Advertisement

Power Conversion and Predictive Control of Wind Energy Conversion Systems

  • Venkata YaramasuEmail author
  • Samir Kouro
  • Apparao Dekka
  • Salvador Alepuz
  • Jose Rodriguez
  • Mario Duran
Chapter
Part of the Power Systems book series (POWSYS)

Abstract

Wind energy conversion systems have become mature and competitive with conventional and other renewable energy sources. Electric generators, power converters, and control systems ensure safe, efficient, reliable, and high-performance operation for wind energy systems, while meeting the strict grid codes. This book chapter presents power conversion systems and predictive control strategies for permanent magnet synchronous generator, squirrel cage induction generator, and doubly-fed induction generator-based wind energy conversion systems. Various forms of predictive control techniques including predictive current control, predictive torque control, and predictive power control are discussed with case studies. The discrete-time models of overall system are presented in terms of power converter switching states. The predictive control strategies fulfill the control requirements such as maximum power point tracking, regulation of DC-link voltage, grid synchronization, generation of reactive power to a three-phase grid, and fault-ride through operation. The intuitiveness of material presented in this book chapter allows readers extending the predictive control strategies for other power conversion applications.

Notes

Acknowledgements

This work was supported in part by the Northern Arizona University, in part by the AC3E Conicyt/FB0008 Project, and in part by Spanish Ministry of Science and Innovation under Project ENE2014-52536-C2-1-R.

References

  1. 1.
    Global Wind Energy Council (GWEC) (2017) Global wind report: annual market update. http://www.gwec.net. Accessed June 2018
  2. 2.
    Yaramasu V, Wu B, Sen PC, Kouro S, Narimani M (2015) High-power wind energy conversion systems: state-of-the-art and emerging technologies. Proc. IEEE 103(5):740–788CrossRefGoogle Scholar
  3. 3.
    Yaramasu V, Wu B (2016) Model predictive control of wind energy conversion systems. Wiley-IEEE Press, Hoboken, NJ, first editionGoogle Scholar
  4. 4.
    Yaramasu V, Wu B (2017) Encyclopedia of sustainable technologies. In: Power electronics for high-power wind energy conversion systems, pp 37–49, 1st edn. Elsevier, Amsterdam, NetherlandsCrossRefGoogle Scholar
  5. 5.
    Yaramasu V, Dekka A, Durn MJ, Kouro S, Wu B (2017) PMSG-based wind energy conversion systems: survey on power converters and controls. IEE Proc Electr Power Appl 11(6):956–968CrossRefGoogle Scholar
  6. 6.
    Casadei D, Profumo F, Serra G, Tani A (2002) FOC and DTC: two viable schemes for induction motors torque control. IEEE Trans Power Electron 17(5):779–787CrossRefGoogle Scholar
  7. 7.
    Teodorescu R, Liserre M, Rodriguez P (2011) Grid converters for photovoltaic and wind power systems. Wiley-IEEE Press, Chichester, UKCrossRefGoogle Scholar
  8. 8.
    Vazquez S, Rodriguez J, Rivera M, Franquelo LG, Norambuena M (2017) Model predictive control for power converters and drives: advances and trends. IEEE Trans Ind Electron 64(2):935–947CrossRefGoogle Scholar
  9. 9.
    Chinchilla M, Arnaltes S, Burgos JC (2006) Control of permanent-magnet generators applied to variable-speed wind-energy systems connected to the grid. IEEE Trans Energy Convers 21(1):130–135CrossRefGoogle Scholar
  10. 10.
    Cardenas R, Pena R, Alepuz S, Asher G (2013) Overview of control systems for the operation of DFIGs in wind energy applications. IEEE Trans Ind Electron 60(7):2776–2798CrossRefGoogle Scholar
  11. 11.
    Xu Z, Li R, Zhu H, Xu D, Zhang CCH (2012) Control of parallel multiple converters for direct-drive permanent-magnet wind power generation systems. IEEE Trans Power Electron 27(3):1259–1270CrossRefGoogle Scholar
  12. 12.
    Duran MJ, Barrero F (2016) Recent advances in the design, modeling, and control of multiphase machines—part II. IEEE Trans Ind Electron 63(1):459–468CrossRefGoogle Scholar
  13. 13.
    Iov F, Blaabjerg F, Clare J, Wheeler P, Rufer A, Hyde A (2009) UNIFLEX-PM—a key-enabling technology for future European electricity networks. Europ Power Electron Drives Assoc J 19(4):6–16CrossRefGoogle Scholar
  14. 14.
    Xia YY, Fletcher JE, Finney SJ, Ahmed KH, Williams BW (2011) Torque ripple analysis and reduction for wind energy conversion systems using uncontrolled rectifier and boost converter. IET Renew Power Gener 5(5):377–386CrossRefGoogle Scholar
  15. 15.
    Wu B, Lang Y, Zargari N, Kouro S (2011) Power conversion and control of wind energy systems. IEEE Press series on power engineering, 1st edn. Wiley-IEEE Press, Hoboken, NJCrossRefGoogle Scholar
  16. 16.
    Faulstich A, Stinke JK, Wittwer F (2005) Medium voltage converter for permanent magnet wind power generators up to 5 MW. In: European Conference on Power Electronics and Applications (EPE), pp. 9–P.9. Dresden, GermanyGoogle Scholar
  17. 17.
    Kouro S, Malinowski M, Gopakumar K, Pou J, Franquelo LG, Wu B, Rodríguez J, Perez MA, Leon JI (2010) Recent advances and industrial applications of multilevel converters. IEEE Trans Ind Electron 57(8):2553–2580CrossRefGoogle Scholar
  18. 18.
    Yaramasu V, Wu B (2014) Model predictive decoupled active and reactive power control for high-power grid-connected four-level diode-clamped inverters. IEEE Trans Ind Electron 61(7):3407–3416CrossRefGoogle Scholar
  19. 19.
    Yaramasu V, Wu B, Alepuz S, Kouro S (2014) Predictive control for low-voltage ride-through enhancement of three-level-boost and NPC-converter-based PMSG wind turbine. IEEE Trans Ind Electron 61(12):6832–6843CrossRefGoogle Scholar
  20. 20.
    Yaramasu V (2017) Advances in energy research. In: Acosta MJ (ed) MATLAB/simulink implementation of predictive current control for PMSG wind energy conversion systems, vol 27, pp 187–230. Nova Science Publishers Inc., Hauppauge, NYGoogle Scholar
  21. 21.
    Calle-Prado A, Alepuz S, Bordonau J, Nicolas-Apruzzese J, Cortes P, Rodriguez J (2015) Model predictive current control of grid-connected neutral-point-clamped converters to meet low-voltage ride-through requirements. IEEE Trans Ind Electron 62(3):1503–1514CrossRefGoogle Scholar
  22. 22.
    Rodríguez J, Kennel RM, Espinoza JR, Trincado M, Silva CA, Rojas CA (2012) High-performance control strategies for electrical drives: an experimental assessment. IEEE Trans Ind Electron 59(2):812–820CrossRefGoogle Scholar
  23. 23.
    Miranda H., Coŕtes P, Yuz JI, Rodríguez J (2009) Predictive torque control of induction machines based on state-spacemodels. IEEE Trans Ind Electron 56(6):1916–1924CrossRefGoogle Scholar
  24. 24.
    Holtz J (1995) The representation of AC machine dynamics by complex signal flow graphs. IEEE Trans Ind Electron 42(3):263–271CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Venkata Yaramasu
    • 1
    Email author
  • Samir Kouro
    • 2
  • Apparao Dekka
    • 3
  • Salvador Alepuz
    • 4
  • Jose Rodriguez
    • 5
  • Mario Duran
    • 6
  1. 1.Northern Arizona UniversityFlagstaffUSA
  2. 2.Universidad Tecnica Federico Santa MariaValaraisoChile
  3. 3.Ryerson UniversityTorontoCanada
  4. 4.Universitat Pompeu FabraMataroSpain
  5. 5.Universidad Andres BelloSantiagoChile
  6. 6.University of MalagaAndalusiaSpain

Personalised recommendations