Advertisement

Exudate Detection in Fundus Images: Multispace Clustering Approach

  • Sanjeev DubeyEmail author
  • Utkarsh Mittal
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 835)

Abstract

Retina is the outer lining of human eye where the image formation takes place. Any threat to retina causes severe eye defects and may lead to complete blindness. During a defect the retina gets distorted. To measure the severity of a disease we need to determine different damage causing elements. Exudates are one such artefact that play a vital role in disease prediction. Diabetic Retinopathy is the leading cause of blindness in the working-age population of the world. Exudates act as a feature to predict this condition. This work aims to automatically segment exudates from fundus images using Image Processing and Machine Learning algorithms.

Keywords

Exudates Diabetic Retinopathy Optic disk 

References

  1. 1.
    Sopharak, A., Uyyanonvara, B., Barman, S., Williamson, T.H.: Automatic detection of diabetic retinopathy exudates from non-dilated retinal images using mathematical morphology methods. Comput. Med. Imaging Graph. 32(8), 720–727 (2008)CrossRefGoogle Scholar
  2. 2.
    Welfer, D., Scharcanski, J., Marinho, D.R.: A coarse-to-fine strategy for automatically detecting exudates in color eye fundus images. Comput. Med. Imaging Graph. 34(3), 228–235 (2010)CrossRefGoogle Scholar
  3. 3.
    Jaafar, H.F., Nandi, A.K., Al-Nuaimy, W.: Detection of exudates in retinal images using a pure splitting technique. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 6745–6748. IEEE, August 2010Google Scholar
  4. 4.
    Karegowda, A.G., Nasiha, A., Jayaram, M.A., Manjunath, A.S.: Exudates detection in retinal images using back propagation neural network. Int. J. Comput. Appl. 25(3), 25–31 (2011)Google Scholar
  5. 5.
    Kumar, P.S., Kumar, R.R., Sathar, A., Sahasranamam, V.: Automatic detection of exudates in retinal images using histogram analysis. In: 2013 IEEE Recent Advances in Intelligent Computational Systems (RAICS), pp. 277–281. IEEE, December 2013Google Scholar
  6. 6.
    Luangruangrong, W., Kulkasem, P., Rasmequan, S., Rodtook, A., Chinnasarn, K.: Automatic exudates detection in retinal images using efficient integrated approaches. In: 2014 Annual Summit and Conference on Asia-Pacific Signal and Information Processing Association (APSIPA), pp. 1–5. IEEE, December 2014Google Scholar
  7. 7.
    Ram, K., Sivaswamy, J.: Multi-space clustering for segmentation of exudates in retinal color photographs. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2009, pp. 1437–1440. IEEE, September 2009Google Scholar
  8. 8.
    Araújo, F., Silva, R., Macedo, A., Aires, K., Veras, R.: Automatic identification of diabetic retinopathy in retinal images using ensemble learning. In: Workshop de Informática Médica, Maceió, Alagoas, Brasil (2013)Google Scholar
  9. 9.
    Kauppi, T., et al.: The DIARETDB1 Diabetic Retinopathy Database and Evaluation Protocol. In: BMVC, pp. 1–10, September 2007Google Scholar
  10. 10.
    Vision Impairment and Blindness: World Health Organization. www.who.int/mediacentre/factsheets/fs282/en/
  11. 11.
    Harangi, B., Lazar, I., Hajdu, A.: Automatic exudate detection using active contour model and region wise classification. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5951–5954. IEEE, August 2012Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Cluster Innovation CentreNew DelhiIndia

Personalised recommendations