Advertisement

Novel Therapeutics and Diagnostics Strategies Based on Engineered Nanobiomaterials

  • Srijeeb Karmakar
  • Varun Saxena
  • Pranjal Chandra
  • Lalit M. PandeyEmail author
Chapter

Abstract

The emergence of nanotechnology has opened up new avenues of research focusing on diagnostic and therapeutic advancement. In light of that, many of the previous problems associated with treatment failure and progress of diseases are being addressed through nanotechnology. For instance, the application of a spectrum of nanomaterials has shown promising possibilities in slow and controlled drug release, targeted delivery, biocompatibility and synergistic delivery of multiple drugs. Engineered nanomaterials in this direction have further attracted researchers to exploit/tune the features required for a given application. This book chapter, therefore, is aimed at outlining the merits of applying nanotechnology in the development of nanocarriers for drug delivery, nanofilms for wound healing, nanocomposite systems for synergistic therapeutics and diagnostics.

Keywords

Nanocomposite Nanoparticles Nanoemulsion Drug delivery Therapeutics Biocompatibility 

References

  1. Abbott, N. J. (2013). Blood–brain barrier structure and function and the challenges for CNS drug delivery. Journal of Inherited Metabolic Disease, 36(3), 437–449.PubMedCrossRefGoogle Scholar
  2. Abou-Aiad, T., Abd-El-Nour, K., Hakim, I., & Elsabee, M. (2006). Dielectric and interaction behavior of chitosan/polyvinyl alcohol and chitosan/polyvinyl pyrrolidone blends with some antimicrobial activities. Polymer, 47(1), 379–389.CrossRefGoogle Scholar
  3. Aggarwal, B. B., Kumar, A., & Bharti, A. C. (2003). Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Research, 23(1/A), 363–398.PubMedGoogle Scholar
  4. Ali, M. R., Wu, Y., Ghosh, D., Do, B. H., Chen, K., Dawson, M. R., Fang, N., Sulchek, T. A., & El-Sayed, M. A. (2017a). Nuclear membrane-targeted gold nanoparticles inhibit cancer cell migration and invasion. ACS Nano, 11(4), 3716–3726.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Ali, M. R., Wu, Y., Tang, Y., Xiao, H., Chen, K., Han, T., Fang, N., Wu, R., & El-Sayed, M. A. (2017b). Targeting cancer cell integrins using gold nanorods in photothermal therapy inhibits migration through affecting cytoskeletal proteins. Proceedings of the National Academy of Sciences, 114(28), E5655–E5663.CrossRefGoogle Scholar
  6. An, L., Yan, C., Mu, X., Tao, C., Tian, Q., Lin, J., & Yang, S. (2018). Paclitaxel-induced ultrasmall Gallic acid-Fe@BSA self-assembly with enhanced MRI performance and tumor accumulation for cancer theranostics. ACS Applied Materials & Interfaces, 10(34), 28483–28493.CrossRefGoogle Scholar
  7. Arosio, D., & Casagrande, C. (2016). Advancement in integrin facilitated drug delivery. Advanced Drug Delivery Reviews, 97, 111–143.PubMedCrossRefGoogle Scholar
  8. Artemov, D., Mori, N., Okollie, B., & Bhujwalla, Z. M. (2003). MR molecular imaging of the Her-2/neu receptor in breast cancer cells using targeted iron oxide nanoparticles. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 49(3), 403–408.CrossRefGoogle Scholar
  9. Aslani, A., Ghahremani, M., Zhang, M., Bennett, L. H., & Torre, E. D. (2018). Customizing magnetic and structural properties of nanomaterials. IEEE Transactions on Magnetics, 1–5.Google Scholar
  10. Badoga, S., Pattanayek, S. K., Kumar, A., & Pandey, L. M. (2011). Effect of polymer–surfactant structure on its solution viscosity. Asia-Pacific Journal of Chemical Engineering, 6(1), 78–84.CrossRefGoogle Scholar
  11. Bai, X., Wang, J., Mu, X., Yang, J., Liu, H., Xu, F., Jing, Y., Liu, L., Xue, X., & Dai, H. (2017). Ultrasmall WS2 quantum dots with visible fluorescence for protection of cells and animal models from radiation-induced damages. ACS Biomaterials Science & Engineering, 3(3), 460–470.CrossRefGoogle Scholar
  12. Bajpai, S., Chand, N., Ahuja, S., & Roy, M. (2015). Curcumin/cellulose micro crystals/chitosan films: Water absorption behavior and in vitro cytotoxicity. International Journal of Biological Macromolecules, 75, 239–247.PubMedCrossRefGoogle Scholar
  13. Bansal, R., Nagorniewicz, B., Storm, G., & Prakash, J. (2017). Relaxin-coated superparamagnetic iron-oxide nanoparticles as a novel theranostic approach for the diagnosis and treatment of liver fibrosis. Journal of Hepatology, 66(1), S43.CrossRefGoogle Scholar
  14. Baranes, K., Shevach, M., Shefi, O., & Dvir, T. (2015). Gold nanoparticle-decorated scaffolds promote neuronal differentiation and maturation. Nano Letters, 16(5), 2916–2920.PubMedCrossRefGoogle Scholar
  15. Baranwal, A., Kumar, A., Priyadharshini, A., Oggu, G. S., Bhatnagar, I., Srivastava, A., & Chandra, P. (2018). Chitosan: An undisputed bio-fabrication material for tissue engineering and bio-sensing applications. International Journal of Biological Macromolecules, 110, 110–123.PubMedCrossRefGoogle Scholar
  16. Beach, J., Banerjee, T., Kallu, J., Higginbotham, R., & Gross, R. (2017). Combination therapy of prostate cancer utilizing functionalized iron oxide nanoparticles carrying TNF-a and lactonic sophorolipids.Google Scholar
  17. Bhagat, S., Srikanth Vallabani, N. V., Shutthanandan, V., Bowden, M., Karakoti, A. S., & Singh, S. (2018). Gold core/ceria shell-based redox active nanozyme mimicking the biological multienzyme complex phenomenon. Journal of Colloid and Interface Science, 513, 831–842.PubMedCrossRefGoogle Scholar
  18. Bhatnagar, I., Mahato, K., Ealla, K. K. R., Asthana, A., & Chandra, P. (2018). Chitosan stabilized gold nanoparticle mediated self-assembled glip nanobiosensor for diagnosis of invasive aspergillosis. International Journal of Biological Macromolecules, 110, 449–456.PubMedCrossRefGoogle Scholar
  19. Bizzarri, A. R., Moscetti, I., & Cannistraro, S. (2018). Surface enhanced Raman spectroscopy based immunosensor for ultrasensitive and selective detection of wild type p53 and mutant p53R175H. Analytica Chimica Acta, 1029, 86–96.PubMedCrossRefGoogle Scholar
  20. Bobo, D., Robinson, K. J., Islam, J., Thurecht, K. J., & Corrie, S. R. (2016). Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharmaceutical Research, 33(10), 2373–2387.PubMedCrossRefGoogle Scholar
  21. Bressler, E. M., Kim, J., Shmueli, R. B., Mirando, A. C., Bazzazi, H., Lee, E., Popel, A. S., Pandey, N. B., & Green, J. J. (2018). Biomimetic peptide display from a polymeric nanoparticle surface for targeting and antitumor activity to human triple-negative breast cancer cells. Journal of Biomedical Materials Research Part A, 106, 1753–1764.PubMedCrossRefGoogle Scholar
  22. Buschmann, J., Balli, E., Hess, S. C., Stark, W. J., Cinelli, P., Märsmann, S., Welti, M., Weder, W., & Jungraithmayr, W. (2017). Effects of seeding adipose-derived stem cells on electrospun nanocomposite used as chest wall graft in a murine model. Injury, 48(10), 2080–2088.PubMedCrossRefGoogle Scholar
  23. Chandra, P. (2016). Nanobiosensors for personalized and onsite biomedical diagnosis. The Institution of Engineering and Technology.Google Scholar
  24. Chandra, P., Maurya, P. K., Kumar, P., Tripathi, P., & Srivastava, A. (2009). Diagnosis of rheumatic infections caused by group A Streptococcus pyogenes: future investigation by nanotechnology. Digest Journal of Nanomaterials & Biostructures (DJNB), 4(4), 645–650.Google Scholar
  25. Chandra, P., Das, D., & Abdelwahab, A. A. (2010). Gold nanoparticles in molecular diagnostics and therapeutics. Digest Journal of Nanomaterials & Biostructures (DJNB), 5(2), 363–367.Google Scholar
  26. Chandra, P., Noh, H.-B., Won, M.-S., & Shim, Y.-B. (2011). Detection of daunomycin using phosphatidylserine and aptamer co-immobilized on Au nanoparticles deposited conducting polymer. Biosensors and Bioelectronics, 26(11), 4442–4449.PubMedCrossRefGoogle Scholar
  27. Chandra, P., Son, N. X., Noh, H.-B., Goyal, R. N., & Shim, Y.-B. (2013). Investigation on the downregulation of dopamine by acetaminophen administration based on their simultaneous determination in urine. Biosensors and Bioelectronics, 39(1), 139–144.PubMedCrossRefGoogle Scholar
  28. Chen, X.-J., Zhang, X.-Q., Liu, Q., Zhang, J., & Zhou, G. (2018a). Nanotechnology: A promising method for oral cancer detection and diagnosis. Journal of Nanobiotechnology, 16(1), 52.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Chen, Y., Yan, X., Zhao, J., Feng, H., Li, P., Tong, Z., Yang, Z., Li, S., Yang, J., & Jin, S. (2018b). Preparation of the chitosan/poly (glutamic acid)/alginate polyelectrolyte complexing hydrogel and study on its drug releasing property. Carbohydrate Polymers, 191, 8–16.PubMedCrossRefGoogle Scholar
  30. Cotin, G., Piant, S., Mertz, D., Felder-Flesch, D., & Begin-Colin, S. (2018). Iron oxide nanoparticles for biomedical applications. In Iron oxide nanoparticles for biomedical applications: Synthesis, functionalization, and application (pp. 43–88). Cambridge, MA: Elsevier.CrossRefGoogle Scholar
  31. da Silva, J., Pereira, F. V., & Druzian, J. I. (2012). Cassava starch-based films plasticized with sucrose and inverted sugar and reinforced with cellulose nanocrystals. Journal of Food Science, 77(6), N14–N19.PubMedCrossRefGoogle Scholar
  32. Dabbousi, B. O., Rodriguez-Viejo, J., Mikulec, F. V., Heine, J. R., Mattoussi, H., Ober, R., Jensen, K. F., & Bawendi, M. G. (1997). (CdSe) ZnS core− shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. The Journal of Physical Chemistry B, 101(46), 9463–9475.CrossRefGoogle Scholar
  33. Dai, C., Ciccotosto, G. D., Cappai, R., Tang, S., Li, D., Xie, S., Xiao, X., & Velkov, T. (2018). Curcumin attenuates colistin-induced neurotoxicity in N2a cells via anti-inflammatory activity, suppression of oxidative stress, and apoptosis. Molecular Neurobiology, 55(1), 421–434.PubMedCrossRefGoogle Scholar
  34. Das, T., Kolli, V., Karmakar, S., & Sarkar, N. (2017). Functionalisation of polyvinylpyrrolidone on gold nanoparticles enhances its anti-amyloidogenic propensity towards hen egg white lysozyme. Biomedicine, 5(2), 19.Google Scholar
  35. Deck, L. M., Hunsaker, L. A., Vander Jagt, T. A., Whalen, L. J., Royer, R. E., & Vander Jagt, D. L. (2018). Activation of anti-oxidant Nrf2 signaling by enone analogues of curcumin. European Journal of Medicinal Chemistry, 143, 854–865.PubMedCrossRefGoogle Scholar
  36. Deka, S., Saxena, V., Hasan, A., Chandra, P., & Pandey, L. M. (2018). Synthesis, characterization and in vitro analysis of α-Fe2O3-GdFeO3 biphasic materials as therapeutic agent for magnetic hyperthermia applications. Materials Science and Engineering: C, 92, 932–941.CrossRefGoogle Scholar
  37. Deng, X., Luan, Q., Chen, W., Wang, Y., Wu, M., Zhang, H., & Jiao, Z. (2009). Nanosized zinc oxide particles induce neural stem cell apoptosis. Nanotechnology, 20(11), 115101.PubMedCrossRefGoogle Scholar
  38. Dimitriou, N. M., Tsekenis, G., Balanikas, E. C., Pavlopoulou, A., Mitsiogianni, M., Mantso, T., Pashos, G., Boudouvis, A. G., Lykakis, I. N., & Tsigaridas, G. (2017). Gold nanoparticles, radiations and the immune system: Current insights into the physical mechanisms and the biological interactions of this new alliance towards cancer therapy. Pharmacology & Therapeutics, 178, 1–17.CrossRefGoogle Scholar
  39. Dong, F., Feng, E., Zheng, T., & Tian, Y. (2018). In situ synthesized silver nanoclusters for tracking the role of telomerase activity in the differentiation of mesenchymal stem cells to neural stem cells. ACS Applied Materials & Interfaces, 10(2), 2051–2057.CrossRefGoogle Scholar
  40. Elkhenany, H., Bourdo, S., Hecht, S., Donnell, R., Gerard, D., Abdelwahed, R., Lafont, A., Alghazali, K., Watanabe, F., Biris, A. S., Anderson, D., & Dhar, M. (2017). Graphene nanoparticles as osteoinductive and osteoconductive platform for stem cell and bone regeneration. Nanomedicine: Nanotechnology, Biology and Medicine, 13(7), 2117–2126.CrossRefGoogle Scholar
  41. Ezazi, N. Z., Shahbazi, M.-A., Shatalin, Y. V., Nadal, E., Mäkilä, E., Salonen, J., Kemell, M., Correia, A., Hirvonen, J., & Santos, H. A. (2018). Conductive vancomycin-loaded mesoporous silica polypyrrole-based scaffolds for bone regeneration. International Journal of Pharmaceutics, 536(1), 241–250.CrossRefGoogle Scholar
  42. Fan, Z., Zhou, S., Garcia, C., Fan, L., & Zhou, J. (2017). pH-responsive fluorescent graphene quantum dots for fluorescence-guided cancer surgery and diagnosis. Nanoscale, 9(15), 4928–4933.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Feynman, R. P. (1959). There’s plenty of room at the bottom. Miniaturization, 282–296.Google Scholar
  44. Fiala, M., Kooij, G., Wagner, K., Hammock, B., & Pellegrini, M. (2017). Modulation of innate immunity of patients with Alzheimer’s disease by omega-3 fatty acids. The FASEB Journal, 31(8), 3229–3239.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Franci, G., Falanga, A., Galdiero, S., Palomba, L., Rai, M., Morelli, G., & Galdiero, M. (2015). Silver nanoparticles as potential antibacterial agents. Molecules, 20(5), 8856–8874.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Gan, Q., Wang, T., Cochrane, C., & McCarron, P. (2005). Modulation of surface charge, particle size and morphological properties of chitosan–TPP nanoparticles intended for gene delivery. Colloids and Surfaces B: Biointerfaces, 44(2–3), 65–73.PubMedCrossRefGoogle Scholar
  47. Gao, G., Zhang, M., Gong, D., Chen, R., Hu, X., & Sun, T. (2017). The size-effect of gold nanoparticles and nanoclusters in the inhibition of amyloid-β fibrillation. Nanoscale, 9(12), 4107–4113.PubMedCrossRefGoogle Scholar
  48. Gomes, M. A., Brandão-Silva, A. C., Avila, J. F. M., Alencar, M. A. R. C., Rodrigues, J. J., & Macedo, Z. S. (2018). Particle size effect on structural and optical properties of Y2O3:Nd3+ nanoparticles prepared by coconut water-assisted sol-gel route. Journal of Luminescence, 200, 43–49.CrossRefGoogle Scholar
  49. Han, J. W., Gurunathan, S., Choi, Y.-J., & Kim, J.-H. (2017). Dual functions of silver nanoparticles in F9 teratocarcinoma stem cells, a suitable model for evaluating cytotoxicity-and differentiation-mediated cancer therapy. International Journal of Nanomedicine, 12, 7529.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Hasan, A., & Pandey, L. (2017). Self-assembled monolayers in biomaterials. In Nanobiomaterials (pp. 137–178). Elsevier.Google Scholar
  51. Hasan, A., Waibhaw, G., Tiwari, S., Dharmalingam, K., Shukla, I., & Pandey, L. M. (2017). Fabrication and characterization of chitosan, polyvinylpyrrolidone, and cellulose nanowhiskers nanocomposite films for wound healing drug delivery application. Journal of Biomedical Materials Research Part A, 105(9), 2391–2404.PubMedCrossRefGoogle Scholar
  52. Hasan, A., Saxena, V., & Pandey, L. M. (2018a). Surface functionalization of Ti6Al4V via self-assembled monolayers for improved protein adsorption and fibroblast adhesion. Langmuir, 34(11), 3494–3506.PubMedCrossRefGoogle Scholar
  53. Hasan, A., Waibhaw, G., Saxena, V., & Pandey, L. M. (2018b). Nano-biocomposite scaffolds of chitosan, carboxymethyl cellulose and silver nanoparticle modified cellulose nanowhiskers for bone tissue engineering applications. International Journal of Biological Macromolecules, 111, 923–934.PubMedCrossRefGoogle Scholar
  54. Hasanzadeh, M., Tagi, S., Solhi, E., Shadjou, N., Jouyban, A., & Mokhtarzadeh, A. (2018). Immunosensing of breast cancer prognostic marker in adenocarcinoma cell lysates and unprocessed human plasma samples using gold nanostructure coated on organic substrate. International Journal of Biological Macromolecules, 118(Pt A), 1082.PubMedCrossRefGoogle Scholar
  55. Hu, J., Youssefian, S., Obayemi, J., Malatesta, K., Rahbar, N., & Soboyejo, W. (2018a). Investigation of adhesive interactions in the specific targeting of Triptorelin-conjugated PEG-coated magnetite nanoparticles to breast cancer cells. Acta Biomaterialia, 71, 363–378.PubMedCrossRefGoogle Scholar
  56. Hu, K., Chen, X., Chen, W., Zhang, L., Li, J., Ye, J., Zhang, Y., Zhang, L., Li, C.-H., & Yin, L. (2018b). Neuroprotective effect of gold nanoparticles composites in Parkinson’s disease model. Nanomedicine: Nanotechnology, Biology and Medicine, 14(4), 1123–1136.CrossRefGoogle Scholar
  57. Jain, P. K., Lee, K. S., El-Sayed, I. H., & El-Sayed, M. A. (2006). Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. The Journal of Physical Chemistry B, 110(14), 7238–7248.PubMedCrossRefGoogle Scholar
  58. Jasieniak, J., Smith, L., Van Embden, J., Mulvaney, P., & Califano, M. (2009). Re-examination of the size-dependent absorption properties of CdSe quantum dots. The Journal of Physical Chemistry C, 113(45), 19468–19474.CrossRefGoogle Scholar
  59. Kadappan, A. S., Guo, C., Gumus, C. E., Bessey, A., Wood, R. J., McClements, D. J., & Liu, Z. (2018). The efficacy of nanoemulsion-based delivery to improve vitamin D absorption: Comparison of in vitro and in vivo studies. Molecular Nutrition & Food Research, 62(4), 1700836.CrossRefGoogle Scholar
  60. Kang, H., Zhang, K., Pan, Q., Lin, S., Wong, D. S. H., Li, J., Lee, W. Y.-W., Yang, B., Han, F., Li, G., Li, B., & Bian, L. (2018). Remote control of intracellular calcium using upconversion nanotransducers regulates stem cell differentiation in vivo. Advanced Functional Materials, 28(41), 1802642.CrossRefGoogle Scholar
  61. Kango, S., Kalia, S., Celli, A., Njuguna, J., Habibi, Y., & Kumar, R. (2013). Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review. Progress in Polymer Science, 38(8), 1232–1261.CrossRefGoogle Scholar
  62. Kargozar, S., Mozafari, M., Hashemian, S. J., Brouki Milan, P., Hamzehlou, S., Soleimani, M., Joghataei, M. T., Gholipourmalekabadi, M., Korourian, A., & Mousavizadeh, K. (2018). Osteogenic potential of stem cells-seeded bioactive nanocomposite scaffolds: A comparative study between human mesenchymal stem cells derived from bone, umbilical cord Wharton’s jelly, and adipose tissue. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 106(1), 61–72.PubMedCrossRefGoogle Scholar
  63. Karim, M. N., Anderson, S. R., Singh, S., Ramanathan, R., & Bansal, V. (2018a). Nanostructured silver fabric as a free-standing NanoZyme for colorimetric detection of glucose in urine. Biosensors and Bioelectronics, 110, 8–15.PubMedCrossRefGoogle Scholar
  64. Karim, M. N., Singh, M., Weerathunge, P., Bian, P., Zheng, R., Dekiwadia, C., Ahmed, T., Walia, S., Della Gaspera, E., Singh, S., Ramanathan, R., & Bansal, V. (2018b). Visible-light-triggered reactive-oxygen-species-mediated antibacterial activity of peroxidase-mimic CuO nanorods. ACS Applied Nano Materials, 1(4), 1694–1704.CrossRefGoogle Scholar
  65. Karmakar, S. (2017). Studies on effect of proline capped gold nanoparticles on Hen Egg White Lysozyme (HEWL) and Cytochrome C (Cyt C) amyloidogenesis.Google Scholar
  66. Kawashima, Y., Yamamoto, H., Takeuchi, H., & Kuno, Y. (2000). Mucoadhesive DL-lactide/glycolide copolymer nanospheres coated with chitosan to improve oral delivery of elcatonin. Pharmaceutical Development and Technology, 5(1), 77–85.PubMedCrossRefGoogle Scholar
  67. Kim, S. U., & De Vellis, J. (2009). Stem cell-based cell therapy in neurological diseases: A review. Journal of Neuroscience Research, 87(10), 2183–2200.PubMedCrossRefGoogle Scholar
  68. Koh, W. C. A., Chandra, P., Kim, D.-M., & Shim, Y.-B. (2011). Electropolymerized self-assembled layer on gold nanoparticles: Detection of inducible nitric oxide synthase in neuronal cell culture. Analytical Chemistry, 83(16), 6177–6183.PubMedCrossRefGoogle Scholar
  69. Kumar, C. S. (2018). Nanotechnology characterization tools for biosensing and medical diagnosis. Berlin: Springer.CrossRefGoogle Scholar
  70. Kumar, M., Misra, A., Babbar, A., Mishra, A., Mishra, P., & Pathak, K. (2008). Intranasal nanoemulsion based brain targeting drug delivery system of risperidone. International Journal of Pharmaceutics, 358(1–2), 285–291.PubMedCrossRefGoogle Scholar
  71. Kumar, B., Smita, K., Cumbal, L., & Debut, A. (2017). Green synthesis of silver nanoparticles using Andean blackberry fruit extract. Saudi Journal of Biological Sciences, 24(1), 45–50.PubMedCrossRefGoogle Scholar
  72. Kumar, R., Kaur, K., Pandey, S. K., Kumar, R., Uppal, S., & Mehta, S. (2018). Fabrication of benzylisothiocynate encapsulated nanoemulsion through ultrasonication: Augmentation of anticancer and antimicrobial attributes. Journal of Molecular Liquids, 263, 324–333.CrossRefGoogle Scholar
  73. Kwon, G. S. (2003). Polymeric micelles for delivery of poorly water-soluble compounds. Critical Reviews™ in Therapeutic Drug Carrier Systems, 20(5), 357–403.CrossRefGoogle Scholar
  74. Laurent, S., Dutz, S., Häfeli, U. O., & Mahmoudi, M. (2011). Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles. Advances in Colloid and Interface Science, 166(1–2), 8–23.PubMedCrossRefGoogle Scholar
  75. Lee, H., Kim, C., Lee, D., Park, J. H., Searson, P. C., & Lee, K. H. (2017a). Optical coding of fusion genes using multicolor quantum dots for prostate cancer diagnosis. International Journal of Nanomedicine, 12, 4397.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Lee, S. S., Choi, G. E., Lee, H. J., Kim, Y., Choy, J.-H., & Jeong, B. (2017b). Layered double hydroxide and polypeptide thermogel nanocomposite system for chondrogenic differentiation of stem cells. ACS Applied Materials & Interfaces, 9(49), 42668–42675.CrossRefGoogle Scholar
  77. Lekshmi, N. P., Sumi, S. B., Viveka, S., Jeeva, S., & Brindha, J. R. (2017). Antibacterial activity of nanoparticles from Allium sp. Journal of Microbiology and Biotechnology Research, 2(1), 115–119.Google Scholar
  78. Li, S., Zhou, S., Li, Y., Li, X., Zhu, J., Fan, L., & Yang, S. (2017). Exceptionally high payload of the IR780 iodide on folic acid-functionalized graphene quantum dots for targeted Photothermal therapy. ACS Applied Materials & Interfaces, 9(27), 22332–22341.CrossRefGoogle Scholar
  79. Lim, E.-K., Chung, B. H., & Chung, S. J. (2018). Recent advances in pH-sensitive polymeric nanoparticles for smart drug delivery in cancer therapy. Current Drug Targets, 19(4), 300–317.PubMedCrossRefGoogle Scholar
  80. Lin, L.-S., Cong, Z.-X., Cao, J.-B., Ke, K.-M., Peng, Q.-L., Gao, J., Yang, H.-H., Liu, G., & Chen, X. (2014). Multifunctional Fe3O4@ polydopamine core–shell nanocomposites for intracellular mRNA detection and imaging-guided photothermal therapy. ACS Nano, 8(4), 3876–3883.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Liu, D., Yi, C., Zhang, D., Zhang, J., & Yang, M. (2010). Inhibition of proliferation and differentiation of mesenchymal stem cells by carboxylated carbon nanotubes. ACS Nano, 4(4), 2185–2195.PubMedCrossRefGoogle Scholar
  82. Liu, Q., Ma, C., Liu, X.-P., Wei, Y.-P., Mao, C.-J., & Zhu, J.-J. (2017). A novel electrochemiluminescence biosensor for the detection of microRNAs based on a DNA functionalized nitrogen doped carbon quantum dots as signal enhancers. Biosensors and Bioelectronics, 92, 273–279.PubMedCrossRefGoogle Scholar
  83. Lv, R., Yang, P., Chen, G., Gai, S., Xu, J., & Prasad, P. N. (2017a). Dopamine-mediated photothermal theranostics combined with up-conversion platform under near infrared light. Scientific Reports, 7(1), 13562.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Lv, Y., Cao, Y., Li, P., Liu, J., Chen, H., Hu, W., & Zhang, L. (2017b). Ultrasound-triggered destruction of folate-functionalized mesoporous silica nanoparticle-loaded microbubble for targeted tumor therapy. Advanced Healthcare Materials, 6(18), 1700354.CrossRefGoogle Scholar
  85. Ma, Q., Yang, J., Huang, X., Guo, W., Li, S., Zhou, H., Li, J., Cao, F., & Chen, Y. (2018). Poly(lactide-co-glycolide)-monomethoxy-poly-(polyethylene glycol) nanoparticles loaded with melatonin protect adipose-derived stem cells transplanted in infarcted heart tissue. Stem Cells, 36(4), 540–550.PubMedCrossRefGoogle Scholar
  86. Mahato, K., Prasad, A., Maurya, P., & Chandra, P. (2016). Nanobiosensors: Next generation point-of-care biomedical devices for personalized diagnosis. Journal of Anaytical and Bioanalytical Techniques, 7, e125.Google Scholar
  87. Marsich, E., Bellomo, F., Turco, G., Travan, A., Donati, I., & Paoletti, S. (2013). Nano-composite scaffolds for bone tissue engineering containing silver nanoparticles: Preparation, characterization and biological properties. Journal of Materials Science: Materials in Medicine, 24(7), 1799–1807.PubMedGoogle Scholar
  88. Michal, E. T., Lerner, D. J., & Pollman, M. J. (2015). Local delivery of water-soluble or water-insoluble therapeutic agents to the surface of body lumens. Google Patents.Google Scholar
  89. Mili, B., Das, K., Kumar, A., Saxena, A. C., Singh, P., Ghosh, S., & Bag, S. (2017). Preparation of NGF encapsulated chitosan nanoparticles and its evaluation on neuronal differentiation potentiality of canine mesenchymal stem cells. Journal of Materials Science: Materials in Medicine, 29(1), 4.PubMedGoogle Scholar
  90. Molfino, A., Amabile, M. I., Monti, M., Arcieri, S., Rossi Fanelli, F., & Muscaritoli, M. (2016). The role of docosahexaenoic acid (DHA) in the control of obesity and metabolic derangements in breast cancer. International Journal of Molecular Sciences, 17(4), 505.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Moreels, I., Lambert, K., Smeets, D., De Muynck, D., Nollet, T., Martins, J. C., Vanhaecke, F., Vantomme, A., Delerue, C., & Allan, G. (2009). Size-dependent optical properties of colloidal PbS quantum dots. ACS Nano, 3(10), 3023–3030.PubMedCrossRefGoogle Scholar
  92. Mu, X., Zhang, F., Kong, C., Zhang, H., Zhang, W., Ge, R., Liu, Y., & Jiang, J. (2017). EGFR-targeted delivery of DOX-loaded Fe3O4@ polydopamine multifunctional nanocomposites for MRI and antitumor chemo-photothermal therapy. International Journal of Nanomedicine, 12, 2899.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Nazar, H. (2018). The use of nanotechnology in disease diagnosis and molecular imaging. Lung Cancer, 15, 05.Google Scholar
  94. Nazıroğlu, M., Muhamad, S., & Pecze, L. (2017). Nanoparticles as potential clinical therapeutic agents in Alzheimer’s disease: Focus on selenium nanoparticles. Expert Review of Clinical Pharmacology, 10(7), 773–782.PubMedCrossRefGoogle Scholar
  95. Neun, B. W., & Dobrovolskaia, M. A. (2011). Method for in vitro analysis of nanoparticle thrombogenic properties. In Characterization of nanoparticles intended for drug delivery (pp. 225–235). New York: Springer.CrossRefGoogle Scholar
  96. Niwa, T., Takeuchi, H., Hino, T., Kunou, N., & Kawashima, Y. (1994). In vitro drug release behavior of D, L-lactide/glycolide copolymer (PLGA) nanospheres with nafarelin acetate prepared by a novel spontaneous emulsification solvent diffusion method. Journal of Pharmaceutical Sciences, 83(5), 727–732.PubMedCrossRefGoogle Scholar
  97. Ozturk, B., Argin, S., Ozilgen, M., & McClements, D. J. (2015). Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural biopolymers: Whey protein isolate and gum arabic. Food Chemistry, 188, 256–263.PubMedCrossRefGoogle Scholar
  98. Pacelli, S., Maloney, R., Chakravarti, A. R., Whitlow, J., Basu, S., Modaresi, S., Gehrke, S., & Paul, A. (2017). Controlling adult stem cell behavior using nanodiamond-reinforced hydrogel: Implication in bone regeneration therapy. Scientific Reports, 7(1), 6577.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Pandey, L. M. (2012). Effect of solid surface with self assembled monolayers on adsorption of proteins.Google Scholar
  100. Pandey, L. M., & Pattanayek, S. K. (2011). Hybrid surface from self-assembled layer and its effect on protein adsorption. Applied Surface Science, 257(10), 4731–4737.CrossRefGoogle Scholar
  101. Pandey, L. M., & Pattanayek, S. K. (2013a). Properties of competitively adsorbed BSA and fibrinogen from their mixture on mixed and hybrid surfaces. Applied Surface Science, 264, 832–837.CrossRefGoogle Scholar
  102. Pandey, L. M., & Pattanayek, S. K. (2013b). Relation between the wetting effect and the adsorbed amount of water-soluble polymers or proteins at various interfaces. Journal of Chemical & Engineering Data, 58(12), 3440–3446.CrossRefGoogle Scholar
  103. Pandey, L. M., Le Denmat, S., Delabouglise, D., Bruckert, F., Pattanayek, S. K., & Weidenhaupt, M. (2012). Surface chemistry at the nanometer scale influences insulin aggregation. Colloids and Surfaces B: Biointerfaces, 100, 69–76.PubMedCrossRefGoogle Scholar
  104. Pandey, L. M., Pattanayek, S. K., & Delabouglise, D. (2013). Properties of adsorbed bovine serum albumin and fibrinogen on self-assembled monolayers. The Journal of Physical Chemistry C, 117(12), 6151–6160.CrossRefGoogle Scholar
  105. Panyam, J., & Labhasetwar, V. (2003). Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Advanced Drug Delivery Reviews, 55(3), 329–347.PubMedCrossRefGoogle Scholar
  106. Parveen, S., Wani, A. H., Shah, M. A., Devi, H. S., Bhat, M. Y., & Koka, J. A. (2018). Preparation, characterization and antifungal activity of iron oxide nanoparticles. Microbial Pathogenesis, 115, 287–292.PubMedCrossRefGoogle Scholar
  107. Peng, X.-H., Qian, X., Mao, H., & Wang, A. Y. (2008). Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. International Journal of Nanomedicine, 3(3), 311.PubMedPubMedCentralGoogle Scholar
  108. Pohanka, M. (2017). Quantum dots in the therapy: Current trends and perspectives. Mini Reviews in Medicinal Chemistry, 17(8), 650–656.PubMedCrossRefGoogle Scholar
  109. Popara, J., Accomasso, L., Vitale, E., Gallina, C., Roggio, D., Iannuzzi, A., Raimondo, S., Rastaldo, R., Alberto, G., Catalano, F., Martra, G., Turinetto, V., Pagliaro, P., & Giachino, C. (2018). Silica nanoparticles actively engage with mesenchymal stem cells in improving acute functional cardiac integration. Nanomedicine, 13(10), 1121–1138.PubMedCrossRefGoogle Scholar
  110. Potter, T. M., Rodriguez, J. C., Neun, B. W., Ilinskaya, A. N., Cedrone, E., & Dobrovolskaia, M. A. (2018). In vitro assessment of nanoparticle effects on blood coagulation. In Characterization of nanoparticles intended for drug delivery (pp. 103–124). New York: Springer.CrossRefGoogle Scholar
  111. Prasad, A., Mahato, K., Chandra, P., Srivastava, A., Joshi, S. N., & Maurya, P. K. (2016a). Bioinspired composite materials: Applications in diagnostics and therapeutics. Journal of Molecular and Engineering Materials, 4(01), 1640004.CrossRefGoogle Scholar
  112. Prasad, A., Mahato, K., Maurya, P., & Chandra, P. (2016b). Biomaterials for biosensing applications. Journal of Analytical and Bioanalytical Techniques, 7, e124.Google Scholar
  113. Qiao, Y., Gumin, J., MacLellan, C. J., Gao, F., Bouchard, R., Lang, F. F., Stafford, R. J., & Melancon, M. P. (2018). Magnetic resonance and photoacoustic imaging of brain tumor mediated by mesenchymal stem cell labeled with multifunctional nanoparticle introduced via carotid artery injection. Nanotechnology, 29(16), 165101.PubMedCrossRefGoogle Scholar
  114. Qin, X., Chen, H., Yang, H., Wu, H., Zhao, X., Wang, H., Chour, T., Neofytou, E., Ding, D., Daldrup-Link, H., Heilshorn, S. C., Li, K., & Wu, J. C. (2018). Photoacoustic imaging of embryonic stem cell-derived cardiomyocytes in living hearts with ultrasensitive semiconducting polymer nanoparticles. Advanced Functional Materials, 28(1), 1704939.PubMedCrossRefGoogle Scholar
  115. Radhakrishnan, V. S., Dwivedi, S. P., Siddiqui, M. H., & Prasad, T. (2018). In vitro studies on oxidative stress-independent, Ag nanoparticles-induced cell toxicity of Candida albicans, an opportunistic pathogen. International Journal of Nanomedicine, 13, 91.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Rafiei, P., & Haddadi, A. (2017). Pharmacokinetic consequences of PLGA nanoparticles in docetaxel drug delivery. Pharmaceutical Nanotechnology, 5(1), 3–23.PubMedCrossRefGoogle Scholar
  117. Rather, H. A., Thakore, R., Singh, R., Jhala, D., Singh, S., & Vasita, R. (2018). Antioxidative study of cerium oxide nanoparticle functionalised PCL-Gelatin electrospun fibers for wound healing application. Bioactive Materials, 3(2), 201–211.PubMedCrossRefGoogle Scholar
  118. Reis, C. P., Neufeld, R. J., & Veiga, F. (2017). Preparation of drug-loaded polymeric nanoparticles. In Nanomedicine in cancer (pp. 197–240). Singapore: Pan Stanford.Google Scholar
  119. Roy, K., Mao, H.-Q., Huang, S.-K., & Leong, K. W. (1999). Oral gene delivery with chitosan–DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nature Medicine, 5(4), 387.PubMedCrossRefGoogle Scholar
  120. Sahoo, S., Singh, D., Singh, P., & Minz, A. P. (2018). Advanced nanotherapeutic systems for drug delivery and imaging in cancer. In Multifunctional nanocarriers for contemporary healthcare applications (pp. 1–21). Hershey: IGI Global.Google Scholar
  121. Sanitá, P. V., Pavarina, A. C., Dovigo, L. N., Ribeiro, A. P. D., Andrade, M. C., & de Oliveira Mima, E. G. (2018). Curcumin-mediated anti-microbial photodynamic therapy against Candida dubliniensis biofilms. Lasers in Medical Science, 33(4), 709–717.PubMedCrossRefGoogle Scholar
  122. Saratale, R. G., Benelli, G., Kumar, G., Kim, D. S., & Saratale, G. D. (2018). Bio-fabrication of silver nanoparticles using the leaf extract of an ancient herbal medicine, dandelion (Taraxacum officinale), evaluation of their antioxidant, anticancer potential, and antimicrobial activity against phytopathogens. Environmental Science and Pollution Research, 25(11), 10392–10406.PubMedCrossRefGoogle Scholar
  123. Saravanan, S., Leena, R., & Selvamurugan, N. (2016). Chitosan based biocomposite scaffolds for bone tissue engineering. International Journal of Biological Macromolecules, 93, 1354–1365.PubMedCrossRefGoogle Scholar
  124. Sari, T., Mann, B., Kumar, R., Singh, R., Sharma, R., Bhardwaj, M., & Athira, S. (2015). Preparation and characterization of nanoemulsion encapsulating curcumin. Food Hydrocolloids, 43, 540–546.CrossRefGoogle Scholar
  125. Sarkar, C., Kumari, P., Anuvrat, K., Sahu, S. K., Chakraborty, J., & Garai, S. (2018). Synthesis and characterization of mechanically strong carboxymethyl cellulose–gelatin–hydroxyapatite nanocomposite for load-bearing orthopedic application. Journal of Materials Science, 53(1), 230–246.CrossRefGoogle Scholar
  126. Savaliya, R., Shah, D., Singh, R., Kumar, A., Shanker, R., Dhawan, A., & Singh, S. (2015). Nanotechnology in disease diagnostic techniques. Current Drug Metabolism, 16(8), 645–661.PubMedCrossRefGoogle Scholar
  127. Saxena, V., Chandra, P., & Pandey, L. M. (2018a). Design and characterization of novel Al-doped ZnO nanoassembly as an effective nanoantibiotic. Applied Nanoscience, 8(8), 1925–1941.CrossRefGoogle Scholar
  128. Saxena, V., Hasan, A., Sharma, S., & Pandey, L. M. (2018b). Edible oil nanoemulsion: An organic nanoantibiotic as a potential biomolecule delivery vehicle. International Journal of Polymeric Materials and Polymeric Biomaterials, 67(7), 410–419.CrossRefGoogle Scholar
  129. Shah, S., Yin, P. T., Uehara, T. M., Chueng, S. T. D., Yang, L., & Lee, K. B. (2014). Guiding stem cell differentiation into oligodendrocytes using graphene-nanofiber hybrid scaffolds. Advanced Materials, 26(22), 3673–3680.PubMedCrossRefGoogle Scholar
  130. Shahidi, F., & Ambigaipalan, P. (2018). Omega-3 polyunsaturated fatty acids and their health benefits. Annual Review of Food Science and Technology, 9(1).Google Scholar
  131. Sharma, C., Dinda, A. K., Potdar, P. D., Chou, C.-F., & Mishra, N. C. (2016). Fabrication and characterization of novel nano-biocomposite scaffold of chitosan–gelatin–alginate–hydroxyapatite for bone tissue engineering. Materials Science and Engineering: C, 64, 416–427.CrossRefGoogle Scholar
  132. Shim, Y. B. (2013). Gold nanoparticles and nanocomposites in clinical diagnostics using electrochemical methods. Journal of Nanoparticles, 2013, 1–12.Google Scholar
  133. Shin, M., Yoshimoto, H., & Vacanti, J. P. (2004). In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold. Tissue Engineering, 10(1–2), 33–41.PubMedCrossRefGoogle Scholar
  134. Singh, S. (2013). Nanomaterials as non-viral siRNA delivery agents for cancer therapy. BioImpacts: BI, 3(2), 53.PubMedGoogle Scholar
  135. Singh, S. (2016). Cerium oxide based nanozymes: Redox phenomenon at biointerfaces. Biointerphases, 11(4), 04B202.PubMedCrossRefGoogle Scholar
  136. Singh, A., Datta, P., & Pandey, L. M. (2017). Deciphering the mechanistic insight into the stoichiometric ratio dependent behavior of Cu (II) on BSA fibrillation. International Journal of Biological Macromolecules, 97, 662–670.PubMedCrossRefGoogle Scholar
  137. Singh, A., Hasan, A., Tiwari, S., & Pandey, L. (2018a). Therapeutic advancement in Alzheimer disease: New hopes on the horizon? CNS & Neurological Disorders Drug Targets, 17, 571–589.CrossRefGoogle Scholar
  138. Singh, S., Asal, R., & Bhagat, S. (2018b). Multifunctional antioxidant nanoliposome-mediated delivery of PTEN plasmids restore the expression of tumor suppressor protein and induce apoptosis in prostate cancer cells. Journal of Biomedical Materials Research Part A, 106, 3152–3164.PubMedCrossRefGoogle Scholar
  139. Suktham, K., Koobkokkruad, T., Wutikhun, T., & Surassmo, S. (2018). Efficiency of resveratrol-loaded sericin nanoparticles: Promising bionanocarriers for drug delivery. International Journal of Pharmaceutics, 537(1–2), 48–56.PubMedCrossRefGoogle Scholar
  140. Tiwari, S., Hasan, A., & Pandey, L. M. (2017). A novel bio-sorbent comprising encapsulated agrobacterium fabrum (SLAJ731) and iron oxide nanoparticles for removal of crude oil co-contaminant, lead Pb (II). Journal of Environmental Chemical Engineering, 5(1), 442–452.CrossRefGoogle Scholar
  141. Vallabani, N. V. S., Karakoti, A. S., & Singh, S. (2017). ATP-mediated intrinsic peroxidase-like activity of Fe3O4-based nanozyme: One step detection of blood glucose at physiological pH. Colloids and Surfaces B: Biointerfaces, 153, 52–60.PubMedCrossRefGoogle Scholar
  142. Virani, N. A., Davis, C., McKernan, P., Hauser, P., Hurst, R. E., Slaton, J., Silvy, R. P., Resasco, D. E., & Harrison, R. G. (2017). Phosphatidylserine targeted single-walled carbon nanotubes for photothermal ablation of bladder cancer. Nanotechnology, 29(3), 035101.CrossRefGoogle Scholar
  143. Wei, L., Lu, J., Xu, H., Patel, A., Chen, Z.-S., & Chen, G. (2015). Silver nanoparticles: Synthesis, properties, and therapeutic applications. Drug Discovery Today, 20(5), 595–601.PubMedCrossRefGoogle Scholar
  144. Wei, M., Li, S., & Le, W. (2017). Nanomaterials modulate stem cell differentiation: Biological interaction and underlying mechanisms. Journal of Nanobiotechnology, 15(1), 75.PubMedPubMedCentralCrossRefGoogle Scholar
  145. Wu, S. Q., Yang, C. X., & Yan, X. P. (2017). A dual-functional persistently luminescent nanocomposite enables engineering of mesenchymal stem cells for homing and gene therapy of glioblastoma. Advanced Functional Materials, 27(11), 1604992.CrossRefGoogle Scholar
  146. Xu, Q., Zhang, T., Wang, Q., Jiang, X., Li, A., Li, Y., Huang, T., Li, F., Hu, Y., Ling, D., & Gao, J. (2018). Uniformly sized iron oxide nanoparticles for efficient gene delivery to mesenchymal stem cells. International Journal of Pharmaceutics, 552(1), 443–452.PubMedCrossRefGoogle Scholar
  147. Yamagishi, K., Ikeda, A., Chei, C.-L., Noda, H., Umesawa, M., Cui, R., Muraki, I., Ohira, T., Imano, H., & Sankai, T. (2017). Serum α-linolenic and other ω-3 fatty acids, and risk of disabling dementia: Community-based nested case–control study. Clinical Nutrition, 36(3), 793–797.PubMedCrossRefGoogle Scholar
  148. Yamamoto, H., Kuno, Y., Sugimoto, S., Takeuchi, H., & Kawashima, Y. (2005). Surface-modified PLGA nanosphere with chitosan improved pulmonary delivery of calcitonin by mucoadhesion and opening of the intercellular tight junctions. Journal of Controlled Release, 102(2), 373–381.PubMedCrossRefGoogle Scholar
  149. Yang, L., Sun, J., Xie, W., Liu, Y., & Liu, J. (2017). Dual-functional selenium nanoparticles bind to and inhibit amyloid β fiber formation in Alzheimer’s disease. Journal of Materials Chemistry B, 5(30), 5954–5967.CrossRefGoogle Scholar
  150. Yang, N., Ding, Y., Zhang, Y., Wang, B., Zhao, X., Cheng, K., Huang, Y., Taleb, M., Zhao, J., Dong, W.-F., Zhang, L., & Nie, G. (2018). Surface functionalization of polymeric nanoparticles with umbilical cord-derived mesenchymal stem cell membrane for tumor-targeted therapy. ACS Applied Materials & Interfaces, 10(27), 22963–22973.CrossRefGoogle Scholar
  151. Yao, X., Niu, X., Ma, K., Huang, P., Grothe, J., Kaskel, S., & Zhu, Y. (2017). Graphene quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy. Small, 13(2), 1602225.CrossRefGoogle Scholar
  152. Yasir, M., Singh, J., Tripathi, M. K., Singh, P., & Shrivastava, R. (2018). Green synthesis of silver nanoparticles using leaf extract of common arrowhead houseplant and its anticandidal activity. Pharmacognosy Magazine, 13(Suppl 4), S840.PubMedPubMedCentralGoogle Scholar
  153. Yen, Y. H., Pu, C. M., Liu, C. W., Chen, Y. C., Chen, Y. C., Liang, C. J., Hsieh, J. H., Huang, H. F., & Chen, Y. L. (2018). Curcumin accelerates cutaneous wound healing via multiple biological actions: The involvement of TNF-α, MMP-9, α-SMA, and collagen. International Wound Journal, 15, 605–617.PubMedCrossRefGoogle Scholar
  154. Yong, Y., Cheng, X., Bao, T., Zu, M., Yan, L., Yin, W., Ge, C., Wang, D., Gu, Z., & Zhao, Y. (2015). Tungsten sulfide quantum dots as multifunctional nanotheranostics for in vivo dual-modal image-guided photothermal/radiotherapy synergistic therapy. ACS Nano, 9(12), 12451–12463.PubMedCrossRefGoogle Scholar
  155. Yoo, J., Lee, E., Kim, H. Y., Youn, D.-h., Jung, J., Kim, H., Chang, Y., Lee, W., Shin, J., & Baek, S. (2017). Electromagnetized gold nanoparticles mediate direct lineage reprogramming into induced dopamine neurons in vivo for Parkinson’s disease therapy. Nature Nanotechnology, 12(10), 1006.PubMedCrossRefGoogle Scholar
  156. Yu, M. K., Jeong, Y. Y., Park, J., Park, S., Kim, J. W., Min, J. J., Kim, K., & Jon, S. (2008). Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angewandte Chemie, 120(29), 5442–5445.CrossRefGoogle Scholar
  157. Zamani, M., Rostami, M., Aghajanzadeh, M., Manjili, H. K., Rostamizadeh, K., & Danafar, H. (2018). Mesoporous titanium dioxide@ zinc oxide–graphene oxide nanocarriers for colon-specific drug delivery. Journal of Materials Science, 53(3), 1634–1645.CrossRefGoogle Scholar
  158. Zhang, X.-F., Liu, Z.-G., Shen, W., & Gurunathan, S. (2016). Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. International Journal of Molecular Sciences, 17(9), 1534.PubMedCentralCrossRefPubMedGoogle Scholar
  159. Zhang, G., Khan, A., Wu, H., Chen, L., Gu, Y., & Gu, N. (2017). The application of nanomaterials in stem cell therapy for some neurological diseases. Current Drug Targets, 19, 279–298.Google Scholar
  160. Zhang, B., Yan, W., Zhu, Y., Yang, W., Le, W., Chen, B., Zhu, R., & Cheng, L. (2018a). Nanomaterials in neural-stem-cell-mediated regenerative medicine: Imaging and treatment of neurological diseases. Advanced Materials, 30(17), 1705694.CrossRefGoogle Scholar
  161. Zhang, F., Stephan, S. B., Ene, C. I., Smith, T. T., Holland, E. C., & Stephan, M. T. (2018b). Nanoparticles that reshape the tumor milieu create a therapeutic window for effective T cell therapy in solid malignancies. Cancer Research, 78, 3718–3730. canres. 0306.2018.PubMedCrossRefGoogle Scholar
  162. Zhao, M.-X., & Zeng, E.-Z. (2015). Application of functional quantum dot nanoparticles as fluorescence probes in cell labeling and tumor diagnostic imaging. Nanoscale Research Letters, 10(1), 171.PubMedPubMedCentralCrossRefGoogle Scholar
  163. Zhao, Q., Qian, J., An, Q., Gao, C., Gui, Z., & Jin, H. (2009). Synthesis and characterization of soluble chitosan/sodium carboxymethyl cellulose polyelectrolyte complexes and the pervaporation dehydration of their homogeneous membranes. Journal of Membrane Science, 333(1–2), 68–78.CrossRefGoogle Scholar
  164. Zhu, Y., Chandra, P., & Shim, Y.-B. (2012a). Ultrasensitive and selective electrochemical diagnosis of breast cancer based on a hydrazine–Au nanoparticle–aptamer bioconjugate. Analytical Chemistry, 85(2), 1058–1064.PubMedCrossRefGoogle Scholar
  165. Zhu, Y., Chandra, P., Song, K.-M., Ban, C., & Shim, Y.-B. (2012b). Label-free detection of kanamycin based on the aptamer-functionalized conducting polymer/gold nanocomposite. Biosensors and Bioelectronics, 36(1), 29–34.PubMedCrossRefGoogle Scholar
  166. Zhu, X., Feng, W., Chang, J., Tan, Y.-W., Li, J., Chen, M., Sun, Y., & Li, F. (2016). Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature. Nature Communications, 7, 10437.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Srijeeb Karmakar
    • 1
  • Varun Saxena
    • 1
  • Pranjal Chandra
    • 1
  • Lalit M. Pandey
    • 1
    Email author
  1. 1.Department of Biosciences and BioengineeringIndian Institute of Technology GuwahatiGuwahatiIndia

Personalised recommendations