Advertisement

Variation of Stability Factor of MSERs for Text Detection and Localization in Natural Scene Image Using Naive Bayes Classifier

  • Rituraj SoniEmail author
  • Bijendra Kumar
  • Satish Chand
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 835)

Abstract

The process of extracting textual regions from the scene images is a significant matter in the field of image processing & computer vision. It is very challenging due to different fonts, variable font size, illumination conditions and complex background etc. In last decade, image segmentation using Maximal Stable Extremal Regions (MSERs) played an important role in this area due to its various advantages. The generation of MSERs is controlled by variation of stability factor delta in deciding the promising stable areas. The aim of this paper is to study the effect of parameter delta and calculate the optimal delta on the different versions of MSER for detection and localization of text in scene images. Four different features Stroke Width Heterogeneity, Perpetual Color Contrast, Histogram of Oriented Gradients at Edges, Occupy Rate are used to evaluate the probability of text using naive Bayes Model for each version of MSERs. The Training is accomplished on the ICDAR 2013 training dataset and experiments for testing our method are carried out on ICDAR datasets to show the importance of delta (optimal value) parameter of MSER in providing the optimum results expressed as f-measure, recall and precision.

Keywords

Text region extraction Natural scene images Delta MSERs Naive bayesian 

References

  1. 1.
    Zhang, H., Zhao, K., Song, Y.Z., Guo, J.: Text extraction from natural scene image: a survey. Neurocomputing 122, 310–323 (2013)CrossRefGoogle Scholar
  2. 2.
    GonzaLez, A., Bergasa, L.M.: A text reading algorithm for natural images. Image Vis. Comput. 31(3), 255–274 (2013)CrossRefGoogle Scholar
  3. 3.
    Ye, Q., Doermann, D.: Text detection and recognition in imagery: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 37(7), 1480–1500 (2015)CrossRefGoogle Scholar
  4. 4.
    Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image Vis. Comput. 22(10), 761–767 (2004)CrossRefGoogle Scholar
  5. 5.
    Vedaldi, A., Fulkerson, B.: Vlfeat: an open and portable library of computer vision algorithms. In: Proceedings of the 18th ACM International Conference on Multimedia, pp. 1469–1472. ACM (2010). http://www.vlfeat.org/
  6. 6.
    Li, Y., Lu, H.: Scene text detection via stroke width. In: 2012 21st International Conference on Pattern Recognition (ICPR), pp. 681–684. IEEE (2012)Google Scholar
  7. 7.
    Li, Y., Jia, W., Shen, C., van den Hengel, A.: Characterness: an indicator of text in the wild. IEEE Trans. Image Process. 23(4), 1666–1677 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001)CrossRefGoogle Scholar
  9. 9.
    Pan, W., Bui, T., Suen, C.: Text detection from natural scene images using topo-graphic maps and sparse representations. In: IEEE Computer Society. IEEE ICIP (2009)Google Scholar
  10. 10.
    Epshtein, B., Ofek, E., Wexler, Y.: Detecting text in natural scenes with stroke width transform. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2963–2970. IEEE (2010)Google Scholar
  11. 11.
    Neumann, L., Matas, J.: A method for text localization and recognition in real-world images. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010. LNCS, vol. 6494, pp. 770–783. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19318-7_60CrossRefGoogle Scholar
  12. 12.
    Neumann, L., Matas, J.: Real-time scene text localization and recognition. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3538–3545. IEEE (2012)Google Scholar
  13. 13.
    Liu, Z., Sarkar, S.: Robust outdoor text detection using text intensity and shape features. In: 19th International Conference on Pattern Recognition ICPR 2008, pp. 1–4. IEEE (2008)Google Scholar
  14. 14.
    Merino-Gracia, C., Lenc, K., Mirmehdi, M.: A head-mounted device for recognizing text in natural scenes. In: Iwamura, M., Shafait, F. (eds.) CBDAR 2011. LNCS, vol. 7139, pp. 29–41. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29364-1_3CrossRefGoogle Scholar
  15. 15.
    Chen, H., Tsai, S.S., Schroth, G., Chen, D.M., Grzeszczuk, R., Girod, B.: Robust text detection in natural images with edge-enhanced maximally stable extremal regions. In: 2011 18th IEEE International Conference on Image Processing (ICIP), pp. 2609–2612. IEEE (2011)Google Scholar
  16. 16.
    Tsai, S., Parameswaran, V., Berclaz, J., Vedantham, R., Grzeszczuk, R., Girod, B.: Design of a text detection system via hypothesis generation and verification. In: Proceedings of Asian Conference on Computer Vision, vol. 12, pp. 13–37 (2012)Google Scholar
  17. 17.
    Tian, S., Lu, S., Su, B., Tan, C.L.: Scene text segmentation with multi-level maximally stable extremal regions. In: 2014 22nd International Conference on Pattern Recognition (ICPR), pp. 2703–2708. IEEE (2014)Google Scholar
  18. 18.
    Zamberletti, A., Noce, L., Gallo, I.: Text localization based on fast feature pyramids and multi-resolution maximally stable extremal regions. In: Jawahar, C.V., Shan, S. (eds.) ACCV 2014. LNCS, vol. 9009, pp. 91–105. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-16631-5_7CrossRefGoogle Scholar
  19. 19.
    Gomez, L., Karatzas, D.: A fast hierarchical method for multi-script and arbitrary oriented scene text extraction. Int. J. Doc. Anal. Recogn. (IJDAR) 19(4), 335–349 (2016)CrossRefGoogle Scholar
  20. 20.
    Guan, L., Chu, J.: Natural scene text detection based on swt, mser and candidate classification. In: Image, Vision and Computing (ICIVC), pp. 26–30 (2017)Google Scholar
  21. 21.
    Ghanei, S., Faez, K.: A robust approach for scene text localization using rule-based confidence map and grouping. Int. J. Pattern Recogn. Artif. Intell. 31(03), 1753002 (2017)CrossRefGoogle Scholar
  22. 22.
    Soni, R., Kumar, B., Chand, S.: Text detection and localization in natural scene images using MSER and fast guided filter. In: Fourth International Conference on Image Information Processing (ICIIP), pp. 1–6 (2017)Google Scholar
  23. 23.
    Huang, W., Qiao, Y., Tang, X.: Robust scene text detection with convolution neural network induced MSER trees. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 497–511. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10593-2_33CrossRefGoogle Scholar
  24. 24.
    He, K., Sun, J., Tang, X.: Guided image filtering. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 1–14. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15549-9_1CrossRefGoogle Scholar
  25. 25.
    Karatzas, D., et al.: ICDAR 2013 robust reading competition. In: 2013 12th International Conference on Document Analysis and Recognition (ICDAR), pp. 1484–1493. IEEE (2013)Google Scholar
  26. 26.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition CVPR 2005, vol. 1, pp. 886–893. IEEE (2005)Google Scholar
  27. 27.
    Majtey, A., Lamberti, P., Prato, D.: Jensen-shannon divergence as a measure of distinguishability between mixed quantum states. Phys. Rev. A 72(5), 052310 (2005)CrossRefGoogle Scholar
  28. 28.
    Gonzalez, A., Bergasa, L.M., Yebes, J.J., Bronte, S.: Text location in complex images. In: 2012 21st International Conference on Pattern Recognition (ICPR), pp. 617–620. IEEE (2012)Google Scholar
  29. 29.
    Wang, Q., Lu, Y., Sun, S.: Text detection in nature scene images using two-stage non text filtering. In: 2015 13th International Conference on Document Analysis and Recognition (ICDAR), pp. 106–110. IEEE (2015)Google Scholar
  30. 30.
    Shahab, A., Shafait, F., Dengel, A.: ICDAR 2011 robust reading competition challenge 2: reading text in scene images. In: 2011 International Conference on Document Analysis and Recognition (ICDAR), pp. 1491–1496. IEEE (2011)Google Scholar
  31. 31.
    Wolf, C., Jolion, J.M.: Object count/area graphs for the evaluation of object detection and segmentation algorithms. Int. J. Doc. Anal. Recogn. (IJDAR) 8(4), 280–296 (2006)CrossRefGoogle Scholar
  32. 32.
    Yu, C., Song, Y., Meng, Q., Zhang, Y., Liu, Y.: Text detection and recognition in natural scene with edge analysis. IET Comput. Vis. 9(4), 603–613 (2015)CrossRefGoogle Scholar
  33. 33.
    Wang, R., Sang, N., Gao, C.: Text detection approach based on confidence map and context information. Neurocomputing 157, 153–165 (2015)CrossRefGoogle Scholar
  34. 34.
    Zhang, J., Kasturi, R.: Text detection using edge gradient and graph spectrum. In: 20th International Conference on Pattern Recognition (ICPR), pp. 3979–3982, August 2010Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Computer EngineeringNetaji Subhas Institute of TechnologyNew DelhiIndia
  2. 2.School of Computer and Systems ScienceJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations