6(13), 2439–2457.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Au, L., Zheng, D., Zhou, F., Li, Z.-Y., Li, X., & Xia, Y. (2008). A quantitative study on the photothermal effect of immuno gold nanocages targeted to breast cancer cells. ACS Nano, 2(8), 1645–1652.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Barbosa, S., Agrawal, A., Rodríguez-Lorenzo, L., Pastoriza-Santos, I., Alvarez-Puebla, R. A., Kornowski, A., Weller, H., & Liz-Marzán, L. M. (2010). Tuning size and sensing properties in colloidal gold nanostars. Langmuir, 26(18), 14943–14950.PubMedCrossRefGoogle Scholar
  5. Bear, A. S., Kennedy, L. C., Young, J. K., Perna, S. K., Mattos Almeida, J. P., Lin, A. Y., Eckels, P. C., Drezek, R. A., & Foster, A. E. (2013). Elimination of metastatic melanoma using gold nanoshell-enabled photothermal therapy and adoptive T cell transfer. PLoS One, 8(7), e69073.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Beqa, L., Fan, Z., Singh, A. K., Senapati, D., & Ray, P. C. (2011). Gold nano-popcorn attached SWCNT hybrid nanomaterial for targeted diagnosis and potothermal therapy of human breast cancer cells. ACS Applied Materials & Interfaces, 3(9), 3316–3324.CrossRefGoogle Scholar
  7. Bhana, S., Lin, G., Wang, L., Starring, H., Mishra, S. R., Liu, G., & Huang, X. (2015). Near-infrared-absorbing gold nanopopcorns with iron oxide cluster core for magnetically amplified photothermal and photodynamic cancer therapy. ACS Applied Materials & Interfaces, 7(21), 11637–11647.CrossRefGoogle Scholar
  8. Black, K. C., Yi, J., Rivera, J. G., Zelasko-Leon, D. C., & Messersmith, P. B. (2013). Polydopamine-enabled surface functionalization of gold nanorods for cancer cell-targeted imaging and photothermal therapy. Nanomedicine, 8(1), 17–28.PubMedCrossRefGoogle Scholar
  9. Brunetaud, J. M., Mordon, S., Maunoury, V., & Beacco, C. (1995). Non-PDT uses of lasers in oncology. Lasers in Medical Science, 10(1), 3–8.CrossRefGoogle Scholar
  10. Calderwood, S. K., & Ciocca, D. R. (2008). Heat shock proteins: Stress proteins with Janus- like properties in cancer. International Journal of Hyperthermia, 24, 31–39.PubMedCrossRefGoogle Scholar
  11. Chen, J., Wang, D., Xi, J., Au, L., Siekkinen, A., Warsen, A., Li, Z.-Y., Zhang, H., Xia, Y., & Li, X. (2007). Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Letters, 7(5), 1318–1322.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Chen, H., Shao, L., Ming, T., Sun, Z., Zhao, C., Yang, B., & Wang, J. (2010a). Understanding the photothermal conversion efficiency of gold nanocrystals. Small, 6(20), 2272–2280.PubMedCrossRefGoogle Scholar
  13. Chen, J., Glaus, C., Laforest, R., Zhang, Q., Yang, M., Gidding, M., Welch, M. J., & Xia, Y. (2010b). Gold nanocages as photothermal transducers for cancer treatment. Small, 6(7), 811–817.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Chen, H., Zhang, X., Dai, S., Ma, Y., Cui, S., Achilefus, S., & Gu, Y. (2013). Multifunctional gold nanostar conjugates for tumor imaging and combined photothermal and chemo-therapy. Theranostics, 3(9), 633–649.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Chen, Z., Yu, D., Huang, Y., Zhang, Z., Liu, T., & Zhan, J. (2014). Tunable SERS-tags-hidden gold nanorattles for theranosis of cancer cells with single laser beam. Scientific Reports, 4, 6709.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Choi, W. I., Kim, J.-Y., Kang, C., Byeon, C. C., Kim, Y. H., & Tae, G. (2011). Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers. ACS Nano, 5(3), 1995–2003.PubMedCrossRefGoogle Scholar
  17. Chu, Z., Zhang, S., Zhang, B., Zhang, C., Fang, C.-Y., Rehor, I., Cigler, P., Chang, H.-C., Lin, G., Liu, R., & Li, Q. (2014). Unambiguous observation of shape effects on cellular fate of nanoparticles. Scientific Reports, 4, 4495.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Ciocca, D. R., & Calderwood, S. K. (2005). Heat shock proteins in cancer: Diagnostic, prognostic, predictive, and treatment implications. Cell Stress & Chaperones, 10(2), 86–103.CrossRefGoogle Scholar
  19. Dickerson, E., Dreaden, E., Huang, X., ElSayed, I., Chu, H., Pushpanketh, S., Mcdonald, J., & ElSayed, M. (2008). Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Letters, 269(1), 57–66.PubMedPubMedCentralCrossRefGoogle Scholar
  20. El-Sayed, I. H., Huang, X., & El-Sayed, M. A. (2006). Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Letters, 239(1), 129–135.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Faraday, M. (1857). The Bakerian lecture: Experimental relations of gold (and other metals) to light. Philosophical Transactions of the Royal Society of London, 147(0), 145–181.Google Scholar
  22. Fink, S. L., & Cookson, B. T. (2005). Apoptosis, pyroptosis, and necrosis: Mechanistic description of dead and dying eukaryotic cells. Infection and Immunity, 73(4), 1907–1916.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Gao, L., Fei, J., Zhao, J., Li, H., Cui, Y., & Li, J. (2012). Hypocrellin-loaded gold nanocages with high two-photon efficiency for photothermal/photodynamic cancer therapy in vitro. ACS Nano, 6(9), 8030–8040.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Gao, Y., Gu, J., Li, L., Zhao, W., & Li, Y. (2016). Synthesis of gold nanoshells through improved seed-mediated growth approach: Brust-like, in situ seed formation. Langmuir, 32(9), 2251–2258.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Ghosh, S. K., & Pal, T. (2007). Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications. Chemical Reviews, 107(11), 4797–4862.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Henglein, A. (1993). Physicochemical properties of small metal particles in solution: “Microelectrode” reactions, chemisorption, composite metal particles, and the atom-to-metal transition. The Journal of Physical Chemistry, 97(21), 5457–5471.CrossRefGoogle Scholar
  27. Hirsch, L. R., Stafford, R. J., Bankson, J. A., Sershen, S. R., Rivera, B., Price, R. E., Hazle, J. D., Halas, N. J., & West, J. L. (2003). Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proceedings of the National Academy of Sciences, 100(23), 13549–13554.CrossRefGoogle Scholar
  28. Hu, M., Chen, J., Li, Z.-Y., Au, L., Hartland, G. V., Li, X., Marquez, M., & Xia, Y. (2006). Gold nanostructures: Engineering their plasmonic properties for biomedical applications. Chemical Society Reviews, 35(11), 1084–1094.PubMedCrossRefGoogle Scholar
  29. Huang, X., & El-Sayed, M. A. (2011). Plasmonic photo-thermal therapy (PPTT). Alexandria Journal of Medicine, 47(1), 1–9.CrossRefGoogle Scholar
  30. Huang, X., El-Sayed, I. H., Qian, W., & El-Sayed, M. A. (2006). Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. Journal of the American Chemical Society, 128(6), 2115–2120.PubMedCrossRefGoogle Scholar
  31. Huang, X., Jain, P. K., El-Sayed, I. H., & El-Sayed, M. A. (2007). Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers in Medical Science, 23(3), 217–228.PubMedCrossRefGoogle Scholar
  32. Huang, X., Kang, B., Qian, W., Mackey, M. A., Chen, P. C., Oyelere, A. K., El-Sayed, I. H., & El-Sayed, M. A. (2010). Comparative study of photothermolysis of cancer cells with nuclear-targeted or cytoplasm-targeted gold nanospheres: Continuous wave or pulsed lasers. Journal of Biomedical Optics, 15(5), 058002, 1–7.PubMedCrossRefGoogle Scholar
  33. Hwang, S., Nam, J., Jung, S., Song, J., Doh, H., & Kim, S. (2014a). Gold nanoparticle-mediated photothermal therapy: Current status and future perspective. Nanomedicine, 9(13), 2003–2022.PubMedCrossRefGoogle Scholar
  34. Hwang, S., Nam, J., Song, J., Jung, S., Hur, J., Im, K., Park, N., & Kim, S. (2014b). A sub 6 nanometer plasmonic gold nanoparticle for pH-responsive near-infrared photothermal cancer therapy. New Journal of Chemistry, 38(3), 918–922.CrossRefGoogle Scholar
  35. Jaiswal, A., Tian, L., Tadepalli, S., Liu, K., Fei, M., Farrell, M. E., Pellegrino, P. M., & Singamaneni, S. (2014). Plasmonic nanorattles with intrinsic electromagnetic hot-spots for surface enhanced Raman scattering. Small, 10(21), 4287–4292.PubMedGoogle Scholar
  36. Jung, Y. J., Govindaiah, P., Park, T., Lee, S. J., Ryu, D. Y., Kim, J. H., & Cheong, I. W. (2010). Luminescent gold–poly(thiophene) nanoaggregates prepared by one-step oxidative polymerization. Journal of Materials Chemistry, 20, 9770–9774.CrossRefGoogle Scholar
  37. Jang, B., Park, J. Y., Tung, C. H., Kim, I. H., & Choi, Y. (2011). Gold nanorod− photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo. ACS Nano, 5(2), 1086–1094.PubMedCrossRefGoogle Scholar
  38. Jung, S., Nam, J., Hwang, S., Park, J., Hur, J., Im, K., Park, N., & Kim, S. (2013). Theragnostic pH-sensitive gold nanoparticles for the selective surface enhanced Raman scattering and photothermal cancer therapy. Analytical Chemistry, 85(16), 7674–7681.PubMedCrossRefGoogle Scholar
  39. Ke, H., Wang, J., Tong, S., Jin, Y., Wang, S., Qu, E., Bao, G., & Dai, Z. (2014). Gold nanoshelled liquid perfluorocarbon magnetic nanocapsules: A nanotheranostic platform for bimodal ultrasound/magnetic resonance imaging guided photothermal tumor ablation. Theranostics, 4(1), 12–23.CrossRefGoogle Scholar
  40. Kelly, K. L., Coronado, E., Zhao, L. L., & Schatz, G. C. (2003). The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. The Journal of Physical Chemistry B, 107(3), 668–677.CrossRefGoogle Scholar
  41. Khan, S. A., Kanchanapally, R., Fan, Z., Beqa, L., Singh, A. K., Senapati, D., & Ray, P. C. (2012). A gold nanocage–CNT hybrid for targeted imaging and photothermal destruction of cancer cells. Chemical Communications, 48(53), 6711–67113.PubMedCrossRefGoogle Scholar
  42. Khandelia, R., Jaiswal, A., Ghosh, S. S., & Chattopadhyay, A. (2014). Polymer coated gold nanoparticle–protein agglomerates as nanocarriers for hydrophobic drug delivery. Journal of Materials Chemistry B, 2(38), 6472–6477.CrossRefGoogle Scholar
  43. Khlebtsov, N. G., & Dykman, L. A. (2010). Optical properties and biomedical applications of plasmonic nanoparticles. Journal of Quantitative Spectroscopy and Radiative Transfer, 111(1), 1–35.CrossRefGoogle Scholar
  44. Khlebtsov, B., Panfilova, E., Khanadeev, V., Bibikova, O., Terentyuk, G., Ivanov, A., Rumyantseva, V., Shilov, I., Ryabova, A., Loshchenov, V., & Khlebtsov, N. G. (2011). Nanocomposites containing silica-coated gold–silver nanocages and Yb–2, 4-dimethoxyhematoporphyrin: Multifunctional capability of IR-Luminescence detection, photosensitization, and photothermolysis. ACS Nano, 5(9), 7077–7089.PubMedCrossRefGoogle Scholar
  45. Khoury, C. G., & Vo-Dinh, T. (2008). Gold nanostars for surface-enhanced Raman scattering: Synthesis, characterization and optimization. The Journal of Physical Chemistry C, 112(48), 18849–18859.CrossRefGoogle Scholar
  46. Kono, H., & Rock, K. L. (2008). How dying cells alert the immune system to danger. Nature Reviews Immunology, 8(4), 279–289.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Lee, K.-S., & El-Sayed, M. A. (2005). Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index. The Journal of Physical Chemistry B, 109(43), 20331–20338.PubMedCrossRefGoogle Scholar
  48. Li, J.-L., & Gu, M. (2010). Surface plasmonic gold nanorods for enhanced two-photon microscopic imaging and apoptosis induction of cancer cells. Biomaterials, 31(36), 9492–9498.PubMedCrossRefGoogle Scholar
  49. Lin, A. Y., Young, J. K., Nixon, A. V., & Drezek, R. A. (2014). Encapsulated Fe3O4/Ag complexed cores in hollow gold nanoshells for enhanced theranostic magnetic resonance imaging and photothermal therapy. Small, 10, 3246–3251.PubMedCrossRefGoogle Scholar
  50. Link, S., & El-Sayed, M. A. (1999). Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. The Journal of Physical Chemistry B, 103(21), 4212–4217.CrossRefGoogle Scholar
  51. Link, S., & El-Sayed, M. A. (2000). Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. International Reviews in Physical Chemistry, 19(3), 409–453.CrossRefGoogle Scholar
  52. Link, S., & El-Sayed, M. A. (2005). Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. The Journal of Physical Chemistry B, 109(20), 10531–10532.CrossRefGoogle Scholar
  53. Link, S., Mohamed, M. B., & El-Sayed, M. A. (1999). Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. The Journal of Physical Chemistry B, 103(16), 3073–3077.CrossRefGoogle Scholar
  54. Liu, M., Yang, P.-H., & Cai, J.-Y. (2009a). Optical properties and biomedical application of gold nanorods*. Progress in Biochemistry and Biophysics, 36(11), 1402–1407.CrossRefGoogle Scholar
  55. Liu, S.-Y., Liang, Z.-S., Gao, F., Luo, S.-F., & Lu, G.-Q. (2009b). In vitro photothermal study of gold nanoshells functionalized with small targeting peptides to liver cancer cells. Journal of Materials Science: Materials in Medicine, 21(2), 665–674.PubMedPubMedCentralGoogle Scholar
  56. Liu, Y., Xu, M., Chen, Q., Guan, G., Hu, W., Zhao, X., Qiao, M., Hu, H., Liang, Y., Zhu, H., & Chen, D. (2015). Gold nanorods/mesoporous silica-based nanocomposite as theranostic agents for targeting near-infrared imaging and photothermal therapy induced with laser. International Journal of Nanomedicine, 10, 4747–4761.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Liz-Marzán, L. M. (2004). Nanometals. Materials Today, 7(2), 26–31.CrossRefGoogle Scholar
  58. Lowery, A. R., Gobin, A. M., Day, E. S., Halas, N. J., & West, J. L. (2006). Immunonanoshells for targeted photothermal ablation of tumor cells. International Journal of Nanomedicine, 1(2), 149–154.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Lu, W., Singh, A. K., Khan, S. A., Senapati, D., Yu, H., & Ray, P. C. (2010). Gold nano-popcorn-based targeted diagnosis, nanotherapy treatment, and in situ monitoring of photothermal therapy response of prostate cancer cells using surface-enhanced Raman spectroscopy. Journal of the American Chemical Society, 132(51), 18103–18114.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Ma, Y., Liang, X., Tong, S., Bao, G., Ren, Q., & Dai, Z. (2012). Gold nanoshell nanomicelles for potential magnetic resonance imaging, light-triggered drug release, and photothermal therapy. Advanced Functional Materials, 23(7), 815–822.CrossRefGoogle Scholar
  61. Mahmoud, M. A. (2014). Optical properties of gold nanorattles: Evidences for free movement of the inside solid nanosphere. The Journal of Physical Chemistry C, 118(19), 10321–10328.CrossRefGoogle Scholar
  62. Melamed, J. R., Edelstein, R. S., & Day, E. S. (2015). Elucidating the fundamental mechanisms of cell death triggered by photothermal therapy. ACS Nano, 9(1), 6–11.PubMedCrossRefGoogle Scholar
  63. Melancon, M. P., Lu, W., Zhong, M., Zhou, M., Liang, G., Elliott, A. M., Hazle, J. D., Myers, J. N., Li, C., & Jason Stafford, R. (2011). Targeted multifunctional gold-based nanoshells for magnetic resonance-guided laser ablation of head and neck cancer. Biomaterials, 32(30), 7600–7608.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Messina, E., Cavallaro, E., Cacciola, A., Iatì, M. A., Gucciardi, P. G., Borghese, F., Denti, P., Saija, R., Compagnini, G., Meneghetti, M., Amendola, V., & Maragò, O. M. (2011). Plasmon-enhanced optical trapping of gold nanoaggregates with selected optical properties. ACS Nano, 5(2), 905–913.PubMedCrossRefPubMedCentralGoogle Scholar
  65. Mulvaney, P. (1996). Surface plasmon spectroscopy of nanosized metal particles. Langmuir, 12(3), 788–800.CrossRefGoogle Scholar
  66. Nam, J., Won, N., Jin, H., Chung, H., & Kim, S. (2009). PH-induced aggregation of gold nanoparticles for photothermal cancer therapy. Journal of the American Chemical Society, 131(38), 13639–13645.PubMedCrossRefPubMedCentralGoogle Scholar
  67. Nam, J., La, W.-G., Hwang, S., Ha, Y. S., Park, N., Won, N., Jung, S., Bhang, S. H., Ma, Y.-J., Cho, Y.-M., Jin, M., Han, J., Shin, J.-Y., Wang, E. K., Kim, S. G., Cho, S.-H., Yoo, J., & Kim, B.-S. (2013a). PH-responsive assembly of gold nanoparticles and “Spatiotemporally Concerted” drug release for synergistic cancer therapy. ACS Nano, 7(4), 3388–3402.PubMedCrossRefPubMedCentralGoogle Scholar
  68. Nam, J., Ha, Y. S., Hwang, S., Lee, W., Song, J., Yoo, J., & Kim, S. (2013b). PH-responsive gold nanoparticles-in-liposome hybrid nanostructures for enhanced systemic tumor delivery. Nanoscale, 5(21), 10175–10178.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Neeves, A. E., & Birnboim, M. H. (1989). Composite structures for the enhancement of nonlinear-optical susceptibility. Journal of the Optical Society of America B, 6(4), 787–796.CrossRefGoogle Scholar
  70. Nie, S., Xing, Y., Kim, G. J., & Simons, J. W. (2007). Nanotechnology applications in cancer. Annual Review of Biomedical Engineering, 9(1), 257–288.PubMedCrossRefGoogle Scholar
  71. Okuno, T., Kato, S., Hatakeyama, Y., Okajima, J., Maruyama, S., Sakamoto, M., Mori, S., & Kodama, T. (2013). Photothermal therapy of tumors in lymph nodes using gold nanorods and near-infrared laser light. Journal of Controlled Release, 172(3), 879–884.PubMedCrossRefGoogle Scholar
  72. Oldenburg, S. J., Averitt, R. D., Westcott, S. L., & Halas, N. J. (1998). Nanoengineering of optical resonances. Chemical Physics Letters, 288(2–4), 243–247.CrossRefGoogle Scholar
  73. Papavassiliou, G. C. (1979). Optical properties of small inorganic and organic metal particles. Progress in Solid State Chemistry, 12(3–4), 185–271.CrossRefGoogle Scholar
  74. Pérez-Hernández, M., del Pino, P., Mitchell, S. G., Moros, M., Stepien, G., Pelaz, B., Parak, W. J., Gálvez, E. M., Pardo, J., & de la Fuente, J. M. (2015). Dissecting the molecular mechanism of apoptosis during photothermal therapy using gold nanoprisms. ACS Nano, 9(1), 52–61.PubMedCrossRefGoogle Scholar
  75. Pissuwan, D., Valenzuela, S. M., Killingsworth, M. C., Xu, X., & Cortie, M. B. (2007). Targeted destruction of murine macrophage cells with bioconjugated gold nanorods. Journal of Nanoparticle Research, 9(6), 1109–1124.CrossRefGoogle Scholar
  76. Pitsillides, C. M., Joe, E. K., Wei, X., Anderson, R. R., & Lin, C. P. (2003). Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophysical Journal, 84(6), 4023–4032.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Ramos, M., & Sanchez. (2012). Induction of cell death in a glioblastoma line by hyperthermic therapy based on gold nanorods. International Journal of Nanomedicine, 7, 1511–1523.CrossRefGoogle Scholar
  78. Rodríguez-Oliveros, R., & Sánchez-Gil, J. A. (2011). Gold nanostars as thermoplasmonic nanoparticles for optical heating. Optics Express, 20(1), 621–626.CrossRefGoogle Scholar
  79. Schwartzberg, A. M., Olson, T. Y., Talley, C. E., & Zhang, J. Z. (2006). Synthesis, characterization, and tunable optical properties of hollow gold nanospheres. The Journal of Physical Chemistry B, 110(40), 19935–19944.PubMedCrossRefGoogle Scholar
  80. Sheikholeslami, F., Fekrazad, R., Rasaee, & Ardestani, S. (2011). Treatment of oral squamous cell carcinoma using anti-hER2 immunonanoshells. International Journal of Nanomedicine, 6, 2749–2755.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Shi, P., Qu, K., Wang, J., Li, M., Ren, J., & Qu, X. (2012). PH-responsive NIR enhanced drug release from gold nanocages possesses high potency against cancer cells. Chemical Communications, 48(61), 7640–7642.PubMedCrossRefPubMedCentralGoogle Scholar
  82. Skrabalak, S. E., Chen, J., Sun, Y., Lu, X., Au, L., Cobley, C. M., & Xia, Y. (2008). Gold nanocages: Synthesis, properties, and applications. Accounts of Chemical Research, 41(12), 1587–1595.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Stern, J. M., Stanfield, J., Kabbani, W., Hsieh, J.-T., & Cadeddu, J. A. (2008). Selective prostate cancer thermal ablation with laser activated gold nanoshells. The Journal of Urology, 179(2), 748–753.PubMedCrossRefPubMedCentralGoogle Scholar
  84. Sultan, R. A. (1990). Tumour ablation by laser in general surgery. Lasers in Medical Science, 5(2), 185–193.CrossRefGoogle Scholar
  85. Sun, X., Huang, X., Yan, X., Wang, Y., Guo, J., Jacobson, O., Liu, D., Szajek, L. P., Zhu, W., Niu, G., Kiesewetter, D. O., Sun, S., & Chen, X. (2014a). Chelator-Free64Cu-integrated gold nanomaterials for positron emission tomography imaging guided photothermal cancer therapy. ACS Nano, 8(8), 8438–8446.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Sun, T., Wang, Y., Xu, J., Zhao, X., Vangveravong, S., Mach, R. H., & Xia, Y. (2014b). Using SV119-gold nanocage conjugates to eradicate cancer stem cells through a combination of photothermal and chemo therapies. Advanced Healthcare Materials, 3(8), 1283–1291.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Turkevich, J., Stevenson, P. C., & Hillier, J. (1951). A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society, 11, 55–75.CrossRefGoogle Scholar
  88. Van de Broek, B., Devoogdt, N., D’Hollander, A., Gijs, H.-L., Jans, K., Lagae, L., Muyldermans, S., Maes, G., & Borghs, G. (2011). Specific cell targeting with nanobody conjugated branched gold nanoparticles for photothermal therapy. ACS Nano, 5(6), 4319–4328.PubMedCrossRefPubMedCentralGoogle Scholar
  89. Vigderman, L., & Zubarev, E. R. (2013). High-yield synthesis of gold nanorods with longitudinal SPR peak greater than 1200 nm using hydroquinone as a reducing agent. Chemistry of Materials, 25(8), 1450–1457.CrossRefGoogle Scholar
  90. Von Maltzahn, G., Park, J., Agrawal, A., Bandaru, N. K., Das, S. K., Sailor, M. J., & Bhatia, S. N. (2009). Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Research, 69(9), 3892–3900.PubMedCentralCrossRefGoogle Scholar
  91. Wang, J., Zhu, G., You, M., Song, E., Shukoor, M. I., Zhang, K., Altman, M. B., Chen, Y., Zhu, Z., Huang, C. Z., & Tan, W. (2012). Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy. ACS Nano, 6(6), 5070–5077.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Wang, J., Sefah, K., Altman, M. B., Chen, T., You, M., Zhao, Z., Huang, C. Z., & Tan, W. (2013). Aptamer-conjugated nanorods for targeted photothermal therapy of prostate cancer stem cells. Chemistry – An Asian Journal, 8(10), 2417–2422.CrossRefGoogle Scholar
  93. Wang, D., Xu, Z., Yu, H., Chen, X., Feng, B., Cui, Z., Lin, B., Yin, Q., Zhang, Z., Chen, C., Wang, J., Zhang, W., & Li, Y. (2014). Treatment of metastatic breast cancer by combination of chemotherapy and photothermal ablation using doxorubicin-loaded DNA wrapped gold nanorods. Biomaterials, 35(29), 8374–8384.PubMedCrossRefGoogle Scholar
  94. Wu, C., Yu, C., & Chu, M. (2011). A gold nanoshell with a silica inner shell synthesized using liposome templates for doxorubicin loading and near-infrared photothermal therapy. International Journal of Nanomedicine, 6, 807–813.PubMedPubMedCentralGoogle Scholar
  95. Wust, P., Hildebrandt, B., Sreenivasa, G., Rau, B., Gellermann, J., Riess, H., Felix, R., & Schlag, P. (2002). Hyperthermia in combined treatment of cancer. The Lancet Oncology, 3(8), 487–497.PubMedCrossRefGoogle Scholar
  96. Xiao, P., Li, Q., Joo, Y., Nam, J., Hwang, S., Song, J., Kim, S., Joo, C., & Kim, K. H. (2013). Detection of pH-induced aggregation of “smart” gold nanoparticles with photothermal optical coherence tomography. Optics Letters, 38(21), 4429–4432.PubMedCrossRefGoogle Scholar
  97. Xu, C., Yang, D., Mei, L., Li, Q., Zhu, H., & Wang, T. (2013). Targeting chemophotothermal therapy of hepatoma by gold nanorods/graphene oxide core/shell nanocomposites. ACS Applied Materials & Interfaces, 5(24), 12911–12920.CrossRefGoogle Scholar
  98. Yang, X., Liu, X., Liu, Z., Pu, F., Ren, J., & Qu, X. (2012). Near-infrared light-triggered, targeted drug delivery to cancer cells by aptamer gated nanovehicles. Advanced Materials, 24(21), 2890–2895.PubMedCrossRefGoogle Scholar
  99. Yang, J., Shen, D., Zhou, L., Li, W., Li, X., Yao, C., Wang, R., El-Toni, A. M., Zhang, F., & Zhao, D. (2013). Spatially confined fabrication of Core–Shell gold Nanocages@Mesoporous silica for near-infrared controlled photothermal drug release. Chemistry of Materials, 25(15), 3030–3037.CrossRefGoogle Scholar
  100. Yavuz, M. S., Cheng, Y., Chen, J., Cobley, C. M., Zhang, Q., Rycenga, M., Xie, J., Kim, C., Song, K. H., Schwartz, A. G., Wang, L. V., & Xia, Y. (2009). Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nature Materials, 8(12), 935–939.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Yeager, D., Chen, Y.-S., Litovsky, S., & Emelianov, S. (2014). Intravascular photoacoustics for image-guidance and temperature monitoring during plasmonic photothermal therapy of atherosclerotic plaques: A feasibility study. Theranostics, 4(1), 36–46.CrossRefGoogle Scholar
  102. You, J., Zhang, R., Xiong, C., Zhong, M., Melancon, M., Gupta, S., Nick, A. M., Sood, A. K., & Li, C. (2012). Effective photothermal chemotherapy using doxorubicin-loaded gold nanospheres that target EphB4 receptors in tumors. Cancer Research, 72(18), 4777–4786.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Yuan, H., Khoury, C. G., Wilson, C. M., Grant, G. A., Bennett, A. J., & Vo-Dinh, T. (2012a). In vivo particle tracking and photothermal ablation using plasmon-resonant gold nanostars. Nanomedicine: Nanotechnology, Biology and Medicine, 8(8), 1355–1363.CrossRefGoogle Scholar
  104. Yuan, H., Fales, A. M., & Vo-Dinh, T. (2012b). TAT peptide-functionalized gold nanostars: Enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance. Journal of the American Chemical Society, 134(28), 11358–11361.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Zharov, V. P., Kim, J. W., Curiel, D. T., & Everts, M. (2005). Self-assembling nanoclusters in living systems: Application for integrated photothermal nanodiagnostics and nanotherapy. Nanomedicine: Nanotechnology, Biology and Medicine, 1(4), 326–345.CrossRefGoogle Scholar
  106. Zhang, Z., Wang, J., Nie, X., Wen, T., Ji, Y., Wu, X., Zhao, Y., & Chen, C. (2014). Near infrared laser-induced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods. Journal of the American Chemical Society, 136(20), 7317–7326.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Basic SciencesIndian Institute of Technology MandiKamand, MandiIndia
  2. 2.Department of BiotechnologyBITS Pilani, Dubai Campus, Dubai International Academic CityDubaiUAE
  3. 3.Centre for NanotechnologyIndian Institute of Technology GuwahatiGuwahatiIndia

Personalised recommendations